The hepatitis C virus(HCV),an obligatory intracellular pathogen,highly depends on its host cells to propagate successfully.The HCV life cycle can be simply divided into several stages including viral entry,protein tra...The hepatitis C virus(HCV),an obligatory intracellular pathogen,highly depends on its host cells to propagate successfully.The HCV life cycle can be simply divided into several stages including viral entry,protein translation,RNA replication,viral assembly and release.Hundreds of cellular factors involved in the HCV life cycle have been identified over more than thirty years of research.Characterization of these cellular factors has provided extensive insight into HCV replication strategies.Some of these cellular factors are targets for anti-HCV therapies.In this review,we summarize the well-characterized and recently identified cellular factors functioning at each stage of the HCV life cycle.展开更多
In order to accurately simulate the diffusion of chloride ion in the existing concrete bridge and acquire the precise chloride ion concentration at given time, a cellular automata (CA)-based model is proposed. The p...In order to accurately simulate the diffusion of chloride ion in the existing concrete bridge and acquire the precise chloride ion concentration at given time, a cellular automata (CA)-based model is proposed. The process of chloride ion diffusion is analyzed by the CA-based method and a nonlinear solution of the Fick's second law is obtained. Considering the impact of various factors such as stress states, temporal and spatial variability of diffusion parameters and water-cement ratio on the process of chloride ion diffusion, the model of chloride ion diffusion under multi-factor coupling actions is presented. A chloride ion penetrating experiment reported in the literature is used to prove the effectiveness and reasonability of the present method, and a T-type beam is taken as an illustrative example to analyze the process of chloride ion diffusion in practical application. The results indicate that CA-based method can simulate the diffusion of chloride ion in the concrete structures with acceptable precision.展开更多
Since damaged neural circuits are not generally self-recovered, developing methods to stimulate neurogenesis is critically required. Most studies have examined the effects of soluble pharma- cological factors on the c...Since damaged neural circuits are not generally self-recovered, developing methods to stimulate neurogenesis is critically required. Most studies have examined the effects of soluble pharma- cological factors on the cellular neurogenesis. On the other hand, it is now recognized that the other extracellular factors, including material and mechanical cues, also have a strong potential to induce cellular neurogenesis. This article will review recent data on the material (chemical patterning, micro/nano-topography, carbon nanotube, graphene) and mechanical (static cue from substrate stiffness, dynamic cue from stretch and flow shear) stimulations of cellular neuro- genesis. These approaches may provide new neural regenerative medicine protocols. Scaffolding material templates capable of triggering cellular neurogenesis can be explored in the presence of neurogenesis-stimulatory mechanical environments, and also with conventional soluble factors, to enhance axonal growth and neural network formation in neural tissue engineering.展开更多
基金Supported by Ministry of Science and Technology of Taiwan,No.MOST 109-2320-B-320-011-MY3Tzu Chi University of Taiwan,No.TCIRP106001-04Y3 and No.TCIRP106001-02Y3.
文摘The hepatitis C virus(HCV),an obligatory intracellular pathogen,highly depends on its host cells to propagate successfully.The HCV life cycle can be simply divided into several stages including viral entry,protein translation,RNA replication,viral assembly and release.Hundreds of cellular factors involved in the HCV life cycle have been identified over more than thirty years of research.Characterization of these cellular factors has provided extensive insight into HCV replication strategies.Some of these cellular factors are targets for anti-HCV therapies.In this review,we summarize the well-characterized and recently identified cellular factors functioning at each stage of the HCV life cycle.
基金the National Natural Science Foundation of China (No.51178305)Key Projects in the Science & Technology Pillar Program of Tianjin (No.11ZCKFSF00300)
文摘In order to accurately simulate the diffusion of chloride ion in the existing concrete bridge and acquire the precise chloride ion concentration at given time, a cellular automata (CA)-based model is proposed. The process of chloride ion diffusion is analyzed by the CA-based method and a nonlinear solution of the Fick's second law is obtained. Considering the impact of various factors such as stress states, temporal and spatial variability of diffusion parameters and water-cement ratio on the process of chloride ion diffusion, the model of chloride ion diffusion under multi-factor coupling actions is presented. A chloride ion penetrating experiment reported in the literature is used to prove the effectiveness and reasonability of the present method, and a T-type beam is taken as an illustrative example to analyze the process of chloride ion diffusion in practical application. The results indicate that CA-based method can simulate the diffusion of chloride ion in the concrete structures with acceptable precision.
基金supported by NE EPSCo R Trans-disciplinary Neuroscience Research Seed GrantNSF CAREER Award 1351570+2 种基金AHA Scientist Development Grant 12SDG12030109Osteology Foundation Grant 12-006Nebraska Research Initiative
文摘Since damaged neural circuits are not generally self-recovered, developing methods to stimulate neurogenesis is critically required. Most studies have examined the effects of soluble pharma- cological factors on the cellular neurogenesis. On the other hand, it is now recognized that the other extracellular factors, including material and mechanical cues, also have a strong potential to induce cellular neurogenesis. This article will review recent data on the material (chemical patterning, micro/nano-topography, carbon nanotube, graphene) and mechanical (static cue from substrate stiffness, dynamic cue from stretch and flow shear) stimulations of cellular neuro- genesis. These approaches may provide new neural regenerative medicine protocols. Scaffolding material templates capable of triggering cellular neurogenesis can be explored in the presence of neurogenesis-stimulatory mechanical environments, and also with conventional soluble factors, to enhance axonal growth and neural network formation in neural tissue engineering.