期刊文献+
共找到173篇文章
< 1 2 9 >
每页显示 20 50 100
Estimation of cancer cell migration in biomimetic random/oriented collagen fiber microenvironments
1
作者 姚静如 李国强 +8 位作者 姚喜耀 周连杰 叶志凯 刘艳平 郑栋天 唐婷 宋克纳 陈果 刘雳宇 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第5期749-756,共8页
Increasing data indicate that cancer cell migration is regulated by extracellular matrixes and their surrounding biochemical microenvironment,playing a crucial role in pathological processes such as tumor invasion and... Increasing data indicate that cancer cell migration is regulated by extracellular matrixes and their surrounding biochemical microenvironment,playing a crucial role in pathological processes such as tumor invasion and metastasis.However,conventional two-dimensional cell culture and animal models have limitations in studying the influence of tumor microenvironment on cancer cell migration.Fortunately,the further development of microfluidic technology has provided solutions for the study of such questions.We utilize microfluidic chip to build a random collagen fiber microenvironment(RFM)model and an oriented collagen fiber microenvironment(OFM)model that resemble early stage and late stage breast cancer microenvironments,respectively.By combining cell culture,biochemical concentration gradient construction,and microscopic imaging techniques,we investigate the impact of different collagen fiber biochemical microenvironments on the migration of breast cancer MDA-MB-231-RFP cells.The results show that MDA-MB-231-RFP cells migrate further in the OFM model compared to the RFM model,with significant differences observed.Furthermore,we establish concentration gradients of the anticancer drug paclitaxel in both the RFM and OFM models and find that paclitaxel significantly inhibits the migration of MDA-MB-231-RFP cells in the RFM model,with stronger inhibition on the high concentration side compared to the low concentration side.However,the inhibitory effect of paclitaxel on the migration of MDA-MB-231-RFP cells in the OFM model is weak.These findings suggest that the oriented collagen fiber microenvironment resembling the late-stage tumor microenvironment is more favorable for cancer cell migration and that the effectiveness of anticancer drugs is diminished.The RFM and OFM models constructed in this study not only provide a platform for studying the mechanism of cancer development,but also serve as a tool for the initial measurement of drug screening. 展开更多
关键词 microfluidic chip random collagen fiber microenvironment(RFM) oriented collagen fiber microenvironment(OFM) cancer cell migration
下载PDF
IL-17 induces NSCLC cell migration and invasion by elevating MMP19 gene transcription and expression through the interaction of p300-dependent STAT3-K631 acetylation and its Y705-phosphorylation
2
作者 WEN GE YA LI +7 位作者 YUTING RUAN NINGXIA WU PEI MA TONGPENG XU YONGQIAN SHU YINGWEI WANG WEN QIU CHENHUI ZHAO 《Oncology Research》 SCIE 2024年第4期625-641,共17页
The cancer cell metastasis is a major death reason for patients with non-small cell lung cancer(NSCLC).Although researchers have disclosed that interleukin 17(IL-17)can increase matrix metalloproteinases(MMPs)inductio... The cancer cell metastasis is a major death reason for patients with non-small cell lung cancer(NSCLC).Although researchers have disclosed that interleukin 17(IL-17)can increase matrix metalloproteinases(MMPs)induction causing NSCLC cell metastasis,the underlying mechanism remains unclear.In the study,we found that IL-17 receptor A(IL-17RA),p300,p-STAT3,Ack-STAT3,and MMP19 were up-regulated both in NSCLC tissues and NSCLC cells stimulated with IL-17.p300,STAT3 and MMP19 overexpression or knockdown could raise or reduce IL-17-induced p-STAT3,Ack-STAT3 and MMP19 level as well as the cell migration and invasion.Mechanism investigation revealed that STAT3 and p300 bound to the same region(−544 to−389 nt)of MMP19 promoter,and p300 could acetylate STAT3-K631 elevating STAT3 transcriptional activity,p-STAT3 or MMP19 expression and the cell mobility exposed to IL-17.Meanwhile,p300-mediated STAT3-K631 acetylation and its Y705-phosphorylation could interact,synergistically facilitating MMP19 gene transcription and enhancing cell migration and invasion.Besides,the animal experiments exhibited that the nude mice inoculated with NSCLC cells by silencing p300,STAT3 or MMP19 gene plus IL-17 treatment,the nodule number,and MMP19,Ack-STAT3,or p-STAT3 production in the lung metastatic nodules were all alleviated.Collectively,these outcomes uncover that IL-17-triggered NSCLC metastasis involves up-regulating MMP19 expression via the interaction of STAT3-K631 acetylation by p300 and its Y705-phosphorylation,which provides a new mechanistic insight and potential strategy for NSCLC metastasis and therapy. 展开更多
关键词 NSCLC cell migration and invasion IL-17 P300 STAT3 MMP19 Acetylation and phosphorylation
下载PDF
LIM1863 is useful to explore collective cancer cell migration,and the group of heterogeneous cells undergoing collective migration behaves like a supracellular unit
3
作者 JINSONG WU ZHENG ZHI +5 位作者 WENZHONG XU DIANCGENG LI QIUBO LI YAN HAN JIANMING HE XI LIANG 《BIOCELL》 SCIE 2023年第12期2671-2680,共10页
Collective cancer cell migration(CCCM)and epithelial-to-mesenchymal transition(EMT)play key roles in metastasis.This study reports that the colorectal carcinoma cell line LIM1863 is useful for the study of CCCM and EM... Collective cancer cell migration(CCCM)and epithelial-to-mesenchymal transition(EMT)play key roles in metastasis.This study reports that the colorectal carcinoma cell line LIM1863 is useful for the study of CCCM and EMT.Methods:Hematoxylin and eosin staining,scanning electron microscopy,transmission electron microscopy,and western blot analysis were performed.Results:LIM1863 automatically grew as spheroids in suspension and had important typical epithelial properties,including several layers of cells arranged around a central lumen,apical-basal polarity,and types of cell-cell junctions.Treatment with a combination of both TGF beta 1 and TNF alpha induced definite and distinct EMT,a spheroid changing phenotype to form a monolayer high-confluent patch without lumen,without polarity.Spontaneous CCCM occurred in spheroids.Flat EMT cells adhered to the base of a dish,exhibited persistent movement as a cluster of cells,and then shed,resulting in a cluster.All cells from one cluster undergoing CCCM died.Otherwise,all cells undergoing EMT disappeared and almost all cells located in the cell reservoir survived and proliferated.Conclusion:LIM1863 is an excellent cell line to study CCCM and EMT.The group of heterogeneous cells undergoing CCCM behaves like a supracellular unit. 展开更多
关键词 Colorectal cancer Epithelial-to-mesenchymal transition Collective cell migration Supracellular migration METASTASIS
下载PDF
TGF-β1-promoted epithelial-to-mesenchymal transformation and cell adhesion contribute to TGF-β1-enhanced cell migration in SMMC-7721 cells 被引量:30
4
作者 ZHENXU MINXIONGSHEN +2 位作者 DONGZHUMA LIYINGWANG XILIANGZHA 《Cell Research》 SCIE CAS CSCD 2003年第5期343-350,共8页
Transforming growth factor-b 1 (TGF-β1), a multi-function polypeptide, is a double-edged sword in cancer. For some tumor cells, TGF-β1 is a potent growth inhibitor and apoptosis inducer. More commonly, TGF-β1 loses... Transforming growth factor-b 1 (TGF-β1), a multi-function polypeptide, is a double-edged sword in cancer. For some tumor cells, TGF-β1 is a potent growth inhibitor and apoptosis inducer. More commonly, TGF-β1 loses its growth-inhibitory and apoptosis-inducing effects, but stimulates the metastatic capacity of tumor cells. It is currently little known about TGF-β1-promoted cell migration in hepatocellular carcinoma (HCC) cells, let alone its mechanism. In this study, we found that TGF-β1 lost its tumor-suppressive effects, but significantly stimulated cell migration in SMMC-7721 human HCC cells. By FACS and Western blot analysis, we observed that TGF-β1 enhanced the expression of α5β1 integrin obviously, and subsequently stimulated cell adhesion onto fibronectin (Fn). Furthermore, we observed that TGF-β1 could also promote SMMC-7721 cells adhesion onto laminin (Ln). Our data also provided evidences that TGF-β1 induced epithelial-to-mesenchymal transformation (EMT) in SMMC-7721 cells. First, SMMC-7721 cells clearly switched to the spindle shape morphology after TGF-β1 treatment. Furthermore, TGF-β1 induced the down-regulation of E-cadherin and the nuclear translocation of β-catenin. These results indicated that TGF-β1-promoted cell adhesion and TGF-β1-induced epithelial-to-mesenchymal transformation might be both responsible for TGF-β1-enhanced cell migration. 展开更多
关键词 TGF-Β1 cell migration epitheIial-to-mesenchymal transformation α5β1 integrin.
下载PDF
Experimental Study of Cell Migration and Functional Differentiation of Transplanted Neural Stem Cells Co-labeled with Superparamagnetic Iron Oxide and Brdu in an Ischemic Rat Model 被引量:8
5
作者 WEN-ZHEN ZHU XIANG LI +4 位作者 JIAN-PIN QI ZHOU-PING TANG WEI WANG LI WEI AND HAO LEI 《Biomedical and Environmental Sciences》 SCIE CAS CSCD 2008年第5期420-424,共5页
Objective To explore the migration of transplanted neural stem cells co-labeled with superparamagnetic iron oxide (SPIO) and bromodeoxyuridine (Brdu) using the 4.7T MR system and to study the cell differentiation ... Objective To explore the migration of transplanted neural stem cells co-labeled with superparamagnetic iron oxide (SPIO) and bromodeoxyuridine (Brdu) using the 4.7T MR system and to study the cell differentiation with immuno-histochemical method in ischemic rats. Methods Rat neural stem cells (NSCs) co-labelled with SPIO mediated by poly-L-lysine and bromodeoxyuridine (BrdU) were transplanted into the unaffected side of rat brain with middle cerebral artery occlusion (MCAO). At weeks 1, 2, 3, 4, 5, and 6 after MCAO, migration of the labelled cells was monitored by MRI. At week 6 the rats were killed and their brain tissue was cut according to the migration site of transplanted ceils indicated by MRI and subjected to Prussian blue staining and immunohistochemical staining to observe the migration and differentiation of the transplanted NSCs. Results Three weeks after transplantation, the linear hypointensity area derived from the migration of labelled NSCs was observed by MRI in the corpus callosum adjacent to the injection site. Six weeks after the transplantation, the linear hypointensity area was moved toward the midline along the corpus callosum. MRI findings were confirmed by Prussian blue staining and immunohistochemical staining of the specimen at week 6 after the transplantation. Flourescence co-labelled immunohistochemical methods demonstrated that the transplanted NSCs could differentiate into astrocytes and neurons. Conclusion MRI can monitor the migration of SPIO-labelled NSCs after transplantation in a dynamical and non-invasive manner. NSCs transplanted into ischemic rats can differentiate into astrocytes and neurons during the process of migration. 展开更多
关键词 Stem cell transplantation Magnetic resonance imaging Staining and Labelling cell migration cell differentiation
下载PDF
Claudin 1 mediates tumor necrosis factor alpha-induced cell migration in human gastric cancer cells 被引量:6
6
作者 Atsushi Shiozaki Hiroki Shimizu +10 位作者 Daisuke Ichikawa Hirotaka Konishi Shuhei Komatsu Takeshi Kubota Hitoshi Fujiwara Kazuma Okamoto Daisuke Iitaka Shingo Nakashima Yoshito Nako Mingyao Liu Eigo Otsuji 《World Journal of Gastroenterology》 SCIE CAS 2014年第47期17863-17876,共14页
AIM: To investigate the role of claudin 1 in the regulation of genes involved in cell migration and tumor necrosis factor alpha (TNF-&#x003b1;)-induced gene expression in human gastric adenocarcinoma cells.
关键词 Tumor necrosis factor alpha Claudin 1 cell migration MICROARRAY Gene expression change
下载PDF
Exploring the interconnectivity of biomimetic hierarchical porous Mg scaffolds for bone tissue engineering:Effects of pore size distribution on mechanical properties,degradation behavior and cell migration ability 被引量:5
7
作者 Gaozhi Jia Hua Huang +8 位作者 Jialin Niu Chenxin Chen Jian Weng Fei Yu Deli Wang Bin Kang Tianbing Wang Guangyin Yuan Hui Zeng 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2021年第6期1954-1966,共13页
Interconnectivity is the key characteristic of bone tissue engineering scaffold modulating cell migration,blood vessels invasion and transport of nutrient and waste.However,efforts and understanding of the interconnec... Interconnectivity is the key characteristic of bone tissue engineering scaffold modulating cell migration,blood vessels invasion and transport of nutrient and waste.However,efforts and understanding of the interconnectivity of porous Mg is limited due to the diverse architectures of pore struts and pore size distribution of Mg scaffold systems.In this work,biomimetic hierarchical porous Mg scaffolds with tailored interconnectivity as well as pore size distribution were prepared by template replication of infiltration casting.Mg scaffold with better interconnectivity showed lower mechanical strength.Enlarging interconnected pores would enhance the interconnectivity of the whole scaffold and reduce the change of ion concentration,pH value and osmolality of the degradation microenvironment due to the lower specific surface area.Nevertheless,the degradation rates of five tested Mg scaffolds were no different because of the same geometry of strut unit.Direct cell culture and evaluation of cell density at both sides of four typical Mg scaffolds indicated that cell migration through hierarchical porous Mg scaffolds could be enhanced by not only bigger interconnected pore size but also larger main pore size.In summary,design of interconnectivity in terms of pore size distribution could regulate mechanical strength,microenvironment in cell culture condition and cell migration potential,and beyond that it shows great potential for personalized therapy which could facilitate the regeneration process. 展开更多
关键词 Bone tissue engineering Porous Mg scaffold INTERCONNECTIVITY Pore size distribution cell migration
下载PDF
Guided cell migration on a graded micropillar substrate 被引量:3
8
作者 Srikumar Krishnamoorthy Zhengyi Zhang Changxue Xu 《Bio-Design and Manufacturing》 CSCD 2020年第1期60-70,共11页
Cell migration is facilitated by the interaction of living cells and their local microenvironment.The local topography is one of the key factors regulating cell migration.Interaction between the surface topography and... Cell migration is facilitated by the interaction of living cells and their local microenvironment.The local topography is one of the key factors regulating cell migration.Interaction between the surface topography and the cell behaviors is critical to understanding tissue development and regeneration.In this study,a dynamic mask photolithography technique has been utilized to fabricate a surface with graded micropillars.It has been demonstrated that the cells have been successfully guided to migrate from the sparse zone to the dense zone.The cell polarization angle has been characterized in both sparse zone and the dense zone.Compared to the dense zone,the cells in the sparse zone are more aligned along the direction of the micropillar spacing gradient,which enables the guided cell migration.Moreover,the effects of the micropillar spacing gradient,micropillar diameter,and micropillar height have been investigated in terms of the cell migration speed and cell spreading area.Finally,two issues significantly affecting the cell migration have been discussed:trapped cells between the micropillars and cell clusters. 展开更多
关键词 Guided cell migration Graded microtopography cell polarization
下载PDF
Aquaporin 1 Facilitated Hepatocellular Carcinoma SMMC7221 Cell Migration Associated with Water Permeability 被引量:1
9
作者 ZHANG Ai-li LI Jiang +3 位作者 WANG Yan-qing ZAKNROU Zohra MA Tong-hui LI Xiao-meng 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2011年第1期99-103,共5页
The authors investigated the regulation of human aquaporin I(hAQP1) and the involvement of aquaporin 1 (AQP 1) in the migration of human hepatocellular carcinoma SMMC-7221 cells using RNA intereference technology ... The authors investigated the regulation of human aquaporin I(hAQP1) and the involvement of aquaporin 1 (AQP 1) in the migration of human hepatocellular carcinoma SMMC-7221 cells using RNA intereference technology Firstly, two short hairpin RNA(shRNA) constructs in PBSU6 vector were reconstructed and their knockdown effects were identified in SMMC-7221 cells. Next, the involvement of endogenous hAQP1 in regulating the migration of SMMC-7221 cells was investigated via siRNA technology. HAQPI-shRNA can specifically inhibit AQP1 dependent osmotic water permeability. Meanwhile the migration of SMMC-7221 cells was inhibited remarkably after silencing AQP1 by performing transwell cell migration assay and in vitro wound healing assay. Furthermore, in the presence of an inhibitor HgCl2, the water permeability of the cell membrane was remarkably decreased, the expression of AQP1 was upregulated after HgCla treatment and the cell movement was decreased at the moment. Increased AQP1 cannot attenuate cell migration ability when cell membrane loses its water permeability function. This demonstrates that the cell migration was remarkably related to the transporting water function of cell membrane. 展开更多
关键词 Aquaporin 1 SHRNA HgCl2 cell migration
下载PDF
Computational Study of Collective Cell Migration By Meshfree Method 被引量:1
10
作者 Jie Bai Liqiang Lin Xiaowei Zeng 《Computer Modeling in Engineering & Sciences》 SCIE EI 2019年第12期787-800,共14页
The collective cell migration behavior on a substrate was studied using RKPM meshfree method.The cells were modeled as nematic liquid crystal with hyperelastic cell nucleus.The cell-substrate and cell-cell interaction... The collective cell migration behavior on a substrate was studied using RKPM meshfree method.The cells were modeled as nematic liquid crystal with hyperelastic cell nucleus.The cell-substrate and cell-cell interactions were modeled by coarse-grained potential forces.Through this study,the pulling and pushing phenomenon during collective cell migration process was observed and it was found that the individual cell mobility significantly influenced the collective cell migratory behavior.More self-propelled cells are in the system along the same direction,the faster the collective group migrates toward coordinated direction.The parametric study on cell-cell adhesion strength indicated that as the adhesion strength increases,the collective cell migration speed increases.It also showed that the mechanical stress in leader cell is higher than stress in follower cells. 展开更多
关键词 cell-cell interaction cell-substrate interaction collective cell migration meshfree method numerical simulation.
下载PDF
Targeting of RhoE inhibits epithelial-mesenchymal transition during colorectal cancer cell migration 被引量:2
11
作者 Gantao Chen Weiguo Dong 《Oncology and Translational Medicine》 2016年第2期119-126,共8页
Objective Despite microRNA (miR-200b) being proved to promote the proliferation of colorectal cancer (CRC) cells, the relationship between miR-200b and epithelial-mesenchymal transition (EMT) of CRC cells remain... Objective Despite microRNA (miR-200b) being proved to promote the proliferation of colorectal cancer (CRC) cells, the relationship between miR-200b and epithelial-mesenchymal transition (EMT) of CRC cells remains poorly understood. The aim of the study was to investigate the relationship between miR-200b and EMT during CRC cell migration. Methods The effect of miR-200b on EMT-associated markers E-cadherin and vimentin was evaluated by western blot in CRC cells (SW620 and HT-29) by treatment with miR-200b mimics and inhibitors. A lucifer- ase reporter assay was employed to detect downstream targets of miR-200b. Transwell migration assays were used to detect CRC cell migration. Results Westem blots revealed that treatment with miR-200b mimics led to up-regulation of E-cadherin and down-regulation of vimentin, metalloproteinase (MMP)-9, and MMP-2, whereas treatment with miR- 200b inhibitor exhibited opposite effects on expression of E-cadherin and vimentin. Luciferase reporter assays demonstrated that RhoE (RND3) was targeted by miR-200b. Two predicted target sites of miR-200b were present in the 3'-UTR of RhoE. Predicted target site 1 was from nucleotides 1584 to 1591, and site 2 was from nucleotides 1729 to 1735. RhoE knockdown cell lines were also established to investigate the impact of RhoE and miR-200b on EMT and cell migration. RhoE knockdown enhanced the effect of miR- 200b mimics, up-regulating E-cadherin and down-regulating vimentin. RhoE knockdown also inhibited cell migration. Furthermore, miR-200b mimic treatment further promoted the inhibitory effect of RhoE knock- down on cell migration. 展开更多
关键词 miR-200b colorectal cancer (CRC) metalloproteinase (MMP) epithelial-mesenchymal tran-sition (EMT) cell migration
下载PDF
Nonlinear dynamics of cell migration in anisotropic microenvironment
12
作者 Yanping Liu Da He +8 位作者 Yang Jiao Guoqiang Li Yu Zheng Qihui Fan Gao Wang Jingru Yao Guo Chen Silong Lou Liyu Liu 《Chinese Physics B》 SCIE EI CAS CSCD 2021年第9期166-177,共12页
Cell migration in anisotropic microenvironment plays an important role in the development of normal tissues and organs as well as neoplasm progression,e.g.,osteogenic differentiation of embryonic stem cells was facili... Cell migration in anisotropic microenvironment plays an important role in the development of normal tissues and organs as well as neoplasm progression,e.g.,osteogenic differentiation of embryonic stem cells was facilitated on stiffer substrates,indicating that the mechanical signals greatly affect both early and terminal differentiation of embryonic stem cells.However,the effect of anisotropy on cell migration dynamics,in particular,in terms of acceleration profiles which is important for recognizing dynamics modes of cell migration and analyzing the regulation mechanisms of microenvironment in mechanical signal transmission,has not been systematically investigated.In this work,we firstly rigorously investigate and quantify the differences between persistent random walk and anisotropic persistent random walk models based on the analysis of cell migration trajectories and velocity auto-covariance function,both qualitatively and quantitatively.Secondly,we introduce the concepts of positive and negative anisotropy based on the motility parameters to study the effect of anisotropy on acceleration profiles,especially the nonlinear decrease and non-monotonic behaviors.We particularly elaborate and discuss the mechanisms,and physical insights of non-monotonic behaviors in the case of positive anisotropy,focusing on the force exerted on migrating cells.Finally,we analyze two types of in vitro cell migration experiments and verify the universality of nonlinear decrease and the consistence of non-monotonic behaviors with numerical results.We conclude that the anisotropy of microenvironment is the cause of the non-monotonic and nonlinear dynamics,and the anisotropic persistent random walk can be as a suitable tool to analyze in vitro cell migration with different combinations of motility parameters.Our analysis provides new insights into the dynamics of cell migration in complex microenvironment,which also has implications in tissue engineering and cancer research. 展开更多
关键词 cell migration nonlinear behavior motility parameter acceleration profile anisotropic microenvironment
下载PDF
Computational Investigation of Cell Migration Behavior in a Confluent Epithelial Monolayer
13
作者 Jie Bai Xiaowei Zeng 《Computer Modeling in Engineering & Sciences》 SCIE EI 2022年第5期551-565,共15页
Cell migration plays a significant role in many biological activities,yet the physical mechanisms of cell migration are still not well understood.In this study,a continuum physics-based epithelial monolayer model incl... Cell migration plays a significant role in many biological activities,yet the physical mechanisms of cell migration are still not well understood.In this study,a continuum physics-based epithelial monolayer model including the intercellular interaction was employed to study the cell migration behavior in a confluent epithelial monolayer at constant cell density.The epithelial cell was modeled as isotropic elastic material.Through finite element simulation,the results revealed that themotile cellwas subjected to higher stress than the other jammed cells during the migration process.Cell stiffness was implied to play a significant role in epithelial cell migration behavior.Higher stiffness results in smaller displacement and lower migration speed. 展开更多
关键词 Epithelial monolayer cell migration cell stiffness intercellular interactions finite element simulation
下载PDF
LINC complex independent perinuclear actin organization and cell migration
14
作者 ANDREA FRACCHIA GABI GERLITZ 《BIOCELL》 SCIE 2022年第4期931-935,共5页
The link of the metazoan nucleus to the actin cytoskeleton is highly important for actin polymerization and migration of multiple cell types as well as for mechanotransduction and even affects the cellular transcripto... The link of the metazoan nucleus to the actin cytoskeleton is highly important for actin polymerization and migration of multiple cell types as well as for mechanotransduction and even affects the cellular transcriptome.Several mechanisms of organization of actin filaments next to the nuclear envelope have been identified.Among these mechanisms the most studied one is the Linker of nucleoskeleton and cytoskeleton(LINC)complex-dependent perinuclear actin organization.However,recently additional mechanisms have been identified:an Actin-related protein-2/3(Arp2/3)-dependent perinuclear actin polymerization during migration of dendritic cells and a perinuclear actin rim that is formed in response to external force application or migration cues.In parallel,there are also reports on cancer cells that migrate in a LINC complex independent manner and on cancers with reduced expression of the LINC complex components.Thus,suggesting that LINC complex independent migration may be associated with tumour formation. 展开更多
关键词 cell migration ACTIN LAMINS Nuclear envelope CANCER
下载PDF
A novel bio‑active microsphere for meniscus regeneration via inducing cell migration and chondrocyte differentiation
15
作者 Hongyao Xu He Huang +3 位作者 Xiangjie Zou Pengcheng Xia Warren A.L.S.Foon Jinwen Wang 《Bio-Design and Manufacturing》 SCIE EI CSCD 2021年第2期203-221,共19页
Abstract Meniscus injury is a common disease in clinic.If it was not treated in time,it leads to osteoarthritis which brings unbearable pain and heavy economic burden to the patients.At present,meniscectomy and menisc... Abstract Meniscus injury is a common disease in clinic.If it was not treated in time,it leads to osteoarthritis which brings unbearable pain and heavy economic burden to the patients.At present,meniscectomy and meniscus suture are widely used in the treatment for meniscus injury.Nevertheless,It is not ideal for poor self-healing ability of meniscus.The recruitment of endogenous stem cells is an attractive option for wounded meniscus healing.Fully reduced high-mobility group box 1 protein(HMGB1)can accelerate the regeneration of multiple tissues by endogenous stem cell activation,migration and differentiation.Kartogenin(KGN)has shown to induce the chondrogenesis of the stem cells.However,no study has explored such effects of HMGB1 and KGN in wounded meniscus healing.Therefore,in order to improve the regeneration of meniscus,we intend to use a novel bioactive microsphere which was developed by combining fully reduced high mobility group box 1(frHMGB1)and kartogenin(KGN)with alginate gel which slowly release high concentrations of HMGB1 and KGN to activate rat bone marrow stem cells(BMSCs)and promote cell proliferation.The results showed that this HMGB1–KGN microsphere released and kept high concentrations of HMGB1 and KGN in the wound area for more than 2 weeks.In vitro experimental results showed that the HMGB1–KGN microsphere can promote cell proliferation via recruiting rat bone marrow stem cells(BMSCs)and activating the BMSCs from G_(0) to G_(Alert) stage as evidenced by cell migration testing and 5-bromo-2′-deoxyuridine(BrdU)incorporation assay.In vivo results indicated that this HMGB-KGN microsphere can recruit GFP-labeled BMSCs from tail vein to wounded meniscus and induce these GFP-labeled BMSCs to differentiate into chondrocytes.Our results demonstrated that the HMGB1–KGN-containing bioactive microsphere induced cell migration in vitro and recruited the cells to wound area to promote wounded rat meniscus healing in vivo. 展开更多
关键词 Fully reduced HMGB1(frHMGB1) Kartogenin Alginate microsphere cell migration Meniscus regeneration
下载PDF
The F5 gene predicts poor prognosis of patients with gastric cancer by promoting cell migration identified using a weighted gene co-expression network analysis
16
作者 MENGYI TANG BOWEN YANG +6 位作者 CHUANG ZHANG CHAOXU ZHANG DAN ZANG LIBAO GONG YUNPENG LIU ZHI LI XIUJUAN QU 《BIOCELL》 SCIE 2021年第4期911-921,共11页
Distal gastric cancer(DGC)is a subgroup of gastric cancer(GC),which has different molecular characteristics from proximal gastric cancer(PGC).These differences result in different overall survival(OS)rates;however,dat... Distal gastric cancer(DGC)is a subgroup of gastric cancer(GC),which has different molecular characteristics from proximal gastric cancer(PGC).These differences result in different overall survival(OS)rates;however,data pertaining to the survival rate in PGC or DGC are contradictory.This suggests that the location of GC is not the unique cause of the different survival rates,while the molecular characteristics might be more important factors determining the prognosis of DGC.Therefore,the aim of this study was to discover key prognostic factors in DGC using bioinformatic methods and to explore the potential molecular mechanism.The Cancer Genome Atlas(TCGA)public database was employed to screen data relating to DGC,and we conducted a weighted gene co-expression network analysis(WGCNA)on DGC patient samples to establish co-expression modules.High-weight genes(hub genes)in a dominant color module were identified.In vitro experiments and gene set enrichment analyses(GSEA)were carried out to elucidate the potential molecular mechanism.In this study,139 DGC samples were enrolled to perform a co-expression analysis.According to the correlation between gene modules and clinical characteristics,the royal blue module related to stage M of DGC was screened,and a survival analysis was conducted to show that highcoagulation-factor V(F5)expression was related to the short OS of patients with GC.In vitro experiments confirmed that F5 could promote the migration of GC cells.GSEA suggested that F5 might have affected the prognosis of GC by modulating the activities of the Wnt and/or the TGF-βsignaling pathways.Our results indicated that high F5 expression predicts poor prognosis of patients with DGC,and it functions probably by promoting cell migration through the Wnt and/or the TGF-βsignaling pathways. 展开更多
关键词 Distal gastric cancer WGCNA F5 cell migration Poor prognosis
下载PDF
Dancing to a somewhat different rhythm: Cell migration along thenatural basement membrane
17
作者 SHELDON R.GORDON 《BIOCELL》 SCIE 2022年第9期2059-2063,共5页
Much of our understanding of the events which underlie cell migration has been derived from studies of cells intissue culture. One of the components that mediates this process is the dynamic actin-based microfilament ... Much of our understanding of the events which underlie cell migration has been derived from studies of cells intissue culture. One of the components that mediates this process is the dynamic actin-based microfilament system that canreorganize itself into so-called stress fibers that are considered essential components for cell motility. In contrast, relativelyfew studies have investigated cell movement along an extracellular matrix (ECM) which is known to influence both cellularorganization and behavior. This opinion/viewpoint article briefly reviews cell migration during corneal endothelial woundrepair along the tissue’s natural basement membrane, Descemet’s membrane. Because the tissue exists as a cell monolayer itaffords one an opportunity to readily explore the effect of cell/matrix influences on cell motility. As such, cell movementalong this substrate differs somewhat from that found in vitro and migrating endothelial cells also demonstrate an abilityto move along the ECM without the benefit of having an organized actin cytoskeleton. 展开更多
关键词 Corneal endothelium cell migration MICROFILAMENTS Basement membrane
下载PDF
Cyclosporin A impairs dendritic cell migration by regulating chemokine receptor expression and inhibiting cyclooxygenase-2 expression
18
作者 ChenT GuoJ YangM HanC ZhangM ChenW LiuQ WangJ CaoX 《第二军医大学学报》 CAS CSCD 北大核心 2005年第7期819-819,共1页
Migration of dendritic cells (DCs) into tissues and secondary lymphoid organs plays a crucial role in the initiation of innate and adaptive immunity. In this article, we show that cyclosporin A (CsA) impairs the migra... Migration of dendritic cells (DCs) into tissues and secondary lymphoid organs plays a crucial role in the initiation of innate and adaptive immunity. In this article, we show that cyclosporin A (CsA) impairs the migration of DCs both in vitro and in vivo. Exposure of DCs to clinical concentrations of CsA neither induces apoptosis nor alters development but does impair cytokine secretion, chemokine receptor expression, and migration. In vitro, CsA impairs the migration of mouse bone marrow-derived DCs toward macrophage inflammatory protein-3beta (MIP-3beta) and induces them to retain responsiveness to MIP-1alpha after lipopolysaccharide (LPS)-stimulated DC maturation, while in vivo administration of CsA inhibits the migration of DCs out of skin and into the secondary lymphoid organs. CsA impairs chemokine receptor and cyclooxygenase-2 (COX-2) expression normally triggered in LPS-stimulated DCs; administration of exogenous prostaglandin E2 (PGE2) reverses the effects of CsA on chemokine receptor expression and DC migration. Inhibition of nuclear factor-kappaB (NF-κB) and mitogen-activated protein kinase (MAPK) pathway signaling by CsA may be responsible for the CsA-mediated effects on the regulation of chemokine receptor and cyclooxygenase-2 (COX-2) expression. Impairment of DC migration due to inhibition of PGE2 production and regulation of chemokine receptor expression may contribute, in part, to CsA-mediated immunosuppression. 展开更多
关键词 cell Cyclosporin A impairs dendritic cell migration by regulating chemokine receptor expression and inhibiting cyclooxygenase-2 expression
下载PDF
CREG regulates vascular endothelial cell migration mediated by ILK-β-parvin signal pathway
19
作者 ZHANG Hui-min,HAN Ya-ling,TAO Jie,YAN Cheng-hui (Department of Cardiology,Cardiovascular Institute of PLA, Shenyang Northern Hospital,Shenyang 310016,China) 《岭南心血管病杂志》 2011年第S1期195-196,共2页
Background To investigate the effects and mechanisms of cellular repressor of ElA stimulated genes (CREG) on endothelial cell(EC) migration.Methods vascular endothelial cells(VE),CREG overexpression VEs, CREG suppress... Background To investigate the effects and mechanisms of cellular repressor of ElA stimulated genes (CREG) on endothelial cell(EC) migration.Methods vascular endothelial cells(VE),CREG overexpression VEs, CREG suppression VEs and VEs transfected with CREG gene modified adenovirus(Ad-CREG) were cultured with dulbecco’s modified eagle’s medium contained 10%fetal calf serum. Western blot was used to detect the protein level of CREG and integrin-linked kinase(ILK) in the four kind ECs.Tran-swell migration model was applied to compare the migration cell number of the four kind ECs.Two kinds of ILK mutant plasmids;PCXN2-flag-ILK wt-IRES-GFP(wild-type ILK)and PCXN2-flag-ILK p-parvin-IRES-GFP(P-parvin-binding mutant) were used to transfect VS and VE respectively,then the two kind transfection ECs were named as VS-wtILK and VE-P -parvin which were selected by G418(600ng/ml)for 2 weeks;Transwell migration model was applied to compare migration capability before and after ILK plasmids transfecting VE and VS.Results Western blot analysis showed that CREG overexpression promoted ILK expression in ECs,on the contrary,ILK expression was down-regulated in CREG silent ECs(P【0.05).Further more,ILK expression was up-regulated obviously in VE transfected with Ad-CREG(P【 0.05);Transwell migration model showed that EC’s migration capability was positively correlated with the expression level of CREG in EC,that is,CREG overexpression induced VE migration and CREG silent suppressed VE migration, moreover,Ad-CREG transfecting VE showed better migration capability accompanied with CREG expression increase by transwell migration model(P【0.05).In order to know the relationship between ILK expression and cell migration,we obtained stable transfection cell strains of VS-wtILK and VE-Pparvin, transwell migration model demonstrated that VS-wtILK remarkably corrected the poor migration capability of VS(P【 0.01),butβ-parvin combining site mutation in ILK genes inhibited VE migration markedly(P【0.01).Conclusions ILKp -parvin signal pathway mediated vascular endothelial cell migration induced by CREG. 展开更多
关键词 ILK EC VS parvin signal pathway CREG regulates vascular endothelial cell migration mediated by ILK cell
下载PDF
Geometric regulation of collective cell tangential ordering migration
20
作者 Hao Dong Yuming Zhou +8 位作者 Xuehe Ma Junfang Liu Fulin Xing Jianyu Yang Qiushuo Sun Qingsong Hu Fen Hu Leiting Pan Jingjun Xu 《Journal of Innovative Optical Health Sciences》 SCIE EI CSCD 2024年第2期94-103,共10页
Collective cell migration is a coordinated movement of multi-cell systems essential for various processes throughout life.The collective motions often occur under spatial restrictions,hallmarked by the collective rota... Collective cell migration is a coordinated movement of multi-cell systems essential for various processes throughout life.The collective motions often occur under spatial restrictions,hallmarked by the collective rotation of epithelial cells confined in circular substrates.Here,we aim to explore how geometric shapes of confinement regulate this collective cell movement.We develop quantitative methods for cell velocity orientation analysis,and find that boundary cells exhibit stronger tangential ordering migration than inner cells in circular pattern.Furthermore,decreased tangential ordering movement capability of collective cells in triangular and square patterns are observed,due to the disturbance of cell motion at unsmooth corners of these patterns.On the other hand,the collective cell rotation is slightly affected by a convex defect of the circular pattern,while almost hindered with a concave defect,also resulting from different smoothness features of their boundaries.Numerical simulations employing cell Potts model well reproduce and extend experimental observations.Together,our results highlight the importance of boundary smoothness in the regulation of collective cell tangential ordering migration. 展开更多
关键词 Collective cell migration spatial restrictions tangential ordering geometric regula-tion cell Potts model
下载PDF
上一页 1 2 9 下一页 到第
使用帮助 返回顶部