期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Simultaneous CO_(2) capture and thermochemical heat storage by modified carbide slag in coupled calcium looping and CaO/Ca(OH)2 cycles 被引量:5
1
作者 Chunxiao Zhang Yingjie Li +2 位作者 Zhiguo Bian Wan Zhang Zeyan Wang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2021年第8期76-85,共10页
The simultaneous CO_(2) capture and heat storage performances of the modified carbide slag with byproduct of biodiesel were investigated in the process coupled calcium looping and CaO/Ca(OH)2 thermochemical heat stora... The simultaneous CO_(2) capture and heat storage performances of the modified carbide slag with byproduct of biodiesel were investigated in the process coupled calcium looping and CaO/Ca(OH)2 thermochemical heat storage using air as the heat transfer fluid.The modified carbide slag with by-product of biodiesel exhibits superior CO_(2) capture and heat storage capacities in the coupled calcium looping and heat storage cycles.The hydration conversion and heat storage density of the modified carbide slag after 30 heat storage cycles are 0.65 mol·mol^(-1) and 1.14 GJ·t^(-1),respectively,which are 1.6 times as high as those of calcined carbide slag.The negative effect of CO_(2) in air as the heat storage fluid on the heat storage capacity of the modified carbide slag is overcome by introducing CO_(2) capture cycles.In addition,the CO_(2) capture reactivity of the modified carbide slag after the multiple calcium looping cycles is enhanced by the introduction of heat storage cycles.By introducing 10 heat storage cycles after the 10th and 15th CO_(2) capture cycles,the CO_(2) capture capacities of the modified carbide slag are subsequently improved by 32%and 43%,respectively.The porous and loose structure of modified carbide slag reduces the diffusion resistances of CO_(2) and steam in the material in the coupled process.The formed CaCO_(3)in the modified carbide slag as a result of air as the heat transfer fluid in heat storage cycles decomposes to regenerate CaO in calcium looping cycles,which improves heat storage capacity.Therefore,the modified carbide slag with by-product of biodiesel seems promising in the coupled calcium looping and CaO/Ca(OH)_(2) heat storage cycles. 展开更多
关键词 carbide slag calcium looping caO/ca(OH)_(2)heat storage Modification By-product of biodiesel CO_(2)capture
下载PDF
Effects of Gibberellic Acid (GA_(3)) and Salicylic Acid (SA) postharvest treatments on the quality of fresh Barhi dates at different ripening levels in the Khalal maturity stage during controlled atmosphere storage
2
作者 Ahmed Atia Diaeldin Abdelkarim +1 位作者 Mahmoud Younis Abdullah Alhamdan 《International Journal of Agricultural and Biological Engineering》 SCIE EI CAS 2018年第3期211-219,共9页
Barhi dates at Khalal maturity stage are well-known with their pleasant taste,crispy texture,and bright yellow color.It is necessary to extend the duration of Barhi Khalal stage which is too short for effective market... Barhi dates at Khalal maturity stage are well-known with their pleasant taste,crispy texture,and bright yellow color.It is necessary to extend the duration of Barhi Khalal stage which is too short for effective marketing.This study aimed to inspect the effects of Gibberellic Acid(GA_(3))and Salicylic Acid(SA)postharvest treatments on retaining the high quality of Khalal Barhi fruits during controlled atmosphere storage.Fresh samples of Barhi fruits at Khalal stage harvested at three different ripening levels were dipped after harvesting in GA3(150 ppm)or SA(2.0 mmol/L)and subsequently stored in controlled atmosphere(0°С,5%O_(2),5%CO_(2),80%±5%RH).The results revealed that the GA_(3) and SA treatments reduced the percentage of weight loss and decay in the fruits,while the total soluble solids increased.Moreover,GA_(3) and SA treatments were significantly efficient in limiting the changes in fruit color and texture of Barhi dates compared to the control.Sensorial results support the experimental data and disclosed that the GA_(3)(150 ppm)treatment in the controlled atmosphere(CA)storage was better in conserving the quality of Barhi at the Khalal maturity stage and delaying ripening process. 展开更多
关键词 Barhi dates Khalal maturity stage Gibberellic Acid(GA_(3)) Salicylic Acid(SA) postharvest treatments controlled atmosphere(ca)storage
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部