The transient friction in channel mean flows is the sum of two contributions,i.e.,the underlying laminar flow(ULF)and the purely turbulent component(PTC),and the contributions are analyzed separately by theoretical ex...The transient friction in channel mean flows is the sum of two contributions,i.e.,the underlying laminar flow(ULF)and the purely turbulent component(PTC),and the contributions are analyzed separately by theoretical experiments.It is found that,the transient friction may be higher or remarkably lower than that in equal-Reynolds number steady-state flows.The universal time constant for plane-parallel laminar flows is reported,and the role of the time constant in a turbulent mean flow is examined.It is shown that the time constant is related to the turbulence's frozen time.Finally,a study of the logarithmic layer during the transient flow is accomplished,which shows that the logarithmic layer is destroyed.展开更多
The velocity dip phenomenon may occur in a part of or in the whole flow field of open channel flows due to the secondary flow effect. Based on rectangular flume experiments and the laser Doppler velocimetry, the influ...The velocity dip phenomenon may occur in a part of or in the whole flow field of open channel flows due to the secondary flow effect. Based on rectangular flume experiments and the laser Doppler velocimetry, the influence of the distance to the sidewall and the aspect ratio on the velocity dip is investigated. Through application of statistical methods to the experimental results, it is proposed that the flow field may be divided into two regions, the relatively strong sidewall region and the relatively weak sidewall region. In the former region, the distance to the sidewall greatly affects the location of maximum velocity, and, in the latter region, both the distance to the sidewall and the aspect ratio influence the location of the maximum velocity.展开更多
The orientation and concentration distributions of fibres in laminar and turbulent channel flows are investigated numerically. The obtained results are in good agreement with the experimental data. In the laminar flow...The orientation and concentration distributions of fibres in laminar and turbulent channel flows are investigated numerically. The obtained results are in good agreement with the experimental data. In the laminar flow regime, more fibres orient to the flow direction as the Reynolds number increases. The shear rate of fluid around a fibre plays an important role in determining the orientation distribution of fibres, while the fibre density and the fibre aspect-ratio have marginal influence on the orientation distribution. In the turbulent regime, the orientation distribution of fibres becomes more homogeneous with the increase of Reynolds number, and the concentration profile is flatter than that in the laminar regime. The fluctuating intensity of fibre velocity in the downstream direction is larger than that in the lateral directions.展开更多
The concentration and orientation of fiber in a turbulent T-shaped branching channel flow are investi-gated numerically. The Reynolds averaged Navier-Stokes equations together with the Reynolds stress turbulent model ...The concentration and orientation of fiber in a turbulent T-shaped branching channel flow are investi-gated numerically. The Reynolds averaged Navier-Stokes equations together with the Reynolds stress turbulent model are solved for the mean flow field and the turbulent kinetic energy. The fluctuating velocities of the fluid are assumed as a random variable with Gaussian distribution whose variance is related to the turbulent kinetic energy. The slender-body theory is used to simulate the fiber motion based on the known mean and fluctuating velocities of the fluid. The results show that at low Reynolds number, fiber concentration is high in the flow separation regions, and fiber orientation throughout the channel is widely distributed with a slight preference of aligning along the horizontal axis. With increasing of Re, the high concentration region disappears, and fiber orientation becomes ho-mogeneous without any preferred direction. At high Reynolds number, fiber concentration increases gradually along the flow direction. The differences in the distribution of concentration and orientation between different fiber aspect ratio are evident only at low Re. Both Re and fiber aspect ratio have small effect on the variance of orientation angle.展开更多
The structural features of fiber suspensions are dependent on the fiber alignment in the flows. In this work the orientation distribution function and orientation tensors for semi-concentrated fiber suspensions in ...The structural features of fiber suspensions are dependent on the fiber alignment in the flows. In this work the orientation distribution function and orientation tensors for semi-concentrated fiber suspensions in converging channel flow were calculated, and the evolutions of the fiber alignment and the bulk effective vis-cosity were analyzed. The results showed that the bulk stress and the effective viscosity were functions of therate-of-strain tensor and the fiber orientation state ; and that the fiber suspensions evolved to steady alignment and tended to concentrate to some preferred directions close to but not same as the directions of local stream-lines. The bulk effective viscosity depended on the product of Reynolds number and time. The decrease of ef-fective viscosity near the boundary benefited the increase of the rate of flow. Finally when the fiber alignment went into steady state, the structural features of fiber suspensions were not dependent on the Reynolds numberbut on the converging channel angle.展开更多
Drag reduction features in the transition regime of channel flow with fibre suspension were analyzed in terms of the linear stability theory. The modified stability equation was obtained based on the slender-body theo...Drag reduction features in the transition regime of channel flow with fibre suspension were analyzed in terms of the linear stability theory. The modified stability equation was obtained based on the slender-body theory and natural closure approximation. Results of the stability analysis show attenuating effects of fibre additives to the flow instability. For the cases leading to transition, drag reduction rate increases with the characteristic parameter H of fibres. The mechanism of drag reduction by fibres is revealed through the variation of velocity profile and the decrease of wall shear stress. The theoretical results are qualitatively consistent with some typical experiments.展开更多
A novel notion of turbulent structure the local cascade structure-is introduced to study the convection phenomenon in a turbulent channel flow. A space-time cross-correlation method is used to calculate the convection...A novel notion of turbulent structure the local cascade structure-is introduced to study the convection phenomenon in a turbulent channel flow. A space-time cross-correlation method is used to calculate the convection velocity. It is found that there are two characteristic convection speeds near the wall, one associated with small-scale streaks of a lower speed and another with streamwise vortices and hairpin vortices of a higher speed. The new concept of turbulent structure is powerful to illustrate the dominant role of coherent structures in the near-wall convection, and to reveal also the nature of the convection-the propagation of patterns of velocity fluctuations-which is scale-dependent.展开更多
Turbulent features of streamwise and vertical components of velocity in the negative transport region of asymmetric plane channel flow have been studied experimentally in details. Experiments show that turbulent fluct...Turbulent features of streamwise and vertical components of velocity in the negative transport region of asymmetric plane channel flow have been studied experimentally in details. Experiments show that turbulent fluctuations in negative transport region are suppressed, and their probability distributions are far from Gaussian. Besides, the skewness factors attain their negative maxima at the position of the maximum mean velocity, whereas the flatness factors attain their positive maxima at the same position.展开更多
In this communication a generalized three- dimensional steady flow of a viscous fluid between two infinite parallel plates is considered. The flow is generated due to uniform stretching of the lower plate in x- and y-...In this communication a generalized three- dimensional steady flow of a viscous fluid between two infinite parallel plates is considered. The flow is generated due to uniform stretching of the lower plate in x- and y-directions. It is assumed that the upper plate is uniformly porous and is subjected to constant injection. The governing system is fully coupled and nonlinear in nature. A complete analytic solution which is uniformly valid for all values of the dimensionless parameters β Re and λ is obtained by using a purely analytic technique, namely the homotopy analysis method. Also the effects of the parameters β Re and λ on the velocity field are discussed through graphs.展开更多
A direct numerical simulation(DNS) is performed to investigate the control effect and mechanism of turbulent channel flow with the distribution of spanwise Lorentz force. A sinusoidal distribution of constant spanwi...A direct numerical simulation(DNS) is performed to investigate the control effect and mechanism of turbulent channel flow with the distribution of spanwise Lorentz force. A sinusoidal distribution of constant spanwise Lorentz force is selected, of which the control effects, such as flow characters, mean Reynolds stress, and drag reductions, at different parameters of amplitude A and wave number k_x are discussed. The results indicate that the control effects vary with the parameter A and k_x. With the increase of A, the drag reduction rate D_r first increases and then decreases rapidly at low k_x,and slowly at high k_x. The low drag reduction(or even drag increase) is due to a weak suppression or even the enhancements of the random velocity fluctuation and mean Reynolds stress. The efficient drag reduction is due to the quasi-streamwise vortex structure induced by Lorentz force, which contributes to suppressing the random velocity fluctuation and mean Reynolds stress, and the negative vorticity improves the distribution of streamwise velocity. Therefore, the optimal control effect with a drag reduction of up to 58% can be obtained.展开更多
The determination of the critical transition Reynolds number is of practical importance for some engineering problems. However, it is not available with the current theoretical method, and has to rely on experiments. ...The determination of the critical transition Reynolds number is of practical importance for some engineering problems. However, it is not available with the current theoretical method, and has to rely on experiments. For supersonic/hypersonic boundary layer flows, the experimental method for determination is not feasible either. Therefore, in this paper, a numerical method for the determination of the critical transition Reynolds number for an incompressible plane channel flow is proposed. It is basically aimed to test the feasibility of the method. The proposed method is extended to determine the critical Reynolds number of the supersonic/hypersonic boundary layer flow in the subsequent papers.展开更多
Three different kinds of closure model of fiber orientation tensors were applied to simulate numerically the hydrodynamic stability of fiber suspensions in a channel flow. The effects of closure models and three_dimen...Three different kinds of closure model of fiber orientation tensors were applied to simulate numerically the hydrodynamic stability of fiber suspensions in a channel flow. The effects of closure models and three_dimensional (3_D) orientation distribution of fibers on the results of stability analysis were examined. It is found that the relationship of the behavior in hydrodynamic stability and the parameter of the fiber given by all the three models are the same. However, the attenuation of flow instability is most distinct using 3_D hybrid model because the orientation of the fiber departures from the flow direction, and least apparent using its 2_D counterpart for that the fibers show a tendency towards alignment with the flow direction in this case.展开更多
Interaction between turbulence and particles is investigated in a channel flow. The fluid motion is calculated using direct numerical simulation(DNS) with a lattice Boltzmann(LB) method, and particles are tracked in a...Interaction between turbulence and particles is investigated in a channel flow. The fluid motion is calculated using direct numerical simulation(DNS) with a lattice Boltzmann(LB) method, and particles are tracked in a Lagrangian framework through the action of force imposed by the fluid. The particle diameter is smaller than the Kolmogorov length scale, and the point force is used to represent the feedback force of particles on the turbulence. The effects of particles on the turbulence and skin friction coefficient are examined with different particle inertias and mass loadings. Inertial particles suppress intensities of the spanwise and wall-normal components of velocity, and the Reynolds shear stress. It is also found that, relative to the reference particle-free flow,the overall mean skin-friction coefficient is reduced by particles. Changes of near wall turbulent structures such as longer and more regular streamwise low-speed streaks and less ejections and sweeps are the manifestation of drag reduction.展开更多
Different from previous temporal evolution assumption, the spatially growing mode was employed to analyze the linear stability for the channel flow of fiber suspensions. The stability equation applicable to fiber susp...Different from previous temporal evolution assumption, the spatially growing mode was employed to analyze the linear stability for the channel flow of fiber suspensions. The stability equation applicable to fiber suspensions was established and solutions for a wide range of Reynolds number and angular frequency were given numerically . The results show that, the flow instability is governed by a parameter H which represents a ratio between the axial stretching resistance of fiber and the inertial force of the fluid. An increase of H leads to a raise of the critical Reynolds number, a decrease of corresponding wave number, a slowdown of the decreasing of phase velocity , a growth of the spatial attenuation rate and a diminishment of the peak value of disturbance velocity. Although the unstable region is reduced on the whole, long wave disturbances are susceptible to fibers.展开更多
In present study, the subgrid scale (SGS) stress and dissipation for multiscale formulation of large eddy simulation are analyzed using the data of turbulent channel flow at Ret = 180 obtained by direct numerical si...In present study, the subgrid scale (SGS) stress and dissipation for multiscale formulation of large eddy simulation are analyzed using the data of turbulent channel flow at Ret = 180 obtained by direct numerical simulation. It is found that the small scale SGS stress is much smaller than the large scale SGS stress for all the stress components. The dominant contributor to large scale SGS stress is the cross stress between small scale and subgrid scale motions, while the cross stress between large scale and subgrid scale motions make major contributions to small scale SGS stress. The energy transfer from resolved large scales to subgrid scales is mainly caused by SGS Reynolds stress, while that between resolved small scales and subgrid scales are mainly due to the cross stress. The multiscale formulation of SGS models are evaluated a priori, and it is found that the small- small model is superior to other variants in terms of SGS dissipation.展开更多
The immersed boundary method has been widely used for simulating flows over complex geometries.However,its accuracy in predicting the statistics of near-wall turbulence has not been fully tested.In this work,we evalua...The immersed boundary method has been widely used for simulating flows over complex geometries.However,its accuracy in predicting the statistics of near-wall turbulence has not been fully tested.In this work,we evaluate the capability of the curvilinear immersed boundary(CURVIB)method in predicting near-wall velocity and pressure fluctuations in turbulent channel flows.Simulation results show that quantities including the time-averaged streamwise velocity,the rms(root-mean-square)of velocity fluctuations,the rms of vorticity fluctuations,the shear stresses,and the correlation coefficients of u'and v"computed from the CURVIB simulations are in good agreement with those from the body-fitted simulations.More importantly,it is found that the time-averaged pressure,the rms and wavenumber-frequency spectra of pressure fluctuations computed using the CURVIB method agree well with the body-fitted results.展开更多
We analyze the error of large-eddy simulation(LES)in wall pressure fluctuation of a turbulent channel flow.To separate different sources of the error,we conduct both direct numerical simulations(DNS)and LES,and apply ...We analyze the error of large-eddy simulation(LES)in wall pressure fluctuation of a turbulent channel flow.To separate different sources of the error,we conduct both direct numerical simulations(DNS)and LES,and apply an explicit filter on DNS data to obtain filtered DNS(FDNS)data.The error of LES is consequently decomposed into two parts:The first part is the error of FDNS with respect to DNS,which quantifies the influence of the filter operation.The second part is the difference between LES and FDNS induced by the error of LES in velocity field.By comparing the root-mean-square value and the wavenumber-frequency spectrum of the wall pressure fluctuation,it is found that the inaccuracy of the velocity fluctuations is the dominant source that induces the error of LES in the wall pressure fluctuation.The present study provides a basis on future LES studies of the wall pressure fluctuation.展开更多
Fully connected neural networks(FCNNs)have been developed for the closure of subgrid-scale(SGS)stress and SGS heat flux in large-eddy simulations of compressible turbulent channel flow.The FCNNbased SGS model trained ...Fully connected neural networks(FCNNs)have been developed for the closure of subgrid-scale(SGS)stress and SGS heat flux in large-eddy simulations of compressible turbulent channel flow.The FCNNbased SGS model trained using data with Mach number Ma=3.0 and Reynolds number Re=3000 was applied to situations with different Mach numbers and Reynolds numbers.The input variables of the neural network model were the filtered velocity gradients and temperature gradients at a single spatial grid point.The a priori test showed that the FCNN model had a correlation coefficient larger than 0.91 and a relative error smaller than 0.43,with much better reconstructions of SGS unclosed terms than the dynamic Smagorinsky model(DSM).In a posteriori test,the behavior of the FCNN model was marginally better than that of the DSM in predicting the mean velocity profiles,mean temperature profiles,turbulent intensities,total Reynolds stress,total Reynolds heat flux,and mean SGS flux of kinetic energy,and outperformed the Smagorinsky model.展开更多
Numerical simulations and experimental research are both carried out to investigate the controlled effect of spanwise oscillating Lorentz force on a turbulent channel flow. The variations of the streaks and the skin f...Numerical simulations and experimental research are both carried out to investigate the controlled effect of spanwise oscillating Lorentz force on a turbulent channel flow. The variations of the streaks and the skin friction drag are obtained through the PIV system and the drag measurement system, respectively. The flow field in the near-wall region is shown through direct numerical simulations utilizing spectral method. The experimental results are consistent with the numerical simulation results qualitatively, and both the results indicate that the streaks are tilted into the spanwise direction and the drag reduction utilizing spanwise oscillating Lorentz forces can be realized. The numerical simulation results reveal more detail of the drag reduction mechanism which can be explained, since the spanwise vorticity generated from the interaction between the induced Stokes layer and intrinsic turbulent flow in the near-wall region can make the longitudinal vortices tilt and oscillate, and leads to turbulence suppression and drag reduction.展开更多
The direct numerical simulation (DNS) of heat transfer in a fully developed non-isothermal particle-laden turbulent channel flow is performed. The focus of this paper is on the modulation of the particles on turbule...The direct numerical simulation (DNS) of heat transfer in a fully developed non-isothermal particle-laden turbulent channel flow is performed. The focus of this paper is on the modulation of the particles on turbulent thermal statistics in the particle-laden flow with three Prandtl numbers (Pτ = 0.71, 1.5, and 3.0) and a shear Reynolds number (Reτ = 180). Some typical thermal statistics, including normalized mean temperature and their fluctuations, turbulent heat fluxes, Nusselt number and so on, are analyzed. The results show that the particles have less effects on turbulent thermal fields with the increase of Prandtl number. Two reasons can explain this. First, the correlation between fluid thermal field and velocity field decreases as the Prandtl number increases, and the modulation of turbulent velocity field induced by the particles has less influence on the turbulent thermal field. Second, the heat exchange between turbulence and particles decreases for the particle-laden flow with the larger Prandtl number, and the thermal feedback of the particles to turbulence becomes weak.展开更多
文摘The transient friction in channel mean flows is the sum of two contributions,i.e.,the underlying laminar flow(ULF)and the purely turbulent component(PTC),and the contributions are analyzed separately by theoretical experiments.It is found that,the transient friction may be higher or remarkably lower than that in equal-Reynolds number steady-state flows.The universal time constant for plane-parallel laminar flows is reported,and the role of the time constant in a turbulent mean flow is examined.It is shown that the time constant is related to the turbulence's frozen time.Finally,a study of the logarithmic layer during the transient flow is accomplished,which shows that the logarithmic layer is destroyed.
基金supported by the National Natural Science Foundation of China (Grants No.50879019,50909036,and 50879020)the Research Fund for the Doctoral Program of Higher Education (Grants No.200802940001 and 200802941028)+3 种基金the Fundamental Research Funds for the Central Universities (Grants No.2010B02214,2009B08014,and 2010B14214)the Natural Science Foundation of Hohai University(Grant No. 2008426411)the Jiangsu "333" Program for High Level Talents (Grant No. 2017-B08038)the National Undergraduate Innovation Training Plan (Grant No.G20101106)
文摘The velocity dip phenomenon may occur in a part of or in the whole flow field of open channel flows due to the secondary flow effect. Based on rectangular flume experiments and the laser Doppler velocimetry, the influence of the distance to the sidewall and the aspect ratio on the velocity dip is investigated. Through application of statistical methods to the experimental results, it is proposed that the flow field may be divided into two regions, the relatively strong sidewall region and the relatively weak sidewall region. In the former region, the distance to the sidewall greatly affects the location of maximum velocity, and, in the latter region, both the distance to the sidewall and the aspect ratio influence the location of the maximum velocity.
基金Project supported by the National Natural Science Foundation (Grant No 10372090) and the Doctorate Program of Higher Education of China (Grant No 20030335001).
文摘The orientation and concentration distributions of fibres in laminar and turbulent channel flows are investigated numerically. The obtained results are in good agreement with the experimental data. In the laminar flow regime, more fibres orient to the flow direction as the Reynolds number increases. The shear rate of fluid around a fibre plays an important role in determining the orientation distribution of fibres, while the fibre density and the fibre aspect-ratio have marginal influence on the orientation distribution. In the turbulent regime, the orientation distribution of fibres becomes more homogeneous with the increase of Reynolds number, and the concentration profile is flatter than that in the laminar regime. The fluctuating intensity of fibre velocity in the downstream direction is larger than that in the lateral directions.
基金Supported by the Major Program of the National Natural Science Foundation of China (No.10632070).
文摘The concentration and orientation of fiber in a turbulent T-shaped branching channel flow are investi-gated numerically. The Reynolds averaged Navier-Stokes equations together with the Reynolds stress turbulent model are solved for the mean flow field and the turbulent kinetic energy. The fluctuating velocities of the fluid are assumed as a random variable with Gaussian distribution whose variance is related to the turbulent kinetic energy. The slender-body theory is used to simulate the fiber motion based on the known mean and fluctuating velocities of the fluid. The results show that at low Reynolds number, fiber concentration is high in the flow separation regions, and fiber orientation throughout the channel is widely distributed with a slight preference of aligning along the horizontal axis. With increasing of Re, the high concentration region disappears, and fiber orientation becomes ho-mogeneous without any preferred direction. At high Reynolds number, fiber concentration increases gradually along the flow direction. The differences in the distribution of concentration and orientation between different fiber aspect ratio are evident only at low Re. Both Re and fiber aspect ratio have small effect on the variance of orientation angle.
文摘The structural features of fiber suspensions are dependent on the fiber alignment in the flows. In this work the orientation distribution function and orientation tensors for semi-concentrated fiber suspensions in converging channel flow were calculated, and the evolutions of the fiber alignment and the bulk effective vis-cosity were analyzed. The results showed that the bulk stress and the effective viscosity were functions of therate-of-strain tensor and the fiber orientation state ; and that the fiber suspensions evolved to steady alignment and tended to concentrate to some preferred directions close to but not same as the directions of local stream-lines. The bulk effective viscosity depended on the product of Reynolds number and time. The decrease of ef-fective viscosity near the boundary benefited the increase of the rate of flow. Finally when the fiber alignment went into steady state, the structural features of fiber suspensions were not dependent on the Reynolds numberbut on the converging channel angle.
基金the National Natural Science Foundation of China (No. 10372090 and No. 10102017).
文摘Drag reduction features in the transition regime of channel flow with fibre suspension were analyzed in terms of the linear stability theory. The modified stability equation was obtained based on the slender-body theory and natural closure approximation. Results of the stability analysis show attenuating effects of fibre additives to the flow instability. For the cases leading to transition, drag reduction rate increases with the characteristic parameter H of fibres. The mechanism of drag reduction by fibres is revealed through the variation of velocity profile and the decrease of wall shear stress. The theoretical results are qualitatively consistent with some typical experiments.
基金the National Natural Science Foundation of China(10572004 and 90716008)
文摘A novel notion of turbulent structure the local cascade structure-is introduced to study the convection phenomenon in a turbulent channel flow. A space-time cross-correlation method is used to calculate the convection velocity. It is found that there are two characteristic convection speeds near the wall, one associated with small-scale streaks of a lower speed and another with streamwise vortices and hairpin vortices of a higher speed. The new concept of turbulent structure is powerful to illustrate the dominant role of coherent structures in the near-wall convection, and to reveal also the nature of the convection-the propagation of patterns of velocity fluctuations-which is scale-dependent.
文摘Turbulent features of streamwise and vertical components of velocity in the negative transport region of asymmetric plane channel flow have been studied experimentally in details. Experiments show that turbulent fluctuations in negative transport region are suppressed, and their probability distributions are far from Gaussian. Besides, the skewness factors attain their negative maxima at the position of the maximum mean velocity, whereas the flatness factors attain their positive maxima at the same position.
文摘In this communication a generalized three- dimensional steady flow of a viscous fluid between two infinite parallel plates is considered. The flow is generated due to uniform stretching of the lower plate in x- and y-directions. It is assumed that the upper plate is uniformly porous and is subjected to constant injection. The governing system is fully coupled and nonlinear in nature. A complete analytic solution which is uniformly valid for all values of the dimensionless parameters β Re and λ is obtained by using a purely analytic technique, namely the homotopy analysis method. Also the effects of the parameters β Re and λ on the velocity field are discussed through graphs.
基金supported by the National Natural Science Foundation of China(Grant Nos.11672135 and 11202102)the Fundamental Research Funds for the Central Universities,China(Grant No.30916011347)a Foundation for the Author of National Excellent Doctoral Dissertation,China(Grant No.201461)
文摘A direct numerical simulation(DNS) is performed to investigate the control effect and mechanism of turbulent channel flow with the distribution of spanwise Lorentz force. A sinusoidal distribution of constant spanwise Lorentz force is selected, of which the control effects, such as flow characters, mean Reynolds stress, and drag reductions, at different parameters of amplitude A and wave number k_x are discussed. The results indicate that the control effects vary with the parameter A and k_x. With the increase of A, the drag reduction rate D_r first increases and then decreases rapidly at low k_x,and slowly at high k_x. The low drag reduction(or even drag increase) is due to a weak suppression or even the enhancements of the random velocity fluctuation and mean Reynolds stress. The efficient drag reduction is due to the quasi-streamwise vortex structure induced by Lorentz force, which contributes to suppressing the random velocity fluctuation and mean Reynolds stress, and the negative vorticity improves the distribution of streamwise velocity. Therefore, the optimal control effect with a drag reduction of up to 58% can be obtained.
基金Project supported by the National Key Research and Development Program of China(No.2016YFA0401200)the National Natural Science Foundation of China(Nos.11672204,11332007,11202147,and 11402167)
文摘The determination of the critical transition Reynolds number is of practical importance for some engineering problems. However, it is not available with the current theoretical method, and has to rely on experiments. For supersonic/hypersonic boundary layer flows, the experimental method for determination is not feasible either. Therefore, in this paper, a numerical method for the determination of the critical transition Reynolds number for an incompressible plane channel flow is proposed. It is basically aimed to test the feasibility of the method. The proposed method is extended to determine the critical Reynolds number of the supersonic/hypersonic boundary layer flow in the subsequent papers.
基金ProjectsupportedbytheNationalNaturalScienceFoundationofChina (No .1 0 3 72 0 90 )
文摘Three different kinds of closure model of fiber orientation tensors were applied to simulate numerically the hydrodynamic stability of fiber suspensions in a channel flow. The effects of closure models and three_dimensional (3_D) orientation distribution of fibers on the results of stability analysis were examined. It is found that the relationship of the behavior in hydrodynamic stability and the parameter of the fiber given by all the three models are the same. However, the attenuation of flow instability is most distinct using 3_D hybrid model because the orientation of the fiber departures from the flow direction, and least apparent using its 2_D counterpart for that the fibers show a tendency towards alignment with the flow direction in this case.
基金Project supported by the National Natural Science Foundation of China(Nos.11572183 and 11272198)
文摘Interaction between turbulence and particles is investigated in a channel flow. The fluid motion is calculated using direct numerical simulation(DNS) with a lattice Boltzmann(LB) method, and particles are tracked in a Lagrangian framework through the action of force imposed by the fluid. The particle diameter is smaller than the Kolmogorov length scale, and the point force is used to represent the feedback force of particles on the turbulence. The effects of particles on the turbulence and skin friction coefficient are examined with different particle inertias and mass loadings. Inertial particles suppress intensities of the spanwise and wall-normal components of velocity, and the Reynolds shear stress. It is also found that, relative to the reference particle-free flow,the overall mean skin-friction coefficient is reduced by particles. Changes of near wall turbulent structures such as longer and more regular streamwise low-speed streaks and less ejections and sweeps are the manifestation of drag reduction.
基金Foundation item: the National Natural Science Foundation of China for Outstanding Young Sci-entists (19925210)
文摘Different from previous temporal evolution assumption, the spatially growing mode was employed to analyze the linear stability for the channel flow of fiber suspensions. The stability equation applicable to fiber suspensions was established and solutions for a wide range of Reynolds number and angular frequency were given numerically . The results show that, the flow instability is governed by a parameter H which represents a ratio between the axial stretching resistance of fiber and the inertial force of the fluid. An increase of H leads to a raise of the critical Reynolds number, a decrease of corresponding wave number, a slowdown of the decreasing of phase velocity , a growth of the spatial attenuation rate and a diminishment of the peak value of disturbance velocity. Although the unstable region is reduced on the whole, long wave disturbances are susceptible to fibers.
基金supported by the National Natural Science Foundation of China(10472053 and 10772098)
文摘In present study, the subgrid scale (SGS) stress and dissipation for multiscale formulation of large eddy simulation are analyzed using the data of turbulent channel flow at Ret = 180 obtained by direct numerical simulation. It is found that the small scale SGS stress is much smaller than the large scale SGS stress for all the stress components. The dominant contributor to large scale SGS stress is the cross stress between small scale and subgrid scale motions, while the cross stress between large scale and subgrid scale motions make major contributions to small scale SGS stress. The energy transfer from resolved large scales to subgrid scales is mainly caused by SGS Reynolds stress, while that between resolved small scales and subgrid scales are mainly due to the cross stress. The multiscale formulation of SGS models are evaluated a priori, and it is found that the small- small model is superior to other variants in terms of SGS dissipation.
基金This work was supported by the National Natural Science Foundation of China(NSFC)Basic Science Center Program for“Multiscale Problems in Nonlinear Mechanics”(No.11988102)the Strategic Priority Research Program,Chinese Academy of Sciences(CAS)(No.XDB22040104).
文摘The immersed boundary method has been widely used for simulating flows over complex geometries.However,its accuracy in predicting the statistics of near-wall turbulence has not been fully tested.In this work,we evaluate the capability of the curvilinear immersed boundary(CURVIB)method in predicting near-wall velocity and pressure fluctuations in turbulent channel flows.Simulation results show that quantities including the time-averaged streamwise velocity,the rms(root-mean-square)of velocity fluctuations,the rms of vorticity fluctuations,the shear stresses,and the correlation coefficients of u'and v"computed from the CURVIB simulations are in good agreement with those from the body-fitted simulations.More importantly,it is found that the time-averaged pressure,the rms and wavenumber-frequency spectra of pressure fluctuations computed using the CURVIB method agree well with the body-fitted results.
基金This research is supported by the National Natural Science Foundation of China(NFSC)Basic Science Center Program for“Multiscale Problems in Nonlinear Mechanics”(Grant 11988102)the National Key Project(Grant GJXM92579)Shizhao Wang acknowledges the support from the National Natural Science Foundation of China(Grant 11922214).
文摘We analyze the error of large-eddy simulation(LES)in wall pressure fluctuation of a turbulent channel flow.To separate different sources of the error,we conduct both direct numerical simulations(DNS)and LES,and apply an explicit filter on DNS data to obtain filtered DNS(FDNS)data.The error of LES is consequently decomposed into two parts:The first part is the error of FDNS with respect to DNS,which quantifies the influence of the filter operation.The second part is the difference between LES and FDNS induced by the error of LES in velocity field.By comparing the root-mean-square value and the wavenumber-frequency spectrum of the wall pressure fluctuation,it is found that the inaccuracy of the velocity fluctuations is the dominant source that induces the error of LES in the wall pressure fluctuation.The present study provides a basis on future LES studies of the wall pressure fluctuation.
基金Financial support provided by the National Natural Science Foundation of China(Grant Nos.11702042 and 91952104)。
文摘Fully connected neural networks(FCNNs)have been developed for the closure of subgrid-scale(SGS)stress and SGS heat flux in large-eddy simulations of compressible turbulent channel flow.The FCNNbased SGS model trained using data with Mach number Ma=3.0 and Reynolds number Re=3000 was applied to situations with different Mach numbers and Reynolds numbers.The input variables of the neural network model were the filtered velocity gradients and temperature gradients at a single spatial grid point.The a priori test showed that the FCNN model had a correlation coefficient larger than 0.91 and a relative error smaller than 0.43,with much better reconstructions of SGS unclosed terms than the dynamic Smagorinsky model(DSM).In a posteriori test,the behavior of the FCNN model was marginally better than that of the DSM in predicting the mean velocity profiles,mean temperature profiles,turbulent intensities,total Reynolds stress,total Reynolds heat flux,and mean SGS flux of kinetic energy,and outperformed the Smagorinsky model.
文摘Numerical simulations and experimental research are both carried out to investigate the controlled effect of spanwise oscillating Lorentz force on a turbulent channel flow. The variations of the streaks and the skin friction drag are obtained through the PIV system and the drag measurement system, respectively. The flow field in the near-wall region is shown through direct numerical simulations utilizing spectral method. The experimental results are consistent with the numerical simulation results qualitatively, and both the results indicate that the streaks are tilted into the spanwise direction and the drag reduction utilizing spanwise oscillating Lorentz forces can be realized. The numerical simulation results reveal more detail of the drag reduction mechanism which can be explained, since the spanwise vorticity generated from the interaction between the induced Stokes layer and intrinsic turbulent flow in the near-wall region can make the longitudinal vortices tilt and oscillate, and leads to turbulence suppression and drag reduction.
基金Project supported by the National Natural Science Foundation of China(Nos.11272198 and11572183)
文摘The direct numerical simulation (DNS) of heat transfer in a fully developed non-isothermal particle-laden turbulent channel flow is performed. The focus of this paper is on the modulation of the particles on turbulent thermal statistics in the particle-laden flow with three Prandtl numbers (Pτ = 0.71, 1.5, and 3.0) and a shear Reynolds number (Reτ = 180). Some typical thermal statistics, including normalized mean temperature and their fluctuations, turbulent heat fluxes, Nusselt number and so on, are analyzed. The results show that the particles have less effects on turbulent thermal fields with the increase of Prandtl number. Two reasons can explain this. First, the correlation between fluid thermal field and velocity field decreases as the Prandtl number increases, and the modulation of turbulent velocity field induced by the particles has less influence on the turbulent thermal field. Second, the heat exchange between turbulence and particles decreases for the particle-laden flow with the larger Prandtl number, and the thermal feedback of the particles to turbulence becomes weak.