Black shales are important products of material cycling and energy exchange among the lithosphere,atmosphere,hydrosphere,and biosphere.They are widely distributed throughout geological history and provide essential en...Black shales are important products of material cycling and energy exchange among the lithosphere,atmosphere,hydrosphere,and biosphere.They are widely distributed throughout geological history and provide essential energy and mineral resources for the development of human society.They also record the evolution process of the earth and improve the understanding of the earth.This review focuses on the diagenesis and formation mechanisms of black shales sedimentation,composition,evolution,and reconstruction,which have had a significant impact on the formation and enrichment of shale oil and gas.In terms of sedimentary environment,black shales can be classified into three types:Marine,terrestrial,and marine-terrestrial transitional facies.The formation processes include mechanisms such as eolian input,hypopycnal flow,gravity-driven and offshore bottom currents.From a geological perspective,the formation of black shales is often closely related to global or regional major geological events.The enrichment of organic matter is generally the result of the interaction and coupling of several factors such as primary productivity,water redox condition,and sedimentation rate.In terms of evolution,black shales have undergone diagenetic evolution of inorganic minerals,thermal evolution of organic matter and hydrocarbon generation,interactions between organic matter and inorganic minerals,and pore evolution.In terms of reconstruction,the effects of fold deformation,uplift and erosion,and fracturing have changed the stress state of black shale reservoirs,thereby having a significant impact on the pore structure.Fluid activity promotes the formation of veins,and have changed the material composition,stress structure,and reservoir properties of black shales.Regarding resource effects,the deposition of black shales is fundamental for shale oil and gas resources,the evolution of black shales promotes the shale oil and gas formation and storage,and the reconstruction of black shales would have caused the heterogeneous distribution of oil and gas in shales.Exploring the formation mechanisms and interactions of black shales at different scales is a key to in-depth research on shale formation and evolution,as well as the key to revealing the mechanism controlling shale oil and gas accumulation.The present records can reveal how these processes worked in geological history,and improve our understanding of the coupling mechanisms among regional geological events,black shales evolution,and shale oil and gas formation and enrichment.展开更多
With China's rapid economic development,it is important to formulate reasonable and feasible tax and fee policies to promote the development and utilization of low-grade oil and gas resources to guarantee China's en...With China's rapid economic development,it is important to formulate reasonable and feasible tax and fee policies to promote the development and utilization of low-grade oil and gas resources to guarantee China's energy supply security.In this paper,by analyzing major problems of China's current tax and fee policies for oil and gas resources,a reform program for low-grade oil and gas resources is designed from the aspects of tax/fee items and tax/fee rates.The impacts of this reform program on China and China's oil companies during the "Twelfth Five-Year Plan" are investigated according to the related data in 2008.The results show that the proposed tax and fee reform program will lower the tax burden of oil companies,promote the development of low-grade oil and gas resources,and increase China's GDP and national fiscal revenue.Besides that,it will bring positive social effects by increasing employment opportunities.展开更多
Global recoverable resources of heavy oil and oil sands have been assessed by CNPC using a geology-based assessment method combined with the traditional volumetric method, spatial interpolation method, parametric-prob...Global recoverable resources of heavy oil and oil sands have been assessed by CNPC using a geology-based assessment method combined with the traditional volumetric method, spatial interpolation method, parametric-probability method etc. The most favourable areas for exploration have been selected in accordance with a comprehensive scoring system. The results show:(1) For geological resources, CNPC estimate 991.18 billion tonnes of heavy oil and 501.26 billion tonnes of oil sands globally, of which technically recoverable resources of heavy oil and oil sands comprise 126.74 billion tonnes and 64.13 billion tonnes respectively. More than 80% of the resources occur within Tertiary and Cretaceous reservoirs distributed across 69 heavy oil basins and 32 oil sands basins. 99% of recoverable resources of heavy oil and oil sands occur within foreland basins, passive continental-margin basins and cratonic basins.(2) Since residual hydrocarbon resources remain following large-scale hydrocarbon migration and destruction, heavy oil and oil sands are characterized most commonly by late hydrocarbon accumulation, the same basin types and source-reservoir conditions as for conventional hydrocarbon resources, shallow burial depth and stratabound reservoirs.(3) Three accumulation models are recognised, depending on basin type: degradation along slope; destruction by uplift; and migration along faults.(4) In addition to mature exploration regions such as Canada and Venezuela, the Volga-Ural Basin and the Pre-Caspian Basin are less well-explored and have good potential for oil-sand discoveries, and it is predicted that the Middle East will be an important region for heavy oil development.展开更多
Continental shale oil has two types, low-medium maturity and medium-high maturity, and they are different in terms of resource environment, potential, production methods and technologies, and industrial evaluation cri...Continental shale oil has two types, low-medium maturity and medium-high maturity, and they are different in terms of resource environment, potential, production methods and technologies, and industrial evaluation criteria. In addition, continental shale oil is different from the shale oil and tight oil in the United States. Scientific definition of connotations of these resource types is of great significance for promoting the exploration of continental shale oil from "outside source" into "inside source" and making it a strategic replacement resource in the future. The connotations of low-medium maturity and medium-high maturity continental shale oils are made clear in this study. The former refers to the liquid hydrocarbons and multiple organic matter buried in the continental organic-rich shale strata with a burial depth deeper than 300 m and a Ro value less than 1.0%. The latter refers to the liquid hydrocarbons present in organic-rich shale intervals with a burial depth that in the "liquid window" range of the Tissot model and a Ro value greater than 1.0%. The geological characteristics, resource potential and economic evaluation criteria of different types of continental shale oil are systematically summarized. According to evaluation, the recoverable resources of in-situ conversion technology for shale oil with low-medium maturity in China is about(700-900)×10^8 t, and the economic recoverable resources under medium oil price condition($ 60-65/bbl) is(150-200)×10^8 t. Shale oil with low-medium maturity guarantees the occurrence of the continental shale oil revolution. Pilot target areas should be optimized and core technical equipment should be developed according to the key parameters such as the cumulative production scale of well groups, the production scale, the preservation conditions, and the economics of exploitation. The geological resources of medium-high maturity shale oil are about 100×10^8 t, and the recoverable resources can to be determined after the daily production and cumulative production of a single well reach the economic threshold. Continental shale oil and tight oil are different in lithological combinations, facies distribution, and productivity evaluation criteria. The two can be independently distinguished and coexist according to different resource types. The determination of China’s continental shale oil types, resources potentials, and tight oil boundary systems can provide a reference for the upcoming shale oil exploration and development practices and help the development of China’s continental shale oil.展开更多
The United States has become the world's largest oil producer of shale oil. China has abundant shale oil resources, but its resource potential has not yet been exploited. The core of the evaluation is the selectio...The United States has become the world's largest oil producer of shale oil. China has abundant shale oil resources, but its resource potential has not yet been exploited. The core of the evaluation is the selection of parameters and their reliability. By combining the parameters of the shale oil resource evaluation, we investigated the key parameters in the evaluation model and reviewed the research results. The adsorption and retention of heavy hydrocarbons, loss of light hydrocarbons, and original oil saturation are key in the evaluation of shale oil resources. The adsorption and retention of heavy hydrocarbons can be determined by the pyrolysis, FID curve, and hydrocarbon generation kinetics of shale before and after extraction. The loss of light hydrocarbons mainly occurs in coring(change in temperature and pressure),sample treatment, which can be evaluated using the GC spectrum, rock pyrolysis, crude oil volume coefficient, mass balance, component hydrocarbon generation kinetics, and other methods. The original oil saturation evaluation includes indirect, direct, logging, and simulation methods. The most reliable parameters can be obtained by using the sealed or pressure-maintained coring immediately after thawing(without crushing), and the recovery of light hydrocarbon loss is critical for the resource evaluation of medium to high mature shale. Therefore, the experimental determination of shale oil content and the study of the influencing factors of the parameters should be strengthened.展开更多
Numerical simulation of oil migration and accumulation is to describe the history of oil migration and accumulation in basin evolution. It is of great value in the exploration of oil resources and their rational evalu...Numerical simulation of oil migration and accumulation is to describe the history of oil migration and accumulation in basin evolution. It is of great value in the exploration of oil resources and their rational evaluation. In this paper, from such actual conditions as the effects of mechanics of fluids in porous media and 3-dimensional geology characteristics, a kind of modified method of second order splitting-up implicit interactive scheme is pur forward. For the famous hydraulic experiment of secondary migration-accumulation, the numerical simulation test has been done, and both the computational and experimental results are basically identical. For the actual problem of Dongying hollow of Shengli Petroleum Oil Field, the numerical simulation test and the actual conditions are basically coincident. Thus the well-known problem has been solved.展开更多
Using conventional and unconventional oil and gas resource evaluation methods with play as a unit, this study evaluates the oil and gas geology and resource potential of conventional oil and gas resources and seven ty...Using conventional and unconventional oil and gas resource evaluation methods with play as a unit, this study evaluates the oil and gas geology and resource potential of conventional oil and gas resources and seven types of unconventional resources in the global major oil and gas basins(excluding China). For the first time, resource evaluation data with independent intellectual property rights has been obtained. According to evaluation and calculation, the global recoverable conventional oil resources are 5 350.0×108 t, the recoverable condensate oil resources are 496.2×108 t, and the recoverable natural gas resources are 588.4×1012 m3. The remaining oil and gas 2 P recoverable reserves are 4 212.6×108 t, the reserve growth of oil and gas fields are 1 531.7×108 t. The undiscovered oil and gas recoverable resources are 3 065.5×108 t. The global unconventional oil recoverable resources are 4 209.4×108 t and the unconventional natural gas recoverable resources are 195.4×1012 m3. The evaluation results show that the global conventional and unconventional oil and gas resources are still abundant.展开更多
The purpose of this study is to investigate the entire evolution process of shales with various total organic contents(TOC)in order to build models for quantitative evaluation of oil and gas yields and establish metho...The purpose of this study is to investigate the entire evolution process of shales with various total organic contents(TOC)in order to build models for quantitative evaluation of oil and gas yields and establish methods for assessing recoverable oil and gas resources from in-situ conversion of organic matters in shale.Thermal simulation experiments under in-situ conversion conditions were conducted on Chang 7_(3) shales from the Ordos Basin in a semi-open system with large capacity.The results showed that TOC and R_(o) were the key factors affecting the in-situ transformation potential of shale.The remaining oil and gas yields increased linearly with TOC but inconsistently with R_(o).R_(o) ranged 0.75%—1.25%and 1.05%—2.3%,respectively,corresponding to the main oil generation stage and gas generation stage of shale in-situ transformation.Thus a model to evaluate the remaining oil/gas yield with TOC and R_(o) was obtained.The TOC of shale suitable for in-situ conversion should be greater than 6%,whereas its R_(o) should be less than 1.0%.Shales with 0.75%(R_(o))could obtain the best economic benefit.The results provided a theoretical basis and evaluation methodology for predicting the hydrocarbon resources from in-situ conversion of shale and for the identification of the optimum“sweet spots”.The assessment of the Chang 7_(3) shale in the Ordos Basin indicated that the recoverable oil and gas resources from in-situ conversion of organic matters in shale are substantial,with oil and gas resources reaching approximately 450×10^(8) t and 30×10^(12)m^(3),respectively,from an area of 4.27×10^(4) km^(2).展开更多
The unconventional oil and gas resources presented in oil shales have meant these potential sources of hydrocarbons, which has become a research focus. China contains abundant oil shale resources, ranking fourth in th...The unconventional oil and gas resources presented in oil shales have meant these potential sources of hydrocarbons, which has become a research focus. China contains abundant oil shale resources, ranking fourth in the world, with ca. 7 254.48 x 108 t within 24 provinces, including 48 basins and 81 oil shale deposits. A- bout 48% of the total oil shale resources are concentrated in the eastern resource region, with a further 22% in the central resource region. 65 % of the total quantity of oil shale resources is present at depths of 0-500 m, with 17% of the total resources being defined as high-quality oil shales yielding more than 10% oil by weight. Chinese oil shale resources are generally hosted by Mesozoic sediments that account for 78% of the total re- sources. In terms of the geographical distribution of these resources, some 45% are located in plain regions, and different oil shale basins have various characteristics. The oil shale resources in China represent a highly prospective future source of hydrocarbons. These resources having potential use not only in power generation and oil refining but also in agriculture, metal and chemical productions, and environmental protection.展开更多
Most of Biodiesel, a clean burning alternative fuels for diesel engines is made from renewable agricultural feedstock, such as rapeseed oil, soybean oil etc., but less expensive biodiesel can also be made from waste o...Most of Biodiesel, a clean burning alternative fuels for diesel engines is made from renewable agricultural feedstock, such as rapeseed oil, soybean oil etc., but less expensive biodiesel can also be made from waste oils and fats, including recycled restaurant grease and animal fats. Because of the eating habit of the nation and diet culture in china,?restaurant-kitchen garbage is increasingly serious and has negative impact on environment and food security. The utilization of waste oils and fats to biodiesel provide a promising way of how to appropriately and effectively dispose of restaurant-kitchen garbage. This paper first reviews the development status of biodiesel industry, then introduces the novel technology of tubular reaction for producing biodiesel from waste oils and fats on the typical industrialization case in Kunshan. All these efforts are expected to provide a viable development path for our waste oil to produce biodiesel and worth reference to waste oils and fats recycling and reuse.展开更多
In view of the problem that a single modeling method cannot predict the distribution of microfacies, a new idea of coupling modeling method to comprehensively predict the distribution of sedimentary microfacies was pr...In view of the problem that a single modeling method cannot predict the distribution of microfacies, a new idea of coupling modeling method to comprehensively predict the distribution of sedimentary microfacies was proposed, breaking the tradition that different sedimentary microfacies used the same modeling method in the past. Because different sedimentary microfacies have different distribution characteristics and geometric shapes, it is more accurate to select different simulation methods for prediction. In this paper, the coupling modeling method was to establish the distribution of sedimentary microfacies with simple geometry through the point indicating process simulation, and then predict the microfacies with complex spatial distribution through the sequential indicator simulation method. Taking the DC block of Bohai basin as an example, a high-precision reservoir sedimentary microfacies model was established by the above coupling modeling method, and the model verification results showed that the sedimentary microfacies model had a high consistency with the underground. The coupling microfacies modeling method had higher accuracy and reliability than the traditional modeling method, which provided a new idea for the prediction of sedimentary microfacies.展开更多
In recent years, the yield of double low rapeseed has been greatly im-proved, but the oil content of rape is generally low, which seriously restricts the competitiveness of China's rapeseed industry. After many years...In recent years, the yield of double low rapeseed has been greatly im-proved, but the oil content of rape is generally low, which seriously restricts the competitiveness of China's rapeseed industry. After many years' efforts, Mianyang Academy of Agricultural Sciences has made use of a variety of breeding methods to explore the creation and breeding of high oil rapeseed, and made some achieve-ments.展开更多
The demand for fuel oil is ever increasing with the advance of the modern world, whereas worldwide reserves of fossil oils are diminishing at an alarming rate. However, there exist large stockpiles of vegetable oil fe...The demand for fuel oil is ever increasing with the advance of the modern world, whereas worldwide reserves of fossil oils are diminishing at an alarming rate. However, there exist large stockpiles of vegetable oil feedstocks that could be exploited to produce fuel oil, called biodiesel with the aid of biotechnology. Initially, the biodiesel produced from vegetable oil did not attract much attention because of its high cost. However, the recent increase in petroleum prices and the uncertainties of petroleum availability led to the renewal of interest in biodiesel production from such sustainable resources (i.e., vegetable oil feedstocks). This research focuses on the production of biodiesel from plant resources, and further investigates the influences of key process parameters, such as the molar ratio of methanol to oil, catalyst concentration, reaction temperature, reaction period and stirring speed on the biodiesel yield. This investigation is to determine the optimum process parameters for maximum biodiesel yield. The biodiesel was produced from three vegetable oil feedstocks, namely palm, soybean and sunflower oil via a transesterification process. It was observed that all the process parameters significantly influenced the biodiesel yield. The maximum biodiesel yields for palm, sunflower and soybean oil feedstocks were found to be 87.5%, 83.6% and 80.2%, respectively at optimum condition. The results suggest that through proper optimization of the process parameters the biodiesel yields could be maximized. In conclusion, the production of biodiesel from plant resources would be regarded as a sustainable solution to the ever increasing demand of fuel oils.展开更多
Base on the oil shale data model,the authors analyz the four main data types and their mutual relations,grasped the focus on the oil shale data management,established UML visual demand model for oil shale resources in...Base on the oil shale data model,the authors analyz the four main data types and their mutual relations,grasped the focus on the oil shale data management,established UML visual demand model for oil shale resources in the field of evaluation,constructed three-tier system and developed oil shale resource evaluation database management system. The system can be used for managing oil shale data storage,enhancing the efficiency and quality of the oil shale resource evaluation.展开更多
On December 2, 2017, the 2nd Seminar on the Development Strategy of China's Oil and Gas Resources was held in Beijing. This seminar was hosted by the Strategic Research Center for Oil and Gas Resources, Ministry of L...On December 2, 2017, the 2nd Seminar on the Development Strategy of China's Oil and Gas Resources was held in Beijing. This seminar was hosted by the Strategic Research Center for Oil and Gas Resources, Ministry of Land (MLR) and Resources and sponsored by both the CNOOC Exploration Department and the School of Ocean and Earth Sciences of Tongji University. With the theme of "deepwater and deep-layer oil and gas resources and development strategy",展开更多
On July 10,the ministry of natural resources held a press conference.In order to further strengthen and improve the statistical management of mineral resources reserves and raise the awareness of all parties in societ...On July 10,the ministry of natural resources held a press conference.In order to further strengthen and improve the statistical management of mineral resources reserves and raise the awareness of all parties in society on the situation of China's mineral resources,the relevant information of China's mineral resources reserves in 2017 is published as follows:I.Overall changes in resource reserves in 2017:Approved by the state council,NGH was listed as a new mineral in 2017,bringing the number of mineral species discovered in China to 173 by the end of 2017.There are 13 kinds of energy mineral,59 kinds of metal mineral,95 kinds of non-metal mineral and 6 kinds of water-gas mineral.展开更多
We present a systematic summary of the geological characteristics,exploration and development history and current state of shale oil and gas in the United States.The hydrocarbon-rich shales in the major shale basins o...We present a systematic summary of the geological characteristics,exploration and development history and current state of shale oil and gas in the United States.The hydrocarbon-rich shales in the major shale basins of the United States are mainly developed in six geological periods:Middle Ordovician,Middle-Late Devonian,Early Carboniferous(Middle-Late Mississippi),Early Permian,Late Jurassic,and Late Cretaceous(Cenomanian-Turonian).Depositional environments for these shales include intra-cratonic basins,foreland basins,and passive continental margins.Paleozoic hydrocarbon-rich shales are mainly developed in six basins,including the Appalachian Basin(Utica and Marcellus shales),Anadarko Basin(Woodford Shale),Williston Basin(Bakken Shale),Arkoma Basin(Fayetteville Shale),Fort Worth Basin(Barnett Shale),and the Wolfcamp and Leonardian Spraberry/Bone Springs shale plays of the Permian Basin.The Mesozoic hydrocarbon-rich shales are mainly developed on the margins of the Gulf of Mexico Basin(Haynesville and Eagle Ford)or in various Rocky Mountain basins(Niobrara Formation,mainly in the Denver and Powder River basins).The detailed analysis of shale plays reveals that the shales are different in facies and mineral components,and"shale reservoirs"are often not shale at all.The United States is abundant in shale oil and gas,with the in-place resources exceeding 0.246×10^(12)t and 290×10^(12)m^(3),respectively.Before the emergence of horizontal well hydraulic fracturing technology to kick off the"shale revolution",the United States had experienced two decades of exploration and production practices,as well as theory and technology development.In 2007-2023,shale oil and gas production in the United States increased from approximately 11.2×10^(4)tons of oil equivalent per day(toe/d)to over 300.0×10^(4)toe/d.In 2017,the shale oil and gas production exceeded the conventional oil and gas production in the country.In 2023,the contribution from shale plays to the total U.S.oil and gas production remained above 60%.The development of shale oil and gas has largely been driven by improvements in drilling and completion technologies,with much of the recent effort focused on“cube development”or“co-development”.Other efforts to improve productivity and efficiency include refracturing,enhanced oil recovery,and drilling of“U-shaped”wells.Given the significant resources base and continued technological improvements,shale oil and gas production will continue to contribute significant volumes to total U.S.hydrocarbon production.展开更多
New technologies are in urgent need of unconventional hydrocarbon exploration and development in China.This paper provides a brief introduction and analysis of a new three-dimensional(3D)geomechanical restoration meth...New technologies are in urgent need of unconventional hydrocarbon exploration and development in China.This paper provides a brief introduction and analysis of a new three-dimensional(3D)geomechanical restoration method developed in recent years.After an in-depth discussion on the technical principle and specific characteristics of the fields,we designed a feasible workflow for two oil-gas fields with great unconventional oil-gas resource potentials in China(Weiyuan and Jiulongshan oil-gas fields of Sichuan).After discussing the major challenges and limitations of the new technology,we also suggest its research efforts and future application prospect It is shown that the new technology will be an effective method to facilitate the exploration and development of unconventional oil and gas resources in China.展开更多
基金supported by the projects of the China Geological Survey(DD20230043,DD20240048)the project of the National Natural Science Foundation of China(42102123)。
文摘Black shales are important products of material cycling and energy exchange among the lithosphere,atmosphere,hydrosphere,and biosphere.They are widely distributed throughout geological history and provide essential energy and mineral resources for the development of human society.They also record the evolution process of the earth and improve the understanding of the earth.This review focuses on the diagenesis and formation mechanisms of black shales sedimentation,composition,evolution,and reconstruction,which have had a significant impact on the formation and enrichment of shale oil and gas.In terms of sedimentary environment,black shales can be classified into three types:Marine,terrestrial,and marine-terrestrial transitional facies.The formation processes include mechanisms such as eolian input,hypopycnal flow,gravity-driven and offshore bottom currents.From a geological perspective,the formation of black shales is often closely related to global or regional major geological events.The enrichment of organic matter is generally the result of the interaction and coupling of several factors such as primary productivity,water redox condition,and sedimentation rate.In terms of evolution,black shales have undergone diagenetic evolution of inorganic minerals,thermal evolution of organic matter and hydrocarbon generation,interactions between organic matter and inorganic minerals,and pore evolution.In terms of reconstruction,the effects of fold deformation,uplift and erosion,and fracturing have changed the stress state of black shale reservoirs,thereby having a significant impact on the pore structure.Fluid activity promotes the formation of veins,and have changed the material composition,stress structure,and reservoir properties of black shales.Regarding resource effects,the deposition of black shales is fundamental for shale oil and gas resources,the evolution of black shales promotes the shale oil and gas formation and storage,and the reconstruction of black shales would have caused the heterogeneous distribution of oil and gas in shales.Exploring the formation mechanisms and interactions of black shales at different scales is a key to in-depth research on shale formation and evolution,as well as the key to revealing the mechanism controlling shale oil and gas accumulation.The present records can reveal how these processes worked in geological history,and improve our understanding of the coupling mechanisms among regional geological events,black shales evolution,and shale oil and gas formation and enrichment.
基金the National Natural Science Foundation of China(No.70941021)
文摘With China's rapid economic development,it is important to formulate reasonable and feasible tax and fee policies to promote the development and utilization of low-grade oil and gas resources to guarantee China's energy supply security.In this paper,by analyzing major problems of China's current tax and fee policies for oil and gas resources,a reform program for low-grade oil and gas resources is designed from the aspects of tax/fee items and tax/fee rates.The impacts of this reform program on China and China's oil companies during the "Twelfth Five-Year Plan" are investigated according to the related data in 2008.The results show that the proposed tax and fee reform program will lower the tax burden of oil companies,promote the development of low-grade oil and gas resources,and increase China's GDP and national fiscal revenue.Besides that,it will bring positive social effects by increasing employment opportunities.
基金Major Special Program of National Science and Technology in 13th Five year plan(Grant No.ZX201605029)
文摘Global recoverable resources of heavy oil and oil sands have been assessed by CNPC using a geology-based assessment method combined with the traditional volumetric method, spatial interpolation method, parametric-probability method etc. The most favourable areas for exploration have been selected in accordance with a comprehensive scoring system. The results show:(1) For geological resources, CNPC estimate 991.18 billion tonnes of heavy oil and 501.26 billion tonnes of oil sands globally, of which technically recoverable resources of heavy oil and oil sands comprise 126.74 billion tonnes and 64.13 billion tonnes respectively. More than 80% of the resources occur within Tertiary and Cretaceous reservoirs distributed across 69 heavy oil basins and 32 oil sands basins. 99% of recoverable resources of heavy oil and oil sands occur within foreland basins, passive continental-margin basins and cratonic basins.(2) Since residual hydrocarbon resources remain following large-scale hydrocarbon migration and destruction, heavy oil and oil sands are characterized most commonly by late hydrocarbon accumulation, the same basin types and source-reservoir conditions as for conventional hydrocarbon resources, shallow burial depth and stratabound reservoirs.(3) Three accumulation models are recognised, depending on basin type: degradation along slope; destruction by uplift; and migration along faults.(4) In addition to mature exploration regions such as Canada and Venezuela, the Volga-Ural Basin and the Pre-Caspian Basin are less well-explored and have good potential for oil-sand discoveries, and it is predicted that the Middle East will be an important region for heavy oil development.
基金Funded by National Science and Technology Major Project(2016ZX05046)China National Petroleum Corporation International Cooperation Project(2015D-4810-02).
文摘Continental shale oil has two types, low-medium maturity and medium-high maturity, and they are different in terms of resource environment, potential, production methods and technologies, and industrial evaluation criteria. In addition, continental shale oil is different from the shale oil and tight oil in the United States. Scientific definition of connotations of these resource types is of great significance for promoting the exploration of continental shale oil from "outside source" into "inside source" and making it a strategic replacement resource in the future. The connotations of low-medium maturity and medium-high maturity continental shale oils are made clear in this study. The former refers to the liquid hydrocarbons and multiple organic matter buried in the continental organic-rich shale strata with a burial depth deeper than 300 m and a Ro value less than 1.0%. The latter refers to the liquid hydrocarbons present in organic-rich shale intervals with a burial depth that in the "liquid window" range of the Tissot model and a Ro value greater than 1.0%. The geological characteristics, resource potential and economic evaluation criteria of different types of continental shale oil are systematically summarized. According to evaluation, the recoverable resources of in-situ conversion technology for shale oil with low-medium maturity in China is about(700-900)×10^8 t, and the economic recoverable resources under medium oil price condition($ 60-65/bbl) is(150-200)×10^8 t. Shale oil with low-medium maturity guarantees the occurrence of the continental shale oil revolution. Pilot target areas should be optimized and core technical equipment should be developed according to the key parameters such as the cumulative production scale of well groups, the production scale, the preservation conditions, and the economics of exploitation. The geological resources of medium-high maturity shale oil are about 100×10^8 t, and the recoverable resources can to be determined after the daily production and cumulative production of a single well reach the economic threshold. Continental shale oil and tight oil are different in lithological combinations, facies distribution, and productivity evaluation criteria. The two can be independently distinguished and coexist according to different resource types. The determination of China’s continental shale oil types, resources potentials, and tight oil boundary systems can provide a reference for the upcoming shale oil exploration and development practices and help the development of China’s continental shale oil.
基金funded by the National Natural Science Foundation of China (41922015, 42072147)Fundamental Research Funds for the Central Universities (20CX06085A)Qingdao Postdoctoral Science Foundation (ZX20210070)。
文摘The United States has become the world's largest oil producer of shale oil. China has abundant shale oil resources, but its resource potential has not yet been exploited. The core of the evaluation is the selection of parameters and their reliability. By combining the parameters of the shale oil resource evaluation, we investigated the key parameters in the evaluation model and reviewed the research results. The adsorption and retention of heavy hydrocarbons, loss of light hydrocarbons, and original oil saturation are key in the evaluation of shale oil resources. The adsorption and retention of heavy hydrocarbons can be determined by the pyrolysis, FID curve, and hydrocarbon generation kinetics of shale before and after extraction. The loss of light hydrocarbons mainly occurs in coring(change in temperature and pressure),sample treatment, which can be evaluated using the GC spectrum, rock pyrolysis, crude oil volume coefficient, mass balance, component hydrocarbon generation kinetics, and other methods. The original oil saturation evaluation includes indirect, direct, logging, and simulation methods. The most reliable parameters can be obtained by using the sealed or pressure-maintained coring immediately after thawing(without crushing), and the recovery of light hydrocarbon loss is critical for the resource evaluation of medium to high mature shale. Therefore, the experimental determination of shale oil content and the study of the influencing factors of the parameters should be strengthened.
文摘Numerical simulation of oil migration and accumulation is to describe the history of oil migration and accumulation in basin evolution. It is of great value in the exploration of oil resources and their rational evaluation. In this paper, from such actual conditions as the effects of mechanics of fluids in porous media and 3-dimensional geology characteristics, a kind of modified method of second order splitting-up implicit interactive scheme is pur forward. For the famous hydraulic experiment of secondary migration-accumulation, the numerical simulation test has been done, and both the computational and experimental results are basically identical. For the actual problem of Dongying hollow of Shengli Petroleum Oil Field, the numerical simulation test and the actual conditions are basically coincident. Thus the well-known problem has been solved.
基金Supported by the China National Science and Technology Major Project(2016ZX05029-001,2016ZX05029-002,2011ZX05028)
文摘Using conventional and unconventional oil and gas resource evaluation methods with play as a unit, this study evaluates the oil and gas geology and resource potential of conventional oil and gas resources and seven types of unconventional resources in the global major oil and gas basins(excluding China). For the first time, resource evaluation data with independent intellectual property rights has been obtained. According to evaluation and calculation, the global recoverable conventional oil resources are 5 350.0×108 t, the recoverable condensate oil resources are 496.2×108 t, and the recoverable natural gas resources are 588.4×1012 m3. The remaining oil and gas 2 P recoverable reserves are 4 212.6×108 t, the reserve growth of oil and gas fields are 1 531.7×108 t. The undiscovered oil and gas recoverable resources are 3 065.5×108 t. The global unconventional oil recoverable resources are 4 209.4×108 t and the unconventional natural gas recoverable resources are 195.4×1012 m3. The evaluation results show that the global conventional and unconventional oil and gas resources are still abundant.
基金supported by PetroChina Co Ltd.(Grant number:2015D-4810-02,2018YCQ03,2021DJ52)National Natural Science Foundation of China(Grant number:42172170)
文摘The purpose of this study is to investigate the entire evolution process of shales with various total organic contents(TOC)in order to build models for quantitative evaluation of oil and gas yields and establish methods for assessing recoverable oil and gas resources from in-situ conversion of organic matters in shale.Thermal simulation experiments under in-situ conversion conditions were conducted on Chang 7_(3) shales from the Ordos Basin in a semi-open system with large capacity.The results showed that TOC and R_(o) were the key factors affecting the in-situ transformation potential of shale.The remaining oil and gas yields increased linearly with TOC but inconsistently with R_(o).R_(o) ranged 0.75%—1.25%and 1.05%—2.3%,respectively,corresponding to the main oil generation stage and gas generation stage of shale in-situ transformation.Thus a model to evaluate the remaining oil/gas yield with TOC and R_(o) was obtained.The TOC of shale suitable for in-situ conversion should be greater than 6%,whereas its R_(o) should be less than 1.0%.Shales with 0.75%(R_(o))could obtain the best economic benefit.The results provided a theoretical basis and evaluation methodology for predicting the hydrocarbon resources from in-situ conversion of shale and for the identification of the optimum“sweet spots”.The assessment of the Chang 7_(3) shale in the Ordos Basin indicated that the recoverable oil and gas resources from in-situ conversion of organic matters in shale are substantial,with oil and gas resources reaching approximately 450×10^(8) t and 30×10^(12)m^(3),respectively,from an area of 4.27×10^(4) km^(2).
基金Supported by the Ministry of Education of China Grants(OSR-1-03)
文摘The unconventional oil and gas resources presented in oil shales have meant these potential sources of hydrocarbons, which has become a research focus. China contains abundant oil shale resources, ranking fourth in the world, with ca. 7 254.48 x 108 t within 24 provinces, including 48 basins and 81 oil shale deposits. A- bout 48% of the total oil shale resources are concentrated in the eastern resource region, with a further 22% in the central resource region. 65 % of the total quantity of oil shale resources is present at depths of 0-500 m, with 17% of the total resources being defined as high-quality oil shales yielding more than 10% oil by weight. Chinese oil shale resources are generally hosted by Mesozoic sediments that account for 78% of the total re- sources. In terms of the geographical distribution of these resources, some 45% are located in plain regions, and different oil shale basins have various characteristics. The oil shale resources in China represent a highly prospective future source of hydrocarbons. These resources having potential use not only in power generation and oil refining but also in agriculture, metal and chemical productions, and environmental protection.
文摘Most of Biodiesel, a clean burning alternative fuels for diesel engines is made from renewable agricultural feedstock, such as rapeseed oil, soybean oil etc., but less expensive biodiesel can also be made from waste oils and fats, including recycled restaurant grease and animal fats. Because of the eating habit of the nation and diet culture in china,?restaurant-kitchen garbage is increasingly serious and has negative impact on environment and food security. The utilization of waste oils and fats to biodiesel provide a promising way of how to appropriately and effectively dispose of restaurant-kitchen garbage. This paper first reviews the development status of biodiesel industry, then introduces the novel technology of tubular reaction for producing biodiesel from waste oils and fats on the typical industrialization case in Kunshan. All these efforts are expected to provide a viable development path for our waste oil to produce biodiesel and worth reference to waste oils and fats recycling and reuse.
文摘In view of the problem that a single modeling method cannot predict the distribution of microfacies, a new idea of coupling modeling method to comprehensively predict the distribution of sedimentary microfacies was proposed, breaking the tradition that different sedimentary microfacies used the same modeling method in the past. Because different sedimentary microfacies have different distribution characteristics and geometric shapes, it is more accurate to select different simulation methods for prediction. In this paper, the coupling modeling method was to establish the distribution of sedimentary microfacies with simple geometry through the point indicating process simulation, and then predict the microfacies with complex spatial distribution through the sequential indicator simulation method. Taking the DC block of Bohai basin as an example, a high-precision reservoir sedimentary microfacies model was established by the above coupling modeling method, and the model verification results showed that the sedimentary microfacies model had a high consistency with the underground. The coupling microfacies modeling method had higher accuracy and reliability than the traditional modeling method, which provided a new idea for the prediction of sedimentary microfacies.
基金Supported by the China Agriculture Research System for Rapeseed Industry(CARS-12)the Key Crop Breeding Technology of Sichuan during the Thirteenth Five Year Plan(2016NYZ0031)+2 种基金the Program for Innovation Team of Sichuan(2014-2018)the Program for Hybrid Breeding in Commercial System of Sichuan(2016NYZ0013)the Plan of Application Foundation(2016JY0086)~~
文摘In recent years, the yield of double low rapeseed has been greatly im-proved, but the oil content of rape is generally low, which seriously restricts the competitiveness of China's rapeseed industry. After many years' efforts, Mianyang Academy of Agricultural Sciences has made use of a variety of breeding methods to explore the creation and breeding of high oil rapeseed, and made some achieve-ments.
文摘The demand for fuel oil is ever increasing with the advance of the modern world, whereas worldwide reserves of fossil oils are diminishing at an alarming rate. However, there exist large stockpiles of vegetable oil feedstocks that could be exploited to produce fuel oil, called biodiesel with the aid of biotechnology. Initially, the biodiesel produced from vegetable oil did not attract much attention because of its high cost. However, the recent increase in petroleum prices and the uncertainties of petroleum availability led to the renewal of interest in biodiesel production from such sustainable resources (i.e., vegetable oil feedstocks). This research focuses on the production of biodiesel from plant resources, and further investigates the influences of key process parameters, such as the molar ratio of methanol to oil, catalyst concentration, reaction temperature, reaction period and stirring speed on the biodiesel yield. This investigation is to determine the optimum process parameters for maximum biodiesel yield. The biodiesel was produced from three vegetable oil feedstocks, namely palm, soybean and sunflower oil via a transesterification process. It was observed that all the process parameters significantly influenced the biodiesel yield. The maximum biodiesel yields for palm, sunflower and soybean oil feedstocks were found to be 87.5%, 83.6% and 80.2%, respectively at optimum condition. The results suggest that through proper optimization of the process parameters the biodiesel yields could be maximized. In conclusion, the production of biodiesel from plant resources would be regarded as a sustainable solution to the ever increasing demand of fuel oils.
文摘Base on the oil shale data model,the authors analyz the four main data types and their mutual relations,grasped the focus on the oil shale data management,established UML visual demand model for oil shale resources in the field of evaluation,constructed three-tier system and developed oil shale resource evaluation database management system. The system can be used for managing oil shale data storage,enhancing the efficiency and quality of the oil shale resource evaluation.
文摘On December 2, 2017, the 2nd Seminar on the Development Strategy of China's Oil and Gas Resources was held in Beijing. This seminar was hosted by the Strategic Research Center for Oil and Gas Resources, Ministry of Land (MLR) and Resources and sponsored by both the CNOOC Exploration Department and the School of Ocean and Earth Sciences of Tongji University. With the theme of "deepwater and deep-layer oil and gas resources and development strategy",
文摘On July 10,the ministry of natural resources held a press conference.In order to further strengthen and improve the statistical management of mineral resources reserves and raise the awareness of all parties in society on the situation of China's mineral resources,the relevant information of China's mineral resources reserves in 2017 is published as follows:I.Overall changes in resource reserves in 2017:Approved by the state council,NGH was listed as a new mineral in 2017,bringing the number of mineral species discovered in China to 173 by the end of 2017.There are 13 kinds of energy mineral,59 kinds of metal mineral,95 kinds of non-metal mineral and 6 kinds of water-gas mineral.
基金supported by the State of Texas Advanced Resource Recovery(STARR)programthe Bureau of Economic Geology's Tight Oil Resource Assessment(TORA)Mudrock Systems Research Laboratory(MSRL)consortia。
文摘We present a systematic summary of the geological characteristics,exploration and development history and current state of shale oil and gas in the United States.The hydrocarbon-rich shales in the major shale basins of the United States are mainly developed in six geological periods:Middle Ordovician,Middle-Late Devonian,Early Carboniferous(Middle-Late Mississippi),Early Permian,Late Jurassic,and Late Cretaceous(Cenomanian-Turonian).Depositional environments for these shales include intra-cratonic basins,foreland basins,and passive continental margins.Paleozoic hydrocarbon-rich shales are mainly developed in six basins,including the Appalachian Basin(Utica and Marcellus shales),Anadarko Basin(Woodford Shale),Williston Basin(Bakken Shale),Arkoma Basin(Fayetteville Shale),Fort Worth Basin(Barnett Shale),and the Wolfcamp and Leonardian Spraberry/Bone Springs shale plays of the Permian Basin.The Mesozoic hydrocarbon-rich shales are mainly developed on the margins of the Gulf of Mexico Basin(Haynesville and Eagle Ford)or in various Rocky Mountain basins(Niobrara Formation,mainly in the Denver and Powder River basins).The detailed analysis of shale plays reveals that the shales are different in facies and mineral components,and"shale reservoirs"are often not shale at all.The United States is abundant in shale oil and gas,with the in-place resources exceeding 0.246×10^(12)t and 290×10^(12)m^(3),respectively.Before the emergence of horizontal well hydraulic fracturing technology to kick off the"shale revolution",the United States had experienced two decades of exploration and production practices,as well as theory and technology development.In 2007-2023,shale oil and gas production in the United States increased from approximately 11.2×10^(4)tons of oil equivalent per day(toe/d)to over 300.0×10^(4)toe/d.In 2017,the shale oil and gas production exceeded the conventional oil and gas production in the country.In 2023,the contribution from shale plays to the total U.S.oil and gas production remained above 60%.The development of shale oil and gas has largely been driven by improvements in drilling and completion technologies,with much of the recent effort focused on“cube development”or“co-development”.Other efforts to improve productivity and efficiency include refracturing,enhanced oil recovery,and drilling of“U-shaped”wells.Given the significant resources base and continued technological improvements,shale oil and gas production will continue to contribute significant volumes to total U.S.hydrocarbon production.
文摘New technologies are in urgent need of unconventional hydrocarbon exploration and development in China.This paper provides a brief introduction and analysis of a new three-dimensional(3D)geomechanical restoration method developed in recent years.After an in-depth discussion on the technical principle and specific characteristics of the fields,we designed a feasible workflow for two oil-gas fields with great unconventional oil-gas resource potentials in China(Weiyuan and Jiulongshan oil-gas fields of Sichuan).After discussing the major challenges and limitations of the new technology,we also suggest its research efforts and future application prospect It is shown that the new technology will be an effective method to facilitate the exploration and development of unconventional oil and gas resources in China.