期刊文献+
共找到97,999篇文章
< 1 2 250 >
每页显示 20 50 100
Inhibition of the cGAS–STING pathway:contributing to the treatment of cerebral ischemia-reperfusion injury
1
作者 Hang Yang Yulei Xia +4 位作者 Yue Ma Mingtong Gao Shuai Hou Shanshan Xu Yanqiang Wang 《Neural Regeneration Research》 SCIE CAS 2025年第7期1900-1918,共19页
The cGAS–STING pathway plays an important role in ischemia-reperfusion injury in the heart,liver,brain,and kidney,but its role and mechanisms in cerebral ischemia-reperfusion injury have not been systematically revie... The cGAS–STING pathway plays an important role in ischemia-reperfusion injury in the heart,liver,brain,and kidney,but its role and mechanisms in cerebral ischemia-reperfusion injury have not been systematically reviewed.Here,we outline the components of the cGAS–STING pathway and then analyze its role in autophagy,ferroptosis,cellular pyroptosis,disequilibrium of calcium homeostasis,inflammatory responses,disruption of the blood–brain barrier,microglia transformation,and complement system activation following cerebral ischemia-reperfusion injury.We further analyze the value of cGAS–STING pathway inhibitors in the treatment of cerebral ischemia-reperfusion injury and conclude that the pathway can regulate cerebral ischemia-reperfusion injury through multiple mechanisms.Inhibition of the cGAS–STING pathway may be helpful in the treatment of cerebral ischemia-reperfusion injury. 展开更多
关键词 calcium homeostasis cellular autophagy cerebral ischemia-reperfusion injury cGAS–STING pathway ferroptosis gut–brain–microbiota axis inflammatory light chain 3 microglial cells Syntaxin-17 protein
下载PDF
Application and mechanisms of Sanhua Decoction in the treatment of cerebral ischemia-reperfusion injury
2
作者 Ya-Kuan Wang Huang Lin +4 位作者 Shu-Rui Wang Ru-Tao Bian Yang Tong Wen-Tao Zhang Ying-Lin Cui 《World Journal of Clinical Cases》 SCIE 2024年第4期688-699,共12页
Cerebral ischemia-reperfusion is a process in which the blood supply to the brain is temporarily interrupted and subsequently restored.However,it is highly likely to lead to further aggravation of pathological damage ... Cerebral ischemia-reperfusion is a process in which the blood supply to the brain is temporarily interrupted and subsequently restored.However,it is highly likely to lead to further aggravation of pathological damage to ischemic tissues or the nervous system.,and has accordingly been a focus of extensive clinical research.As a traditional Chinese medicinal formulation,Sanhua Decoction has gradually gained importance in the treatment of cerebrovascular diseases.Its main constituents include Citrus aurantium,Magnolia officinalis,rhubarb,and Qiangwu,which are primarily used to regulate qi.In the treatment of neurological diseases,the therapeutic effects of the Sanhua Decoction are mediated via different pathways,including antioxidant,anti-inflammatory,and neurotransmitter regu-latory pathways,as well as through the protection of nerve cells and a reduction in cerebral edema.Among the studies conducted to date,many have found that the application of Sanhua Decoction in the treatment of neurological diseases has clear therapeutic effects.In addition,as a natural treatment,the Sanhua Decoction has received widespread attention,given that it is safer and more effective than traditional Western medicines.Consequently,research on the mechanisms of action and efficacy of the Sanhua Decoctions in the treatment of cerebral ischemia-reperfusion injury is of considerable significance.In this paper,we describe the pathogenesis of cerebral ischemia-reperfusion injury and review the current status of its treatment to examine the therapeutic mechanisms of action of the Sanhua Decoction.We hope that the findings of the research presented herein will contribute to a better understanding of the efficacy of this formulation in the treatment of cerebral ischemia-reperfusion,and provide a scientific basis for its application in clinical practice. 展开更多
关键词 Sanhua Decoction cerebral ischemia-reperfusion Mechanism of action Application progress Traditional Chinese medical science REVIEW
下载PDF
Activated Drp1 regulates p62-mediated autophagic flux and aggravates inflammation in cerebral ischemia-reperfusion via the ROS-RIP1/RIP3-exosome axis 被引量:33
3
作者 Xue Zeng Yun-Dong Zhang +7 位作者 Rui-Yan Ma Yuan-Jing Chen Xin-Ming Xiang Dong-Yao Hou Xue-Han Li He Huang Tao Li Chen-Yang Duan 《Military Medical Research》 SCIE CAS CSCD 2022年第6期668-685,共18页
Background: Cerebral ischemia-reperfusion injury(CIRI) refers to a secondary brain injury that can occur when the blood supply to the ischemic brain tissue is restored. However, the mechanism underlying such injury re... Background: Cerebral ischemia-reperfusion injury(CIRI) refers to a secondary brain injury that can occur when the blood supply to the ischemic brain tissue is restored. However, the mechanism underlying such injury remains elusive.Methods: The 150 male C57 mice underwent middle cerebral artery occlusion(MCAO) for 1 h and reperfusion for 24 h,Among them, 50 MCAO mice were further treated with Mitochondrial division inhibitor 1(Mdivi-1) and 50 MCAO mice were further treated with N-acetylcysteine(NAC). SH-SY5Y cells were cultured in a low-glucose culture medium for 4 h under hypoxic conditions and then transferred to normal conditions for 12 h. Then, cerebral blood flow, mitochondrial structure, mitochondrial DNA(mtDNA) copy number, intracellular and mitochondrial reactive oxygen species(ROS),autophagic flux, aggresome and exosome expression profiles, cardiac tissue structure, mitochondrial length and cristae density, mtDNA and ROS content, as well as the expression of Drp1-Ser616/Drp1, RIP1/RIP3, LC3 II/I, TNF-α,IL-1β, etc., were detected under normal or Drp1 interference conditions.Results: The mtDNA content, ROS levels, and Drp1-Ser616/Drp1 were elevated by 2.2, 1.7 and 2.7 times after CIRI(P<0.05). However, the high cytoplasmic LC3 II/I ratio and increased aggregation of p62 could be reversed by 44%and 88% by Drp1 short hairpin RNA(shRNA)(P<0.05). The low fluorescence intensity of autophagic flux and the increased phosphorylation of RIP3 induced by CIRI could be attenuated by ROS scavenger, NAC(P<0.05). RIP1/RIP3inhibitor Necrostatin-1(Nec-1) restored 75% to a low LC3 II/I ratio and enhanced 2 times to a high RFP-LC3 after Drp1 activation(P<0.05). In addition, although CIRI-induced ROS production caused no considerable accumulation of autophagosomes(P>0.05), it increased the packaging and extracellular secretion of exosomes containing p62 by 4–5 times, which could be decreased by Mdivi-1, Drp1 shRNA, and Nec-1(P<0.05). Furthermore, TNF-α and IL-1βincreased in CIRI-derived exosomes could increase RIP3 phosphorylation in normal or oxygen–glucose deprivation/reoxygenation(OGD/R) conditions(P<0.05).Conclusions: CIRI activated Drp1 and accelerated the p62-mediated formation of autophagosomes while inhibiting the transition of autophagosomes to autolysosomes via the RIP1/RIP3 pathway activation. Undegraded autophagosomes were secreted extracellularly in the form of exosomes, leading to inflammatory cascades that further damaged mitochondria, resulting in excessive ROS generation and the blockage of autophagosome degradation,triggering a vicious cycle. 展开更多
关键词 cerebral ischemia-reperfusion(CIRI) Oxygen-glucose deprivation/reoxygenation(OGD/R) Drp1 P62 LC3 II/I Reactive oxygen species(ROS) RIP1/RIP3 Autophagy EXOSOME Inflammatory
下载PDF
Neuroprotective effect of penehyclidine hydrochloride on focal cerebral ischemia-reperfusion injury 被引量:13
4
作者 Cuicui Yu Junke Wang 《Neural Regeneration Research》 SCIE CAS CSCD 2013年第7期622-632,共11页
Penehyclidine hydrochloride can promote microcirculation and reduce vascular permeability. However, the role of penehyclidine hydrochlodde in cerebral ischemia-reperfusion injury remains unclear. In this study, in viv... Penehyclidine hydrochloride can promote microcirculation and reduce vascular permeability. However, the role of penehyclidine hydrochlodde in cerebral ischemia-reperfusion injury remains unclear. In this study, in vivo middle cerebral artery occlusion models were established in experimental rats, and penehyclidine hydrochloride pretreatment was given via intravenous injection prior to model establishment. Tetrazolium chloride, terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate-biotin nick end labeling and immunohistochemical staining showed that, penehyclidine hydrochloride pretreatment markedly attenuated neuronal histopathological changes in the cortex, hippocampus and striatum, reduced infarction size, increased the expression level of BcI-2, decreased the expression level of caspase-3, and inhibited neuronal apoptosis in rats with cerebral ischemia-reperfusion injury. Xanthine oxidase and thiobarbituric acid chromogenic results showed that penehyclidine hydrochloride upregulated the activity of superoxide dismutase and downregulated the concentration of malondialdehyde in the ischemic cerebral cortex and hippocampus, as well as reduced the concentration of extracellular excitatory amino acids in rats with cerebral ischemia-reperfusion injury. In addition, penehyclidine hydrochloride inhibited the expression level of the NR1 subunit in hippocampal nerve cells in vitro following oxygen-glucose deprivation, as detected by PCR. Experimental findings indicate that penehyclidine hydrochloride attenuates neuronal apoptosis and oxidative stress injury after focal cerebral ischemia-reperfusion, thus exerting a neuroprotective effect. 展开更多
关键词 neural regeneration brain injury penehyclidine hydrochloride cerebral ischemia-reperfusion injuryischemic cerebrovascular disease APOPTOSIS excitatory amino acid oxygen free radicals superoxide dismutase N-methyI-D-aspartate receptor middle cerebral artery occlusion oxygen-glucose deprivation photographs-containing paper NEUROREGENERATION
下载PDF
Salvianolate increases heat shock protein expression in a cerebral ischemia-reperfusion injury model 被引量:12
5
作者 Jinnan Zhang Wei Lu +3 位作者 Qiang Lei Xi Tao Hong You Pinghui Xie 《Neural Regeneration Research》 SCIE CAS CSCD 2013年第25期2327-2335,共9页
Stroke remains a worldwide health problem. Salvianolate exerts a protective effect in various mi- crocirculatory disturbance-related diseases, but studies of the mechanisms underlying its protective action have mainly... Stroke remains a worldwide health problem. Salvianolate exerts a protective effect in various mi- crocirculatory disturbance-related diseases, but studies of the mechanisms underlying its protective action have mainly focused on the myocardium, whereas little research has been carried out in brain tissue following ischemia-reperfusion. We assessed the neuroprotective effects of salvianolate in a rat model of cerebral ischemia-reperfusion injury induced using the suture method. At onset and 24 and 48 hours after reperfusion, rats were intraperitoneally injected with salvianolate (18 mg/kg) or saline. Neurological deficit scores at 72 hours showed that the neurological functions of rats that had received salvianolate were significantly better than those of the rats that had received saline. 2,3,5-Triphenyltetrazolium chloride was used to stain cerebral tissue to determine the extent of the infarct area. A significantly smaller infarct area and a significantly lower number of apoptotic cells were observed after treatment with salvianolate compared with the saline treatment. Expression of heat shock protein 22 and phosphorylated protein kinase B in ischemic brain tissue was significantly greater in rats treated with salvianolate compared with rats treated with saline. Our findings suggest that salvianolate provides neuroprotective effects against cerebral ischemia-reperfusion injury by upregulating heat shock protein 22 and phosphorylated protein kinase B expression. 展开更多
关键词 neural regeneration traditional Chinese medicine brain injury salvianolic acid B SALVIANOLATE heatshock protein 22 protein kinase B cerebral ischemia-reperfusion injury apoptosis NEUROPROTECTION NEUROREGENERATION
下载PDF
EFFECTS OF TRANSCRANIAL MAGNETIC STIMULATION ON MOTOR CORTICAL EXCITABILITY AND NEUROFUNCTION AFTER CEREBRAL ISCHEMIA-REPERFUSION INJURY IN RATS 被引量:21
6
作者 Hong-lin Feng Li Yan Yu-zhou Guan Li-ying Cui 《Chinese Medical Sciences Journal》 CAS CSCD 2005年第4期226-230, ,共5页
Objective To clarify the effects of repetitive transcranial magnetic stimulation (rTMS) on rat motor cortical excitabi- lity and neurofunction after cerebral ischemia-reperfusion injury. Methods After determined awake... Objective To clarify the effects of repetitive transcranial magnetic stimulation (rTMS) on rat motor cortical excitabi- lity and neurofunction after cerebral ischemia-reperfusion injury. Methods After determined awake resting motor threshold (MT) and motor evoked potentials (MEPs) of right hindlimbs, 20 Sprague-Dawley rats were subjected to middle cerebral artery occlusion (MCAO) reperfusion injury, then rTMS were applied to rTMS group (n = 10) at different time, while control group (n = 10) received no stimulation. A week later, MT and MEPs were evaluated again, as well as neurological deficits and infarct volume. The effects of rTMS and MCAO reperfusion injury on these parameters were analyzed. Results After MCAO reperfusion, both MT level and neurological deficit scores increased, distinct focal infarction formed, and latency of MEP elongated. Compared with the control group, the increased extent of MT and neurological scores of rats receiving rTMS were significantly lower (P < 0.05), as well as the infarct volumes reduced significantly(P < 0.05). But MEP was not affected by rTMS obviously. There was a positive linear correlation between postinjury MT and infarct volume (r = 0.64, P < 0.05). Conclusion rTMS may facilitate neurofunction recovery after cerebral ischemia-reperfusion. Postinjury MT could provide prognostic information after MCAO reperfusion injury. 展开更多
关键词 repetitive transcranial magnetic stimulation cerebral ischemia-reperfusion.injury motor threshold motor evoked potential
下载PDF
Effect of minocycline on cerebral ischemia-reperfusion injury 被引量:5
7
作者 Yuanyin Zheng Lijuan Xu +4 位作者 Jinbao Yin Zhichao Zhong Hongling Fan Xi Li Quanzhong Chang 《Neural Regeneration Research》 SCIE CAS CSCD 2013年第10期900-908,共9页
Minocylcine, a tetracycline derivate, has been shown to cross the blood-brain barrier and enter the central nervous system. In this study, cerebral ischemia-reperfusion injury models were established using the suture ... Minocylcine, a tetracycline derivate, has been shown to cross the blood-brain barrier and enter the central nervous system. In this study, cerebral ischemia-reperfusion injury models were established using the suture method, and minocycline was immediately injected intraperitoneally after cerebral ischemia-repeffusion (22.5 mg/kg, initially 45 mg/kg) at a 12-hour interval. Results showed that after minocycline treatment, the volume of cerebral infarction was significantly reduced, the number of surviving cell in the hippocampal CA1 region increased, the number of apoptotic cells decreased, the expression of caspase-3 and poly(adenosine diphosphate-ribose) polymerase-1 protein was down-regulated, and the escape latency in the water maze test was significantly shortened compared with the ischemia-reperfusion group. Our experimental findings indicate that minocycline can protect against neuronal injury induced by focal ischemia-reperfusion, which may be mediated by the inhibition of caspase-3 and poly(adenosine diphosphate-ribose) polymerase-1 protein expression. 展开更多
关键词 neural regeneration brain injury MINOCYCLINE cerebral ischemia-reperfusion HIPPOCAMPUS poly(adenosine diphosphate-ribose) polymerase-1 caspase-3 apoptosis grants-supported paper NEUROREGENERATION
下载PDF
Amyloid beta-peptide worsens cognitive impairment following cerebral ischemia-reperfusion injury 被引量:5
8
作者 Bo Song Qiang Ao +4 位作者 Ying Niu Qin Shen Huancong Zuo Xiufang Zhang Yandao Gong 《Neural Regeneration Research》 SCIE CAS CSCD 2013年第26期2449-2457,共9页
Amyloid 13-peptide, a major component of senile plaques in Alzheimer's disease, has been implicated in neuronal cell death and cognitive impairment. Recently, studies have shown that the pathogenesis of cerebral isch... Amyloid 13-peptide, a major component of senile plaques in Alzheimer's disease, has been implicated in neuronal cell death and cognitive impairment. Recently, studies have shown that the pathogenesis of cerebral ischemia is closely linked with Alzheimer's disease. In this study, a rat model of global cerebral ischemia-reperfusion injury was established via occlusion of four arteries; meanwhile, fibrillar amyloid [3-peptide was injected into the rat lateral ventricle. The Morris water maze test and histological staining revealed that administration of amyloid 13-peptide could further aggravate impairments to learning and memory and neuronal cell death in the hippocampus of rats subjected to cerebral ischemia-reperfusion injury. Western blot showed that phosphorylation of tau protein and the activity of glycogen synthase kinase 313 were significantly stronger in cerebral ischemia-reperfusion injury rats subjected to amyloid [3-peptide administration than those undergo- ing cerebral ischemia-repetfusion or amyloid 13-peptide administration alone. Conversely, the activ- ity of protein phosphatase 2A was remarkably reduced in rats with cerebral ischemia-reperfusion injury following amyloid 13-peptide administration. These findings suggest that amyloid 13-peptide can potentiate tau phosphorylation induced by cerebral ischemia-reperfusion and thereby aggravate cognitive impairment. 展开更多
关键词 neural regeneration brain injury cerebral ischemia-reperfusion Alzheimer's disease amyloid 13-peptides tau proteins glycogen synthase kinase 313 protein phosphatase 2A PHOSPHORYLATION grants-supported paper NEUROREGENERATION
下载PDF
Effects of L-Tetrahydropalmatine on Energy Metabolism,Endothelin-1 and NO during Acute Cerebral Ischemia-reperfusion of Rats 被引量:6
9
作者 杨光田 汪培华 +2 位作者 汤彦 蒋崇慧 王迪浔 《Journal of Huazhong University of Science and Technology(Medical Sciences)》 SCIE CAS 1999年第4期285-287,共3页
To investigate the effects of L-tetrahydropalmatine (L-THP) on ener-gy metabolism, endothelin-1 (ET-1 ) and NO during acute cerebral ischemia-reperfusion of rats, 24 Wistar rats were randomly divided into four groups,... To investigate the effects of L-tetrahydropalmatine (L-THP) on ener-gy metabolism, endothelin-1 (ET-1 ) and NO during acute cerebral ischemia-reperfusion of rats, 24 Wistar rats were randomly divided into four groups, with 6rats in each group: sham-operation group, simple ischemia group, ischemia-reperfusion group and treatment group (L-THP group). Cerebral ATP, lactate,ET-1 and NO levels were measured in all groups. Our results showed that treat-ment with L-THP could increase cerebral ATP levels, but decrease cerebral lac-tate, ET-1 and NO concentrations during ischemia-reperfusion in the treatmentgroup. It is concluded that L-THP could improve cerebral energy metabolism and protect the injured brain tissue, the mechanism of which might be related to suppression of overproduction of ET-1 and NO. 展开更多
关键词 L-TETRAHYDROPALMATINE cerebral ischemia-reperfusion insult energy metabolism ENDOTHELIN-1 NO
下载PDF
Anti-apoptotic effects of aspirin following cerebral ischemia-reperfusion injury in rats 被引量:4
10
作者 Liying Qiu Bin Du Ying Li Hongbin Fan Zhiyong Yang 《Neural Regeneration Research》 SCIE CAS CSCD 2008年第9期979-984,共6页
BACKGROUND: The pharmacological effects of aspirin on apoptosis are complex. The underlying mechanisms have not been properly defined. OBJECTIVE: To observe the effect of different doses of aspirin on brain cell apo... BACKGROUND: The pharmacological effects of aspirin on apoptosis are complex. The underlying mechanisms have not been properly defined. OBJECTIVE: To observe the effect of different doses of aspirin on brain cell apoptosis following focal cerebral iscbemia-reperfusion injury (CIRI) in rats. DESING, TIME AND SETTING: A randomized, controlled, animal experiment, performed at the School of Medicine and Pharmaceutics, Jiangnan University between June and October 2006. MATERIALS: Twenty-six male, adult, Sprague Dawley rats (grade Ⅱ), weighing 240-290 g, were obtained from Shanghai Experimental Animal Center, Chinese Academy of Sciences. Aspirin was provided by Sigma (USA). METHODS: The rats were randomly divided into four groups: sham-operation (SO), CIRI + vehicle, CIRI + aspirin (6 mg/kg), and CIRI + aspirin (60 mg/kg). Rats in the lesion groups were intragastrically administrated saline, aspirin (6 mg/kg), or aspirin (60 mg/kg), respectively. MAIN OUTCOME MEASURES: The number of pyramidal neurons with normal appearance in the cerebral cortex at 24 mm from the midline; apoptotic cell death as measured by TUNEL; Bcl-2 and Bax protein localization was determined by immunohistochemistry; malondialdehyde (MDA) and super oxidation (SOD) content were determined by biochemistry method; adenosine triphosphate (ATP) content measured by capillary electrophoresis. RESULTS: Following CIRI, the following parameters were altered compared with sham-operated animals: the number of neurons with normal appearance was significantly reduced in the cerebral cortex; the number of apoptotic cells increased; Bax protein expression was enhanced; and the ratio between Bcl-2 and Bax decreased. In addition, MDA content increased significantly, whereas ATP content decreased (P 〈 0.01). Aspirin ameliorated the loss of healthy pyramidal neurons. Both 6 and 60 mg/kg aspirin increased the ratio between Bcl-2 and Bax, with no significant difference between the treatment groups. In addition, 60 mg/kg aspirin decreased MDA content and increased ATP levels. However, 6 mg/kg aspirin did not have the same effect. CONCLUSION: Aspirin reduced the number of apoptotic cells following CIRI. These results suggest that the neuroprotective mechanism of aspirin could be related to elevated Bcl-2 protein levels or decreased Bax protein expression. The increase in the ratio of Bcl-2 to Bax appears to be a common anti-apoptotic mechanism of aspirin. 展开更多
关键词 ASPIRIN BAX BCL-2 cerebral ischemia-reperfusion injury cell apoptosis
下载PDF
Expression of nerve growth factor precursor, mature nerve growth factor and their receptors during cerebral ischemia-reperfusion injury 被引量:3
11
作者 Guoqian He Jian Guo +4 位作者 Jiachuan Duan Wenming Xu Ning Chen Hongxia Li Li He 《Neural Regeneration Research》 SCIE CAS CSCD 2011年第22期1701-1708,共8页
We investigated nerve growth factor precursor (proNGF) and mature NGF expression in ischemic and non-ischemic cortices after cerebral ischemia-reperfusion injury. In both ischemic and non-ischemic cortices, proNGF w... We investigated nerve growth factor precursor (proNGF) and mature NGF expression in ischemic and non-ischemic cortices after cerebral ischemia-reperfusion injury. In both ischemic and non-ischemic cortices, proNGF was found to be present in the extracellular space and cytoplasm. In addition, mature NGF was expressed in extracellular space, but with a very low signal. In ischemic cortex only, proNGF was significantly decreased, reaching a minimal level at 1 day. Mature NGF was increased at 4 hours, then reached a minimal level at 3 days. The p75 neurotrophin receptor (p75NTR) was significantly decreased after ischemia, and increased at 3 days after ischemia. These results confirmed that proNGF was the predominant form of NGF during the pathological process of cerebral ischemia-repeffusion injury. In addition, our findings suggest that ischemic injury may influence the conversion of proNGF to mature NGF, and that proNGF/p75NTR may be involved in reperfusion injury. 展开更多
关键词 cerebral ischemia-reperfusion injury nerve growth factor precursor mature nerve growth factor p75 neurotrophin receptor cell apoptosis
下载PDF
Acupuncture effects on serum myelin basic protein and remyelination following 30 minutes and 2 hours of ischemia in a rat model of cerebral ischemia-reperfusion injury 被引量:2
12
作者 Jiangang Duan Ming Liu 《Neural Regeneration Research》 SCIE CAS CSCD 2010年第4期261-266,共6页
BACKGROUND: Acupuncture treatment on injured cerebral axons has shown to provide efficacy in clinical practice. It is unknown whether acupuncture produces therapeutic effects by protecting injured cerebral myelin in ... BACKGROUND: Acupuncture treatment on injured cerebral axons has shown to provide efficacy in clinical practice. It is unknown whether acupuncture produces therapeutic effects by protecting injured cerebral myelin in ischemic stroke. OBJECTIVE: To test whether acupuncture provides protection for injured cerebral myelin, based on quantitative data from cerebral ischemia-reperfusion rats, and to compare the effects of early and late acupuncture on serum myelin basic protein (MBP) content and remyelination of the ischemic internal capsule.DESIGN, TIME AND SETTING: A randomized, controlled experiment was performed at the Neurobiological Laboratory, Sichuan University from March 2005 to March 2006. MATERIALS: "Hua Tuo" Brand filiform needles were produced by the Medical Instrument Factory of Suzhou, China.METHODS: A total of 52 adult, healthy, male, Sprague Dawley rats were randomly assigned to four groups: control (n = 4), model (n = 16), early acupuncture (n = 16), and late acupuncture (n = 16). The focal cerebral ischemia-reperfusion model was established by middle cerebral artery occlusion in the right hemisphere using the modified thread embolism method in the latter three groups. Early and late acupuncture groups underwent acupuncture after ischemia for 30 minutes and 2 hours using the Xingnaokaiqiao needling method, respectively. Acupoints were "Neiguarf' (PC 6) and "Sanyinjiao" (SP 6) on the bilateral sides, as well as "Shuigou' (DU 26) and "Baihui" (DU 20) with stimulation for 1 minute at each acupoint. Acupuncture at all acupoints was performed two or three times while the needle was retained, once per day. No special handling was administered to the control clroup.MAIN OUTCOME MEASURES: For each group, remyelination of the internal capsule was observed by Pal-Weigert's myelin staining and serum MBP content was detected using enzyme-linked immunosorbent assay method on days 1,3, 5, and 7 following ischemia-reperfusion injury.RESULTS: Compared with the control group, massive demyelination of the internal capsule occurred, and serum MBP content increased in the model group (P 〈 0.05). Compared with the model group, the extent of demyelination in the internal capsule was less distinct and serum MBP content was significantly less in the early and late acupuncture group (P 〈 0.01 ). Compared with the late acupuncture group, serum MBP content reached a peak later and the peak value was less in the early acupuncture group. CONCLUSION: Results suggest that acupuncture exerts a protective effect on injured cerebral myelin in ischemia-reperfusion rats by reducing serum MBP content and promoting remyelination. The study also suggests that the effect of early acupuncture is superior to late acupuncture. 展开更多
关键词 ACUPUNCTURE focal cerebral ischemia-reperfusion serum myelin basic protein REMYELINATION brain injury neural regeneration
下载PDF
Protective effects of combined treatment with ciprofol and mild therapeutic hypothermia during cerebral ischemia-reperfusion injury 被引量:3
13
作者 Yi-Chao Wang Meng-Jun Wu +1 位作者 Sheng-Liang Zhou Zhi-Hui Li 《World Journal of Clinical Cases》 SCIE 2023年第3期487-492,共6页
Despite improvement in cardiopulmonary resuscitation(CPR)performance,cardiac arrest(CA)is still associated with poor prognosis.The high mortality rate is due to multi-organ dysfunction caused by cerebral ischemia and ... Despite improvement in cardiopulmonary resuscitation(CPR)performance,cardiac arrest(CA)is still associated with poor prognosis.The high mortality rate is due to multi-organ dysfunction caused by cerebral ischemia and reperfusion injury(I/R).The guidelines for CPR suggest the use of therapeutic hypothermia(TH)as an effective treatment to decrease mortality and the only approach confirmed to reduce I/R injury.During TH,sedative agents(propofol)and analgesia agents(fentanyl)are commonly used to prevent shiver and pain.However,propofol has been associated with a number of serious adverse effects such as metabolic acidosis,cardiac asystole,myocardial failure,and death.In addition,mild TH alters the pharmacokinetics of agents(propofol and fentanyl)and reduces their systemic clearance.For CA patients undergoing TH,propofol can be overdosed,leading to delayed awakening,prolonged mechanical ventilation,and other subsequent complications.Ciprofol(HSK3486)is a novel anesthetic agent that is convenient and easy to administer intravenously outside the operating room.Ciprofol is rapidly metabolized and accumulates at low concentrations after continuous infusion in a stable circulatory system compared to propofol.Therefore,we hypothesized that treatment with HSK3486 and mild TH after CA could protect the brain and other organs. 展开更多
关键词 HSK3486 THERAPEUTIC cerebral ischemia-reperfusion injury HYPOTHESIS
下载PDF
Neuroprotective effects of cromakalim on cerebral ischemia-reperfusion injury in rats Correlation with hippocampal metabotropic glutamate receptor 1 alpha and glutamate transporter 1 被引量:2
14
作者 Shilei Wang Junchao Liu Qingxian Chang Yu Li, Yan Jiang Shiduan Wang 《Neural Regeneration Research》 SCIE CAS CSCD 2010年第9期678-682,共5页
BACKGROUND:Studies have reported that potassium channel openers exhibit a protective effect on cerebral ischemia-reperfusion injury and inhibit glutamate excitotoxicity in rats.However,the effects of the glutamate re... BACKGROUND:Studies have reported that potassium channel openers exhibit a protective effect on cerebral ischemia-reperfusion injury and inhibit glutamate excitotoxicity in rats.However,the effects of the glutamate receptor 1α and glutamate transporter 1 remain poorly understood.OBJECTIVE:To investigate the prophylactic use of the adenosine triphosphate-sensitive potassium channel opener cromakalim on neurological function and cerebral infarct size,as well as glutamate receptor 1α and glutamate transporter 1 expression,in rats with cerebral ischemia-reperfusion injury,and to explore action mechanisms underlying reduced glutamate excitotoxicity and neuroprotection in rats.DESIGN,TIME AND SETTING:Randomized,controlled,animal experiment was performed at the Brain Institute,Qingdao University Medical College,Between July 2008 and April 2009.MATERIALS:Cromakalim was purchased from Sigma,USA; rabbit anti-glutamate receptor 1α polyclonal antibody was offered by Wuhan Boster,China; rabbit anti-glutamate transporter 1 polyclonal antibody was offered by Santa Cruz Biotechnology,USA.METHODS:Sixty male,Wistar rats,aged 6 months,were randomly assigned to three groups (n =20):sham-surgery,model,and cromakalim.Intraluminal thread methods were used to establish middle cerebral artery occlusion in rats from the model and cromakalim groups.Rats from the sham-surgery group were subjected to exposed common carotid artery,external carotid artery,and internal carotid artery,without occlusion.Cromakalim (10 mg/kg) was administered 30 minutes prior to middle cerebral artery occlusion,but there was no intervention in the model and sham-surgery groups.MAIN OUTCOME MEASURES:At 24 hours post-surgery,neurological behavioral functions were evaluated using Bederson's test,cerebral infarction volume was determined following tetrazolium chloride staining,and glutamate receptor 1a and glutamate transporter 1 expressions were detected using immunohistochemistry.RESULTS:Following cerebral ischemia-reperfusion injury,neurological behavioral malfunctions were obvious in all mice.Focal cerebral infarction was detected in ischemic hemispheres,glutamate receptor 1α expression increased,and glutamate transporter 1 expression decreased in the ischemic hemisphere (P〈 0.05).Compared with the model group,neurological behavioral functions significantly improved,cerebral infarction volume was significantly reduced (P〈 0.05),glutamate receptor 1α expression was significantly decreased,and glutamate transporter 1 expression was increased in the cromakalim group (P 〈 0.05).CONCLUSION:Improved neurological function and reduced cerebral infarction volume in rats through the preventive use of cromakalim could be related to decreased glutamate receptor 1α expression and enhanced glutamate transporter 1 expression. 展开更多
关键词 cerebral ischemia-reperfusion CROMAKALIM glutamate receptor glutamate transporter 1
下载PDF
Hyperbaric oxygen treatment induces dynamic ATPase activity changes in the rat brain following transient global cerebral ischemia-reperfusion 被引量:1
15
作者 Shiming Xu Hongjuan Wang +2 位作者 Tongnan Gu Xiuyan Zhou Rui Chen 《Neural Regeneration Research》 SCIE CAS CSCD 2008年第9期1018-1021,共4页
BACKGROUND: Energy depletion, induced by ischemia or hypoxia, is one of the first events in neuronal injury. OBJECTIVE: To investigate the dynamic changes of Na^+-K^+-ATPase and Ca^2+-ATPase activity in the rat b... BACKGROUND: Energy depletion, induced by ischemia or hypoxia, is one of the first events in neuronal injury. OBJECTIVE: To investigate the dynamic changes of Na^+-K^+-ATPase and Ca^2+-ATPase activity in the rat brain following transient global cerebral ischemia-reperfusion (IR), as well as the effects of hyperbaric oxygen (HBO) treatment. DESIGN, TIME AND SETTING: A randomized and controlled animal study was performed in the Department of Biochemistry and Molecular Biology, Capital Medical University between February and December 2006. MATERIALS: Clean-grade, female, Sprague Dawley rats were provided by the Animal Research Department of Capital Medical University (License number: SYXK11-00-0047). Na^+-K^+-ATPase and Ca^2+-ATPase kits were provided by Nanjing Jiancheng Bioengineering Institute (Nanjing, China). A hyperbaric oxygen chamber (DWC150-300) was supplied by Shanghai 701 Medical Oxygen Chamber Factory (Shanghai, China). METHODS: Sixty-three rats were randomly divided into nine groups: sham operated group (sham-O) as control, groups of IR, and groups treated with hyperbaric oxygen (HBO) after IR. Animal from the IR and HBO groups were sacrificed after four different survival intervals of 6, 24, 48 and 96 hours, respectively. Each group consisted of seven rats. The rats of HBO groups were placed into the hyperbaric chamber. The HBO chamber was flushed with pure oxygen for 5 minutes, followed by a gradual rise in pressure over 5 minutes and stabilization at 0.2 MPa. Then, pure oxygen was supplied for 45 minutes in stabilized pressure, followed by gradually reduced pressure over 15 minutes. The rats of the 6-h HBO group were placed into the HBO chamber following reperfusion for 3 hours on the first day, which was repeated on three consecutive days, always at the same time. Rats in the sham-O group and IR group remained under normal atmospheric pressure. MAIN OUTCOME MEASURES: The Na^+-K^+-ATPase and Ca^2+-ATPase activity in rat brain homogenate was detected by the ammonium molybdate assay method. RESULTS: All 63 rats were included in the final analysis. Alter 6 hours, Na^+-K^+-ATPase activity was significantly greater in HBO animals, compared with IR animals (P 〈 0.05) and sham-O controls (P〈 0.01). In both, the HBO group and IR group, Na^+-K^+-ATPase activity returned to normal levels after 24 hours (P 〉 0.05). At 48 and 96 hours, Na^+-K^+-ATPase activity was significantly greater in HBO and IR animals, compared with sham-O animals (P 〈 0.05). Ca^2+-ATPase activity was significantly greater in the HBO group after 6 hours, compared with the sham-O group (P 〈 0.01 ), and returned to normal levels at 24 and 96 hours (P 〉 0.05). In the IR group, Ca^2+-ATPase activity was significantly higher after 6 hours than in the sharn-O group (P〈 0.01), and returned to normal levels after 24 hours (P 〉 0.05). CONCLUSION: The Na^+-K^+-ATPase and Ca^2+-ATPase activity in IR groups increased during the acute and the delayed phase following transient global cerebral IR. HBO treatment not only increased Na^+-K^+-ATPase activity at the acute stage, but also induced a faster recovery of Ca^2+-ATPase activity. 展开更多
关键词 ATPASE cerebral ischemia-reperfusion hyperbaric oxygen Sprague Dawley rats
下载PDF
Pinacidil reduces neuronal apoptosis following cerebral ischemia-reperfusion in rats through both mitochondrial and death-receptor signal pathways 被引量:6
16
作者 张鸿 宋利春 +2 位作者 刘艳艳 马英 吕永利 《Neuroscience Bulletin》 SCIE CAS CSCD 2007年第3期145-150,共6页
Objective To investigate effect of pinacidil, an ATP sensitive potassium channel (KATP) opener, on the neuronal apoptosis and its signaling transduction mechanism following focal cerebral ischemia-reperfusion in rat... Objective To investigate effect of pinacidil, an ATP sensitive potassium channel (KATP) opener, on the neuronal apoptosis and its signaling transduction mechanism following focal cerebral ischemia-reperfusion in rats. Methods One hundred male Wistar rats were randomly divided into four groups: A, sham-operated group; B, ischemia-reperfusion group; C, KATe opener treatment group; and D, KATe opener and blocker treatment group. The middle cerebral artery occlusion (MCAO) model was established by using the intraluminal suture occlusion method, neuronal apoptosis was determined by TUNEL staining, and expressions of caspase-8, caspase-9 and caspase-3 mRNA were detected by in situ hybridization. Results (1) The numbers of apoptotic neurons at 12 h, 24 h, 48 h, and 72 h were significantly less in group C than in groups B and D (P 〈 0.01 or P 〈 0.05); and there was no difference between groups B and D at all time points (P 〉 0.05). (2) The expressions of caspase-3 mRNA and caspase-8 mRNA at all times and the expressions of caspase-9 mRNA at 12 h, 24 h, 48 h, 72 h were significantly lower in group C than in groups B and D (P 〈 0.01 or P 〈 0.05); and there were no differences between groups B and D at all time points (P 〉 0.05). Conclusions KATP opener can significantly decrease the neuronal apoptosis and the expressions of caspase-3, caspase-8 and caspase-9 mRNAs following cerebral ischemiareperfusion. The neuronal apoptosis may be decreased by the inhibition of both mitochondrial and death-receptor signal pathways. 展开更多
关键词 PINACIDIL GLIPIZIDE cerebral ischemia apoptosis mitochondria death-receptors signal pathway caspase-3 CASPASE-8 caspase-9
下载PDF
Effects of ligustrazine on somatosensory evoked potential in normal rabbits and rabbits with cerebral ischemia-reperfusion injury 被引量:1
17
作者 Deshan Liu Shuli Wang Yuanyuan Hao 《Neural Regeneration Research》 SCIE CAS CSCD 2006年第1期81-83,共3页
BACKGROUND: Somatosensory evoked potential (SEP) has become a method with higher sensitivity and specificity than electroencephalogram in detecting the brain function and the region, range and degree of ischemia. H... BACKGROUND: Somatosensory evoked potential (SEP) has become a method with higher sensitivity and specificity than electroencephalogram in detecting the brain function and the region, range and degree of ischemia. However, the effects of ligustrazine on SEP is still not clear. OBJECTIVE : To study the protective effects of ligustrazini injection on cerebral ischemia-reperfusion injury.DESIGN: Auto-control study, random grouping.SETTING: Qilu Hospital of Shandong University.MATERIALS: The experiment was completed in the Cerebral Functional Room of Qilu Hospital Affiliated to Shandong University from March 2002 to June 2004. A totally of 24 healthy Harbin rabbits were randomly divided into blank control group (n=8), model control group (n=8) and ligustrazine treatment group (n=8). Hydrochloric ligustrazine injection, 40 mg/2 mL each ampoule, was provided by the Third Pharmaceutical Factory of Beijing (certification: 93035236273). The main component was hydrochloric ligustrazine and the chemical name was 2, 3, 5, 6-tetramethyl pyrazine hydrochloride. METHODS:① Modeling method: The bilateral common carotid artery ligation was adopted to make the model. ② Index of cerebral functional lesion evaluated with SEP during ischemia-reperfusion: DISA 2000C neuromyoeletrometer provided by Dantec Electronics Ltd, Denmark was used to detect SEP. ③ Interventional process: Blank control group: The latencies and amplitudes of SEP were measured before injection with 1.5 mg/kg ligustrazine and at the points of 15 minutes, 20 minutes, 30 minutes, 60 minutes, 90 minutes and 120 minutes after injection. Ligustrazine treatment group: Rabbits were injected with 1.5 mg/kg ligustrazine, and those of model control group were injected the same volume of saline. Thirty minutes later, the bilateral common carotid artery of the rabbits all had been ligated for 30 minutes, and then reperfused for 120 minutes. The latencies and amplitudes of SEP were measured before injection, before ligation, at the points of 1 minute, 5 minutes, 10 minutes, 15 minutes, 20 minutes, 25 minutes and 30 minutes after ligation, and at the points of 5 minutes, 10 minutes, 15 minutes, 20 minutes, 30 minutes, 60 minutes, 90 minutes and 120 minutes after reperfusion.④ Evaluating criteria: Normal values of P-wave latencies and amplitudes were (19.34±3.18) ms and (4.55±1.43)μV. Average value before injection in blank control group and average values before injection, after injection and before ligation in ischemiareperfusion group were regarded as control criteria to evaluate changes of P-wave latencies and amplitudes after experiment. MAIN OUTCOME MEASURES: P-wave latencies and amplitudes of SEP in the three groups.RESULTS : A total of 24 rabbits were involved in the final analysis without any loss.① Blank control group: The P-wave latencies delayed markedly at each time point after injection. Compared with that before injection, there was a significant difference (P 〈 0.05-0.01). The P-wave amplitudes did not fluctuate noticeably all the time after injection, but significantly decreased when compared with those before injection (P 〈 0.05-0.01). ② Ischemia-reperfusion group: The P-wave latencies delayed and amplitudes decreased in the rabbits with cerebral ischemia-reperfusion at all points of time during cerebral ischemia-reperfusion, and there was significant difference when compared with the levels before ischemia (P 〈 0.05). When ligustrazine was injected, the latencies and amplitudes changed less, and as compared with the levels before ischemia, the difference was not significant (P〉 0.05).CONCLUSION:① Ligustrazine can inhibit P-wave latencies and amplitudes of SEP of normal rabbits.②Ligustrazine can improve P-wave latencies and amplitudes of SEP of rabbits with cerebral ischemia-reperfusion injury. 展开更多
关键词 Effects of ligustrazine on somatosensory evoked potential in normal rabbits and rabbits with cerebral ischemia-reperfusion injury
下载PDF
Exploring the attenuation mechanisms of Dalbergia odorifera leaves extract on cerebral ischemia-reperfusion based on weighted gene co-expression network analysis
18
作者 JINFANG HU JIANGEN AO +6 位作者 LONGSHENG FU YAOQI WU FENG SHAO TIANTIAN XU MINGJIN JIANG SHAOFENG XIONG YANNI LV 《BIOCELL》 SCIE 2023年第7期1611-1622,共12页
The attenuation function of Dalbergia odorifera leaves on cerebral ischemia-reperfusion(I/R)is little known.The candidate targets for the Chinese herb were extracted from brain tissues through the high-affinity chroma... The attenuation function of Dalbergia odorifera leaves on cerebral ischemia-reperfusion(I/R)is little known.The candidate targets for the Chinese herb were extracted from brain tissues through the high-affinity chromatography.The molecular mechanism of D.odorifera leaves on cerebral I/R was investigated.Methods:Serial affinity chromatography based on D.odorifera leaves extract(DLE)affinity matrices were applied to find specific binding proteins in the brain tissues implemented on C57BL/6 mice by intraluminal middle cerebral artery occlusion for 1 h and reperfusion for 24 h.Specific binding proteins were subjected to mass-spectrometry to search for the differentially expressed proteins between control and DLE-affinity matrices.The hub genes were screened based on weighted gene co-expression network analysis(WGCNA).Then,predictive biology and potential experimental verification were performed for the candidate genes.The protective role of DLE in blood-brain barrier damage in cerebral I/R mice was evaluated by the leakage of Evans blue,western blotting,immunohistochemistry,and immunofluorescent staining.Results:952 differentially expressed proteins were classified into seven modules based on WGCNA under soft threshold 6.Based on WGCNA,AKT1,PIK3CA,NOS3,SMAD3,SMAD1,IL6,MAPK1,TGFBR2,TGFBR1,MAPK3,IGF1R,LRG1,mTOR,ROCK1,TGFB1,IL1B,SMAD2,and SMAD518 candidate hub proteins were involved in turquoise module.TGF-β,MAPK,focal adhesion,and adherens junction signaling pathway were associated with candidate hub proteins.Gene ontology analysis demonstrated that candidate hub proteins were related to the TGF-βreceptor signaling pathway,common-partner SMAD protein phosphorylation,etc.DLE could significantly reduce the leakage of Evans blue in mice with cerebral I/R,while attenuating the expression of occludin,claudin-5,and zonula occludens-1.Western blotting demonstrated that regulation of TGF-β/SMAD signaling pathway played an essential role in the protective effect of DLE.Conclusion:Thus,a number of candidate hub proteins were identified based on DLE affinity chromatography through WGCNA.DLE could attenuate the dysfunction of bloodbrain barrier in the TGF-β/SMAD signaling pathway induced by cerebral I/R. 展开更多
关键词 Dalbergia odorifera leaves Serial affinity chromatography WGCNA cerebral ischemia-reperfusion TGF-β SMADS
下载PDF
Neuroprotective effect of cerebroprotein hydrolysate on cerebral ischemia-reperfusion injury mice
19
作者 SHI Cai-yun AN Zi-xuan LI Wei 《中国药理学与毒理学杂志》 CAS 北大核心 2021年第9期674-675,共2页
OBJECTIVE To investigate the neuroprotective effect of cerebroprotein hydroly⁃sate(CH)on cerebral ischemia-reperfusion injury in mice.METHODS A total of 60 male SPF Kunming mice were randomly divided,reforming longa m... OBJECTIVE To investigate the neuroprotective effect of cerebroprotein hydroly⁃sate(CH)on cerebral ischemia-reperfusion injury in mice.METHODS A total of 60 male SPF Kunming mice were randomly divided,reforming longa method into sham group(sham),model group(tMCAO,reforming longa method),CH 0.2 and 0.5 g·kg-1 groups and positive drug control group(edaravone 0.008 g·kg-1).Neurological deficit score were performed 24 h after opera⁃tion.Mice with scores ranged between 1 and 3 were included in subsequent experiments.Each group had 8 mice.CH edaravone and normal sa⁃line were ip injected for 5 d.The tMCAO group and the sham group were administered the same amount of normal saline as administration groups.TTC staining was used to measure the volume of cerebral infarction;ELISA was per⁃formed to detect the levels of interleukin-6(IL-6),interleukin-1β(IL-1β),brain-derived neurotrophic factor(BDNF)and interferon-γ(IFN-γ)in serum and penumbra.RESULTS TTC staining results showed that there was no infarction in sham group.Compared with tMCAO group,the infarct volume in each administration group was signifi⁃cantly decreased(P<0.01).ELISA results showed that IL-6,IL-1βand IFN-γin serum and penumbra were of significant difference between tMCAO group and sham group(P<0.01),and BDNF was significantly decreased(P<0.01).Compared with tMCAO group,IL-6,IL-1βand IFN-γin serum and ischemic penumbra were sig⁃nificantly decreased in all administration groups(P<0.01),while the content of BDNF was in⁃creased in CH 0.2 g·kg-1 group and edaravone 0.008 g·kg-1 group(P<0.05),and other groups were significantly increased(P<0.01).CONCLU⁃SION CH could reduce the cerebral infarction vol⁃ume and improve the nerve injury caused by cerebral ischemia-reperfusion.The mechanism was related to inhibit the expression of IL-6,IL-1βand IFN-γand increase the expression of BDNF possibly. 展开更多
关键词 cerebral ischemia-reperfusion INJURY cerebroprotein hydrolysate
下载PDF
MELLT3 protects against cerebral ischemia-reperfusion (I/R) injury through up-regulation of m6A modification
20
作者 JING JIN XINGHUA WANG +6 位作者 XIAOXIAO ZHENG JIAHUA LAN LI ZHENG YING CAI HUI CHEN HONGWEI WANG LIFANG ZHENG 《BIOCELL》 SCIE 2023年第3期619-626,共8页
Ischemic cerebrovascular disease is a leading cause of death globally and is often exacerbated by cerebral ischemic/reperfusion injury(CIRI).The exact mechanisms underlying I/R injury are unclear.In this study,we aime... Ischemic cerebrovascular disease is a leading cause of death globally and is often exacerbated by cerebral ischemic/reperfusion injury(CIRI).The exact mechanisms underlying I/R injury are unclear.In this study,we aimed to determine the role of m6A-modified methylase complex methyltransferase-like 3(METTL3)in cerebral ischemiareperfusion(I/R)injury.We found that m6A and METTL3 levels increased in OGD/RX-induced mouse astrocytescerebellar(MA-C)and the brain of middle cerebral artery occlusion(MCAO)model mice.METTL3 siRNA treatment reduced OGD-RX-induced MAC cell viability and proliferation,which increased with METTL3 over-expression.Flow cytometry analysis showed that silencing METTL3 significantly enhanced OGD/RX-induced MAC apoptosis,which was significantly reduced with METTL3 up-regulation.In an MCAO model,METTL3 overexpression significantly reduced cerebral infarction area and decreased brain cell apoptosis,indicating that METTL3 OE treatment could ameliorate brain edema and injury.Thus,METTL3 could be used as a target to treat I/R injury. 展开更多
关键词 METTL3 m6A cerebral ischemia-reperfusion
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部