In order to save energy consumption of two-way amplifier forward(AF) relaying with channel estimation error, an energy efficiency enhancement scheme is proposed in this work. Firstly, through the analysis of two-way A...In order to save energy consumption of two-way amplifier forward(AF) relaying with channel estimation error, an energy efficiency enhancement scheme is proposed in this work. Firstly, through the analysis of two-way AF relaying mode with channel estimation error, the resultant instantaneous SNRs at end nodes is obtained. Then, by using a high SNR approximation, outage possibility is acquired and its simple closed-form expression is represented. Specially, for using the energy resource more efficiently, a low-complexity power allocation and transmission mode selection policy is proposed to enhance the energy efficiency of two-way AF relay system. Finally, relay priority region is identified in which cooperative diversity energy gain can be achieved. The computer simulations are presented to verify our analytical results, indicating that the proposed policy outperforms direct transmission by an energy gain of 3 dB at the relative channel estimation error less than 0.001. The results also show that the two-way AF relaying transmission loses the two-way AF relaying transmission loses its superiority to direct transmission in terms of energy efficiency when channel estimation error reaches 0.03.展开更多
In this paper, the effect of channel estimation errors upon the Zero Forcing (ZF) precoding Multiple Input Multiple Output Broadcast (MIMO BC) systems was studied. Based on the two kinds of Gaussian estimation error m...In this paper, the effect of channel estimation errors upon the Zero Forcing (ZF) precoding Multiple Input Multiple Output Broadcast (MIMO BC) systems was studied. Based on the two kinds of Gaussian estimation error models, the performance analysis is conducted under different power allocation strategies. Analysis and simulation show that if the covariance of channel estimation errors is independent of the received Signal to Noise Ratio (SNR), imperfect channel knowledge deteriorates the sum capacity and the Bit Error Rate (BER) performance severely. However, under the situation of orthogonal training and the Minimum Mean Square Error (MMSE) channel estimation, the sum ca- pacity and BER performance are consistent with those of the perfect Channel State Information (CSI) with only a performance degradation.展开更多
In this work, we consider an amplify-and-forward two-way multi-relay system for wireless communication and mvesngate me effect of channel estimation error on the error rate performance. With the derivation of effectiv...In this work, we consider an amplify-and-forward two-way multi-relay system for wireless communication and mvesngate me effect of channel estimation error on the error rate performance. With the derivation of effective signal-to-noise ratio at the transceiver and its probability density function, we can get approximate expression for average bit error rate. Simulation results are performed to verify the analytical results.展开更多
Multichannel synthetic aperture radar (SAR) in azimuth can resolve the contradiction between high resolution and wide swath faced with traditional SAR imaging. However, channel errors will degrade the performance of i...Multichannel synthetic aperture radar (SAR) in azimuth can resolve the contradiction between high resolution and wide swath faced with traditional SAR imaging. However, channel errors will degrade the performance of imaging. This paper compares the performances of four channel error estimation algorithms under different clutter distributions and SNR conditions. Further, explanations are given for performance differences of the four algorithms, which provide evidence for method selection in engineering applications.展开更多
The throughput performance of modulation and coding schemes (MCS) selection with channel quality estimation errors (CQEE) is analyzed for high-speed downlink packet access (HSDPA). To reduce the loss of throughp...The throughput performance of modulation and coding schemes (MCS) selection with channel quality estimation errors (CQEE) is analyzed for high-speed downlink packet access (HSDPA). To reduce the loss of throughput caused by CQEE, the robust MCS selection method and adaptive MCS switching scheme are proposed. In addition, automatic repeat request (ARQ) scheme is used to improve the block error rate (BLER) performance. Simulation results show that the proposed methods decrease the throughput loss resulted from CQEE efficiently and BLER performance gets better with ARQ scheme.展开更多
Channel estimation techniques applied to cognitive radio networks (CRN) are analyzed for simultaneously primary and secondary channel estimations operating in underlay cognitive radio networks (uCRN). A complete base-...Channel estimation techniques applied to cognitive radio networks (CRN) are analyzed for simultaneously primary and secondary channel estimations operating in underlay cognitive radio networks (uCRN). A complete base-band transmission including pilot sequence transmission, channel matrix estimation and optimal precoder matrix generation based on imperfect channel estimation are described. Also, the effect of imperfect channel estimation has been studied to provide means of developing techniques to overcome problems while enhancing the MIMO communication performance.展开更多
In this paper,we have modeled a linear precoder for indoor multiuser multiple input multiple output(MU-MIMO)system with imperfect channel state information(CSI)at transmitter.The Rician channel is presumed to be mutua...In this paper,we have modeled a linear precoder for indoor multiuser multiple input multiple output(MU-MIMO)system with imperfect channel state information(CSI)at transmitter.The Rician channel is presumed to be mutually coupled and spatially,temporarily correlated.The imperfection with CSI is primarily due to the channel estimation error at receiver and feedback delay amidst the receiver and transmitter in CSI transmission.Along with,the insufficient spacing between the antenna at transmitter and receiver persuades mutual coupling(MC)among the array elements.In addition,the MIMO channel is presumed to be jointly correlated(Weichselberger correlation model).When we look back on the existing precoder design,it considered spatial correlation alone disregarding joint correlation of antenna array elements.With all above assumption,we have designed a linear precoder which minimizes mean squared error(MSE)subjected to total transmit power constraint for MUMIMO system.The simulation results proven that proposed precoder shows substantial enhancement in bit error rate(BER)performance in comparison with the existing technique.The mathematical analysis corroborates the simulation results.展开更多
The closed-form solutions for error rates of Space-Time Block Code (STBC) Multiple Phase Shift Keying (MPSK) systems are derived in this paper. With characteristic function based method and the partial integration bas...The closed-form solutions for error rates of Space-Time Block Code (STBC) Multiple Phase Shift Keying (MPSK) systems are derived in this paper. With characteristic function based method and the partial integration based respectively, the exact expressions of error rates are obtained for (2,1) STBC with and without channel estimation error. Simulations show that the practical error rates accord with the theoretical ones, so closed-form error rates are accurate references for STBC performance evaluation. For the error of pilot assisted channel estimation, the performance of a (2,1) STBC system is deteriorated about 3dB.展开更多
In this paper, the effect of imperfect channel state information at the receiver, which is caused by noise and other interference, on the multi-access channel capacity is analysed through a statistical-mechanical appr...In this paper, the effect of imperfect channel state information at the receiver, which is caused by noise and other interference, on the multi-access channel capacity is analysed through a statistical-mechanical approach. Replica analyses focus on analytically studying how the minimum mean square error (MMSE) channel estimation error appears in a multiuser channel capacity formula. And the relevant mathematical expressions are derived. At the same time, numerical simulation results are demonstrated to validate the Replica analyses. The simulation results show how the system parameters, such as channel estimation error, system load and signal-to-noise ratio, affect the channel capacity.展开更多
This article investigates transmitter design in Rayleigh fading multiple input multiple output (MIMO) channels with spatial correlation when there are channel uncertainties caused by a combined effect of channel est...This article investigates transmitter design in Rayleigh fading multiple input multiple output (MIMO) channels with spatial correlation when there are channel uncertainties caused by a combined effect of channel estimation error and limited feedback. To overcome the high computational complexity of the optimal transmit power allocation, a simple and suboptimal allocation is proposed by exploiting the transmission constraint and differentiating a bound based on Jensen inequality on the channel capacity. The simulation results show that the mutual information corresponding to the proposed power allocation closely approaches the channel capacity corresponding to the optimal one and meanwhile the computational complexity is greatly reduced.展开更多
In time division duplex(TDD)beamforming systems,the base station estimates the channel state information(CSI)at transmitter based on uplink pilots and then uses it to generate the beamforming vector in the downlink tr...In time division duplex(TDD)beamforming systems,the base station estimates the channel state information(CSI)at transmitter based on uplink pilots and then uses it to generate the beamforming vector in the downlink transmission.Because of the constraints of the TDD frame structure and the uplink pilot overhead,there inevitably exists CSI delay and channel estimation error between CSI estimation and downlink transmission channel,which would degrade system ergodic rate.In this paper,we propose a robust ergodic rate transmission scheme,in which the uplink pilot time interval(UPTI)of an active user is adaptively adjusted according to the changing channel conditions such as Doppler frequency shift,uplink pilot signal to noise ratio(SNR),to minimize the impact of CSI delay and channel estimation error on the ergodic rate of TDD beamforming systems.In order to get the optimal UPTI,we first derive the average post-processing SNR for TDD beamforming systems with channel estimation error and CSI delay.We then obtain the optimal UPTI,which maximizes the average post-processing SNR,given the normalized pilot overhead(the number of pilot symbols per data symbol).The numerical simulation results validate that the the proposed robust ergodic rate transmission scheme not only maximizes the average post-processing SNR but also maximizes the system ergodic rate.Moreover,the scheme can adapt well to the changing channel environments compared with the current fixed UPTI scheme.Especially our research is valuable for the uplink sounding reference signal design in long term evolution advanced(LTEAdvanced)system.展开更多
基金Project(IRT0852) supported by the Program for Changjiang Scholars and Innovative Research Team in University,ChinaProject(2012CB316100) supported by the National Basic Research Program of China+2 种基金Projects(61101144,61101145) supported by the National Natural Science Foundation of ChinaProject(B08038) supported by the "111" Project,ChinaProject(K50510010017) supported by the Fundamental Research Funds for the Central Universities,China
文摘In order to save energy consumption of two-way amplifier forward(AF) relaying with channel estimation error, an energy efficiency enhancement scheme is proposed in this work. Firstly, through the analysis of two-way AF relaying mode with channel estimation error, the resultant instantaneous SNRs at end nodes is obtained. Then, by using a high SNR approximation, outage possibility is acquired and its simple closed-form expression is represented. Specially, for using the energy resource more efficiently, a low-complexity power allocation and transmission mode selection policy is proposed to enhance the energy efficiency of two-way AF relay system. Finally, relay priority region is identified in which cooperative diversity energy gain can be achieved. The computer simulations are presented to verify our analytical results, indicating that the proposed policy outperforms direct transmission by an energy gain of 3 dB at the relative channel estimation error less than 0.001. The results also show that the two-way AF relaying transmission loses the two-way AF relaying transmission loses its superiority to direct transmission in terms of energy efficiency when channel estimation error reaches 0.03.
基金by the National Natural Science Foundation of China (No.60496311).
文摘In this paper, the effect of channel estimation errors upon the Zero Forcing (ZF) precoding Multiple Input Multiple Output Broadcast (MIMO BC) systems was studied. Based on the two kinds of Gaussian estimation error models, the performance analysis is conducted under different power allocation strategies. Analysis and simulation show that if the covariance of channel estimation errors is independent of the received Signal to Noise Ratio (SNR), imperfect channel knowledge deteriorates the sum capacity and the Bit Error Rate (BER) performance severely. However, under the situation of orthogonal training and the Minimum Mean Square Error (MMSE) channel estimation, the sum ca- pacity and BER performance are consistent with those of the perfect Channel State Information (CSI) with only a performance degradation.
基金supported by National Basic Research Program of China (2009CB320401)the National Key Scientific and Technological Project of China (2010ZX03003-001)+1 种基金Doctoral Fund of Ministry of Education of China (20090005110003)the Fundamental Research Funds for the Central Universities (BUPT2009RC0111)
文摘In this work, we consider an amplify-and-forward two-way multi-relay system for wireless communication and mvesngate me effect of channel estimation error on the error rate performance. With the derivation of effective signal-to-noise ratio at the transceiver and its probability density function, we can get approximate expression for average bit error rate. Simulation results are performed to verify the analytical results.
文摘Multichannel synthetic aperture radar (SAR) in azimuth can resolve the contradiction between high resolution and wide swath faced with traditional SAR imaging. However, channel errors will degrade the performance of imaging. This paper compares the performances of four channel error estimation algorithms under different clutter distributions and SNR conditions. Further, explanations are given for performance differences of the four algorithms, which provide evidence for method selection in engineering applications.
文摘The throughput performance of modulation and coding schemes (MCS) selection with channel quality estimation errors (CQEE) is analyzed for high-speed downlink packet access (HSDPA). To reduce the loss of throughput caused by CQEE, the robust MCS selection method and adaptive MCS switching scheme are proposed. In addition, automatic repeat request (ARQ) scheme is used to improve the block error rate (BLER) performance. Simulation results show that the proposed methods decrease the throughput loss resulted from CQEE efficiently and BLER performance gets better with ARQ scheme.
文摘Channel estimation techniques applied to cognitive radio networks (CRN) are analyzed for simultaneously primary and secondary channel estimations operating in underlay cognitive radio networks (uCRN). A complete base-band transmission including pilot sequence transmission, channel matrix estimation and optimal precoder matrix generation based on imperfect channel estimation are described. Also, the effect of imperfect channel estimation has been studied to provide means of developing techniques to overcome problems while enhancing the MIMO communication performance.
文摘In this paper,we have modeled a linear precoder for indoor multiuser multiple input multiple output(MU-MIMO)system with imperfect channel state information(CSI)at transmitter.The Rician channel is presumed to be mutually coupled and spatially,temporarily correlated.The imperfection with CSI is primarily due to the channel estimation error at receiver and feedback delay amidst the receiver and transmitter in CSI transmission.Along with,the insufficient spacing between the antenna at transmitter and receiver persuades mutual coupling(MC)among the array elements.In addition,the MIMO channel is presumed to be jointly correlated(Weichselberger correlation model).When we look back on the existing precoder design,it considered spatial correlation alone disregarding joint correlation of antenna array elements.With all above assumption,we have designed a linear precoder which minimizes mean squared error(MSE)subjected to total transmit power constraint for MUMIMO system.The simulation results proven that proposed precoder shows substantial enhancement in bit error rate(BER)performance in comparison with the existing technique.The mathematical analysis corroborates the simulation results.
文摘The closed-form solutions for error rates of Space-Time Block Code (STBC) Multiple Phase Shift Keying (MPSK) systems are derived in this paper. With characteristic function based method and the partial integration based respectively, the exact expressions of error rates are obtained for (2,1) STBC with and without channel estimation error. Simulations show that the practical error rates accord with the theoretical ones, so closed-form error rates are accurate references for STBC performance evaluation. For the error of pilot assisted channel estimation, the performance of a (2,1) STBC system is deteriorated about 3dB.
基金Project supported by the National Nature Science Foundation of China (Grant Nos 60773085 and 60801051)
文摘In this paper, the effect of imperfect channel state information at the receiver, which is caused by noise and other interference, on the multi-access channel capacity is analysed through a statistical-mechanical approach. Replica analyses focus on analytically studying how the minimum mean square error (MMSE) channel estimation error appears in a multiuser channel capacity formula. And the relevant mathematical expressions are derived. At the same time, numerical simulation results are demonstrated to validate the Replica analyses. The simulation results show how the system parameters, such as channel estimation error, system load and signal-to-noise ratio, affect the channel capacity.
基金supported by the National Natural Science Foundationof China(60502038)the Hi-Tech Research and Development Program of China(2006AA01Z272,2006AA01Z283)+1 种基金Beijing New Star Program of Science and Technology,China(2007A046)111 Project of Ministry of Education(MOE)of China(B07005)
文摘This article investigates transmitter design in Rayleigh fading multiple input multiple output (MIMO) channels with spatial correlation when there are channel uncertainties caused by a combined effect of channel estimation error and limited feedback. To overcome the high computational complexity of the optimal transmit power allocation, a simple and suboptimal allocation is proposed by exploiting the transmission constraint and differentiating a bound based on Jensen inequality on the channel capacity. The simulation results show that the mutual information corresponding to the proposed power allocation closely approaches the channel capacity corresponding to the optimal one and meanwhile the computational complexity is greatly reduced.
基金the National Nature Science Foundation of China(Nos.61172067 and 61371086)the China Middle&Long Term Project(Nos.2010ZX03002-003,2012ZX03001-010 and 2013ZX03001-019)+1 种基金the Important National Science&Technology Specific Projects(Nos.2010ZX03003-002-03 and 2011ZX03003-001-03)the National High Technology Research and Development Program(863)of China(No.2009AA011505)
文摘In time division duplex(TDD)beamforming systems,the base station estimates the channel state information(CSI)at transmitter based on uplink pilots and then uses it to generate the beamforming vector in the downlink transmission.Because of the constraints of the TDD frame structure and the uplink pilot overhead,there inevitably exists CSI delay and channel estimation error between CSI estimation and downlink transmission channel,which would degrade system ergodic rate.In this paper,we propose a robust ergodic rate transmission scheme,in which the uplink pilot time interval(UPTI)of an active user is adaptively adjusted according to the changing channel conditions such as Doppler frequency shift,uplink pilot signal to noise ratio(SNR),to minimize the impact of CSI delay and channel estimation error on the ergodic rate of TDD beamforming systems.In order to get the optimal UPTI,we first derive the average post-processing SNR for TDD beamforming systems with channel estimation error and CSI delay.We then obtain the optimal UPTI,which maximizes the average post-processing SNR,given the normalized pilot overhead(the number of pilot symbols per data symbol).The numerical simulation results validate that the the proposed robust ergodic rate transmission scheme not only maximizes the average post-processing SNR but also maximizes the system ergodic rate.Moreover,the scheme can adapt well to the changing channel environments compared with the current fixed UPTI scheme.Especially our research is valuable for the uplink sounding reference signal design in long term evolution advanced(LTEAdvanced)system.