Due to the coaxial connection of engine, motor and pump, the dynamic characteristics of hybrid construction machinery are changed, which generates a new torsional vibration problem of multi-power sources. To reduce th...Due to the coaxial connection of engine, motor and pump, the dynamic characteristics of hybrid construction machinery are changed, which generates a new torsional vibration problem of multi-power sources. To reduce the torsional vibration of the hybrid construction machinery complex shafting, torsional vibration active control was proposed. The three-mass model of coaxial shafting of hybrid construction machinery was established. The PID control and the fuzzy sliding mode control were chosen to weaken torsional vibration by controlling the motor speed and torque. The simulation results show that the fuzzy sliding mode control has 12% overshoot of the PID control when the engine torque changes. The active control is effective and can realize smooth power switch.展开更多
Overheating of the engine, the transmission and the hydraulic device is a problem when the construction machinery works on plateau. To solve this problem, we proposed an electro-controlled hydraulic driving fan coolin...Overheating of the engine, the transmission and the hydraulic device is a problem when the construction machinery works on plateau. To solve this problem, we proposed an electro-controlled hydraulic driving fan cooling system (ECHDFCS). The system was applied to a 50-wheel loader. We carried out the coolant temperature simulation using fluid modeling software FLOWMASTER, followed by laboratory experiments and road tests. The results show that ECHDFCS can adjust the cooling capability of the system automatically based on machine heat dissipation requirements. The coolant temperature is consequently remained within an appropriate range. The simulation results are consistent with the experiment results when the experiment is performed on the plain, but are different from the road tests in some investigated parameters on the plateau.展开更多
The working principle of radio remote controlling of construction machinery should be that signals of the radio wave from the transmitter obtained in the receiver were controlled and then changed into electronic analo...The working principle of radio remote controlling of construction machinery should be that signals of the radio wave from the transmitter obtained in the receiver were controlled and then changed into electronic analog or digital signals which can be used to drive different actuators and mechanisms of the vehicle.The vehicle could be acted by following the controlling instructions sent by the operator.The best operation mode of construction machinery is suitable not only to manual operating but also to remote controlling in the same vehicle.The design methods of the hydraulic system used for the radio remote controlling of construction machinery are discussed.The design methods of hydraulic circuits for the actuators controlled by solenoid on-off type valves,hydro-electronic multi-way proportional valves,closed loop proportional servo driver or three-way proportional reducing valves are discussed in detail (with real example).The design methods of the power shift transmission of electro-hydraulic controlling,the devices of braking and the directional streering are discussed in this paper.展开更多
With the rapid development of the global economy,more and more attention has been paid to the energy conservation of construction machinery.The hydraulic system is the key component of construction machinery,and impro...With the rapid development of the global economy,more and more attention has been paid to the energy conservation of construction machinery.The hydraulic system is the key component of construction machinery,and improving its energy utilization rate has become an important means to achieve energy conservation.In conventional valve-controlled or pump-controlled hydraulic systems of construction machinery,controllability and energy-saving performance typically cannot be considered at the same time.The pump-valve coordinated system combines the energy-saving characteristics of the pump-controlled system and the high-precision and high-frequency response of the valve-controlled system,which has the potential to become a primary research direction of electro-hydraulic systems.This review summarizes the recent research progress in energy-saving technologies based on pump-valve coordinated systems.Particularly,we discuss the structures of hydraulic systems in different categories of construction machinery,various control methods of the electro-hydraulic system,novel hydraulic hybrid energy regeneration systems,and key components.In addition,future directions and challenges of the pump-valve coordinated systems are described,such as independent metering system(IMS),common pressure rail(CPR),and hybrid power source(HPS).展开更多
Speciated characterization of Volatile Organic Compounds (VOCs),including oxygenated VOCs (OVOCs),from construction machinery and river ships in China is currently lacking.In this regard,we conducted field measurement...Speciated characterization of Volatile Organic Compounds (VOCs),including oxygenated VOCs (OVOCs),from construction machinery and river ships in China is currently lacking.In this regard,we conducted field measurement on speciated VOC (including OVOC) emissions from six construction machinery and five river ships in the Pearl River Delta (PRD) region to identify VOC emission characteristics.We noticed that OVOC emissions from construction machinery and ships accounted for more than 50%of the total VOC emissions,followed by alkenes,aromatics and alkanes.Formaldehyde and acetaldehyde were the most emission species,accounting for 61.8%-83.2%of OVOCs.For construction machinery,the fuel-based emission factors of roller,grader and pile driver were 3.12,3.12 and 7.36 g/kg,respectively.With the rigorous restraint by the national emission standards,VOC emissions of construction machinery had decreased considerably,especially during stageⅢ.Ozone formation potential was also significantly reduced due to the significant decrease in emissions of OVOCs and alkenes with higher reactivity.For river ships,the fuel-based emission factors of cargo ships and speedboat were 1.46 and 0.44 g/kg,respectively.VOC emissions from construction machinery and river ships in Guangdong Province in 2017 were 8851.0 and 4361.0 ton,respectively.This study filled the knowledge gaps of reactive gas emissions from different kinds of non-road mobile sources over the PRD,and more importantly,highlighted the necessity in adding OVOC measurement to give a complete and accurate depiction of reactive gas emissions from non-road mobile sources.展开更多
The issues of energy shortage and environmental pollution have accelerated the electrification of construction ma-chinery(CM)industry globally.In China,the amount of electric construction machinery(ECM)has been growin...The issues of energy shortage and environmental pollution have accelerated the electrification of construction ma-chinery(CM)industry globally.In China,the amount of electric construction machinery(ECM)has been growing across the industry.The sales of ECM are estimated to reach 600000 vehicles by the end of 2025,while the total demand for battery power will reach 60 GWh.However,the development of ECM still faces critical challenges including reliable power supply and energy distribution among various components.In this review,we primarily focus on important technological breakthroughs and the difficulties faced by the CM industry in China.An overview of ECM including classification and characteristics is given at the beginning.Next,the selection of key components such as the electric motor and the energy storage units,and the control strategy in the pure electric drive system are discussed.The characteristics of the hybrid electric drive system such as structure design and power matching are analyzed in detail.The battery management system(BMS)is critical to ensure appropriate battery health for reliable power supply.Here,we extensively review technical developments in various BMSs.In addition,we roughly estimate the national total of CM emissions and the potential environmental benefits of employing ECMs in China.Finally,we set out future research directions and industrial development of ECM.展开更多
Although China’s construction machinery thrives to meet the needs of construction,a number of challenges still remain to be overcome,such as lack of thorough knowledge of regional disparities and several limitations ...Although China’s construction machinery thrives to meet the needs of construction,a number of challenges still remain to be overcome,such as lack of thorough knowledge of regional disparities and several limitations in terms of carbon emissions and economic development.Meanwhile,a low-carbon economy was proposed and implemented in China.This research aims to investigate the differences in industrial agglomeration of construction machineries and further explore the relationship between industrial agglomeration and low-carbon economy.On this basis,spatiotemporal analysis was performed to evaluate the levels of industrial agglomeration in different regions based on the situations of China’s construction machinery industry.Furthermore,this study explored the interaction between industrial agglomeration and low-carbon economy utilizing the coupling coordination analysis method.Results showed that the coupling coordination of the two subsystems was extremely unbalanced in 2006,and it maintained an increasing trend,reaching a relatively high level in 2018.Finally,suggestions,such as establishing a policy guarantee system and implementing variable policies in different regions,were proposed to provide guidelines for the government decision-making and promote the sustainable development of China’s construction machinery industry.展开更多
This study investigates the internationalization and resource accumulation process of the three largest Chinese construction machinery companies: Sany, XCMG and Zoomlion. It takes a longitudinal approach to analyze t...This study investigates the internationalization and resource accumulation process of the three largest Chinese construction machinery companies: Sany, XCMG and Zoomlion. It takes a longitudinal approach to analyze the internationalization process of the three companies over the last 25 years. Although the three companies' paths in the early acquisition of technologies and firm-specific advantages (FSA) differ significantly, however, their internationalization process exhibits similar pattern. They all exploit the same home-country based FSAs in their south-south expansion into other emerging markets, and seem to mimic each other in their strategic moves. In the south-north expansion into advanced economies they skip the export stage and rely almost exclusively on foreign direct investment of both forms, greenfield and M&A, to pursue asset augmenting objectives and overcome their "liability of origin". The study concludes by discussing several topics of interest, such as the implications of accelerated resource accumulation, the impact on competition with advanced multinationals in the home market or possible effects on the level of state support and risk taking behavior in the internationalization process by the companies' ownership type.展开更多
Mechanical construction will put influence on the biological characters of reclaimed soils,as well as the soil quality.In order to explore the changing rule of soil microbial quantity and respiratory capacity under di...Mechanical construction will put influence on the biological characters of reclaimed soils,as well as the soil quality.In order to explore the changing rule of soil microbial quantity and respiratory capacity under different construction machineries and rolling times,and find the optimal processing conditions,an experiment was set up and a simulation experimental area was chosen,in which we simulated the main types of reclamation in coal mine area.After 2 years’natural aging,we collected surface soil samples(0-20 cm)that can be used for experimental analysis.The result shows that changing rules of soil biological factors are different with different construction machineries,and soil properties are closest to the normal soil when adopting the combination of“crawler dozer×5 compaction times”and“dump truck×3 compaction times”,which shows that the soil quality is better under this condition.展开更多
To improve the vibration-isolation performance of cab seats,the optimization model of the seat suspension system of construction machinery cabs is proposed based on the negative stiffness structure.The negative stiffn...To improve the vibration-isolation performance of cab seats,the optimization model of the seat suspension system of construction machinery cabs is proposed based on the negative stiffness structure.The negative stiffness nonlinear kinetic equation is established by designing the seat negative stiffness suspension structure(NSS).Using MATLAB,the different parameters of the suspension system and their influences on the dynamic stiffness are analyzed.The ideal configuration parameter range of the suspension system is obtained.Meanwhile,the optimization model of NSS is proposed,and the vibration transmissibility characteristics are simulated and analyzed by different methods.The results show that the displacement and acceleration amplitudes of the optimized seat suspension system are evidently reduced,and the four-time power vibration dose value and root mean square calculation values in the vertical vibration direction of the seat decrease by 86%and 87%,respectively.Seat effective amplitude transmissibility(SEAT)and the vibration transmissibility ratio values also decrease.Moreover,the peak frequencies of the vibration transmitted to the driver deviate from the key frequency values,which easily cause human discomfort.Thus,the design of the seat suspension system has no effect on the health condition of the driver after being vibrated.The findings also illustrate that the NSS suspension system has good vibration-isolation performance,and the driver's ride comfort is improved.展开更多
基金Project(51205415)supported by the National Natural Science Foundation of ChinaProject(14JJ3020)supported by the Natural Science Foundation of Hunan Province,China+2 种基金Project(2013M542129)supported by China Postdoctoral Science FoundationProject(2012QNZT014)supported by the Fundamental Research Funds for the Central Universities,ChinaProject supported by the Postdoctoral Foundation of Central South University,China
文摘Due to the coaxial connection of engine, motor and pump, the dynamic characteristics of hybrid construction machinery are changed, which generates a new torsional vibration problem of multi-power sources. To reduce the torsional vibration of the hybrid construction machinery complex shafting, torsional vibration active control was proposed. The three-mass model of coaxial shafting of hybrid construction machinery was established. The PID control and the fuzzy sliding mode control were chosen to weaken torsional vibration by controlling the motor speed and torque. The simulation results show that the fuzzy sliding mode control has 12% overshoot of the PID control when the engine torque changes. The active control is effective and can realize smooth power switch.
基金Funded by the Innovation Foundation of Guangzhou, P. R. China (No. 2005V42C0021)
文摘Overheating of the engine, the transmission and the hydraulic device is a problem when the construction machinery works on plateau. To solve this problem, we proposed an electro-controlled hydraulic driving fan cooling system (ECHDFCS). The system was applied to a 50-wheel loader. We carried out the coolant temperature simulation using fluid modeling software FLOWMASTER, followed by laboratory experiments and road tests. The results show that ECHDFCS can adjust the cooling capability of the system automatically based on machine heat dissipation requirements. The coolant temperature is consequently remained within an appropriate range. The simulation results are consistent with the experiment results when the experiment is performed on the plain, but are different from the road tests in some investigated parameters on the plateau.
文摘The working principle of radio remote controlling of construction machinery should be that signals of the radio wave from the transmitter obtained in the receiver were controlled and then changed into electronic analog or digital signals which can be used to drive different actuators and mechanisms of the vehicle.The vehicle could be acted by following the controlling instructions sent by the operator.The best operation mode of construction machinery is suitable not only to manual operating but also to remote controlling in the same vehicle.The design methods of the hydraulic system used for the radio remote controlling of construction machinery are discussed.The design methods of hydraulic circuits for the actuators controlled by solenoid on-off type valves,hydro-electronic multi-way proportional valves,closed loop proportional servo driver or three-way proportional reducing valves are discussed in detail (with real example).The design methods of the power shift transmission of electro-hydraulic controlling,the devices of braking and the directional streering are discussed in this paper.
基金Project supported by the Zhejiang Provincial Natural Science Foundation of China(No.LR19E050002)the National Key R&D Program of China(No.2019YFB2004604)+2 种基金the National Natural Science Foundation of China(Nos.51821093 and 51708493)the Key R&D Program of Zhejiang Province(Nos.2018C01020 and 2018C01060)the Youth Funds of the State Key Laboratory of Fluid Power and Mechatronic Systems(No.SKLoFP_QN_1804),China。
文摘With the rapid development of the global economy,more and more attention has been paid to the energy conservation of construction machinery.The hydraulic system is the key component of construction machinery,and improving its energy utilization rate has become an important means to achieve energy conservation.In conventional valve-controlled or pump-controlled hydraulic systems of construction machinery,controllability and energy-saving performance typically cannot be considered at the same time.The pump-valve coordinated system combines the energy-saving characteristics of the pump-controlled system and the high-precision and high-frequency response of the valve-controlled system,which has the potential to become a primary research direction of electro-hydraulic systems.This review summarizes the recent research progress in energy-saving technologies based on pump-valve coordinated systems.Particularly,we discuss the structures of hydraulic systems in different categories of construction machinery,various control methods of the electro-hydraulic system,novel hydraulic hybrid energy regeneration systems,and key components.In addition,future directions and challenges of the pump-valve coordinated systems are described,such as independent metering system(IMS),common pressure rail(CPR),and hybrid power source(HPS).
基金supported by the National Key Research and Development Program of China (No.2016YFC0202201)the National Natural Science Foundation of China (No.91644221)。
文摘Speciated characterization of Volatile Organic Compounds (VOCs),including oxygenated VOCs (OVOCs),from construction machinery and river ships in China is currently lacking.In this regard,we conducted field measurement on speciated VOC (including OVOC) emissions from six construction machinery and five river ships in the Pearl River Delta (PRD) region to identify VOC emission characteristics.We noticed that OVOC emissions from construction machinery and ships accounted for more than 50%of the total VOC emissions,followed by alkenes,aromatics and alkanes.Formaldehyde and acetaldehyde were the most emission species,accounting for 61.8%-83.2%of OVOCs.For construction machinery,the fuel-based emission factors of roller,grader and pile driver were 3.12,3.12 and 7.36 g/kg,respectively.With the rigorous restraint by the national emission standards,VOC emissions of construction machinery had decreased considerably,especially during stageⅢ.Ozone formation potential was also significantly reduced due to the significant decrease in emissions of OVOCs and alkenes with higher reactivity.For river ships,the fuel-based emission factors of cargo ships and speedboat were 1.46 and 0.44 g/kg,respectively.VOC emissions from construction machinery and river ships in Guangdong Province in 2017 were 8851.0 and 4361.0 ton,respectively.This study filled the knowledge gaps of reactive gas emissions from different kinds of non-road mobile sources over the PRD,and more importantly,highlighted the necessity in adding OVOC measurement to give a complete and accurate depiction of reactive gas emissions from non-road mobile sources.
基金Project supported by the National Key R&D Program of China(No.2019YFB2004604)the National Natural Science Foundation of China(Nos.52075481 and 52075477)+2 种基金the Zhejiang Provincial Natural Science Foundation of China(No.LR19E050002)the Key R&D Program of Zhejiang Province(No.2020C01152)and the“Innovation 2025”Major Project of Ningbo(No.2020Z110),China。
文摘The issues of energy shortage and environmental pollution have accelerated the electrification of construction ma-chinery(CM)industry globally.In China,the amount of electric construction machinery(ECM)has been growing across the industry.The sales of ECM are estimated to reach 600000 vehicles by the end of 2025,while the total demand for battery power will reach 60 GWh.However,the development of ECM still faces critical challenges including reliable power supply and energy distribution among various components.In this review,we primarily focus on important technological breakthroughs and the difficulties faced by the CM industry in China.An overview of ECM including classification and characteristics is given at the beginning.Next,the selection of key components such as the electric motor and the energy storage units,and the control strategy in the pure electric drive system are discussed.The characteristics of the hybrid electric drive system such as structure design and power matching are analyzed in detail.The battery management system(BMS)is critical to ensure appropriate battery health for reliable power supply.Here,we extensively review technical developments in various BMSs.In addition,we roughly estimate the national total of CM emissions and the potential environmental benefits of employing ECMs in China.Finally,we set out future research directions and industrial development of ECM.
基金This work was supported by the National Natural Science Foundation of China(Grant No.72071043)the Natural Science Foundation of Jiangsu Province(Grant No.BK20201280)+1 种基金MOE(Ministry of Education in China)Project of Humanities and Social Sciences(Grant No.20YJAZH114)the major consulting research project of the Chinese Academy of Engineering“Strategic Research of China Construction 2035”(Grant No.2019-XZ-34-03).
文摘Although China’s construction machinery thrives to meet the needs of construction,a number of challenges still remain to be overcome,such as lack of thorough knowledge of regional disparities and several limitations in terms of carbon emissions and economic development.Meanwhile,a low-carbon economy was proposed and implemented in China.This research aims to investigate the differences in industrial agglomeration of construction machineries and further explore the relationship between industrial agglomeration and low-carbon economy.On this basis,spatiotemporal analysis was performed to evaluate the levels of industrial agglomeration in different regions based on the situations of China’s construction machinery industry.Furthermore,this study explored the interaction between industrial agglomeration and low-carbon economy utilizing the coupling coordination analysis method.Results showed that the coupling coordination of the two subsystems was extremely unbalanced in 2006,and it maintained an increasing trend,reaching a relatively high level in 2018.Finally,suggestions,such as establishing a policy guarantee system and implementing variable policies in different regions,were proposed to provide guidelines for the government decision-making and promote the sustainable development of China’s construction machinery industry.
文摘This study investigates the internationalization and resource accumulation process of the three largest Chinese construction machinery companies: Sany, XCMG and Zoomlion. It takes a longitudinal approach to analyze the internationalization process of the three companies over the last 25 years. Although the three companies' paths in the early acquisition of technologies and firm-specific advantages (FSA) differ significantly, however, their internationalization process exhibits similar pattern. They all exploit the same home-country based FSAs in their south-south expansion into other emerging markets, and seem to mimic each other in their strategic moves. In the south-north expansion into advanced economies they skip the export stage and rely almost exclusively on foreign direct investment of both forms, greenfield and M&A, to pursue asset augmenting objectives and overcome their "liability of origin". The study concludes by discussing several topics of interest, such as the implications of accelerated resource accumulation, the impact on competition with advanced multinationals in the home market or possible effects on the level of state support and risk taking behavior in the internationalization process by the companies' ownership type.
基金This study was funded by Natural Science Foundation of China(D011004):Ecological Restoration and Its Environmental Effects.
文摘Mechanical construction will put influence on the biological characters of reclaimed soils,as well as the soil quality.In order to explore the changing rule of soil microbial quantity and respiratory capacity under different construction machineries and rolling times,and find the optimal processing conditions,an experiment was set up and a simulation experimental area was chosen,in which we simulated the main types of reclamation in coal mine area.After 2 years’natural aging,we collected surface soil samples(0-20 cm)that can be used for experimental analysis.The result shows that changing rules of soil biological factors are different with different construction machineries,and soil properties are closest to the normal soil when adopting the combination of“crawler dozer×5 compaction times”and“dump truck×3 compaction times”,which shows that the soil quality is better under this condition.
基金The National Natural Science Foundation of China(No.11902207,No.52072072)the Natural Science Foundation of Hebei Province(A2020210018)Higher Education Teaching Research Project(No.Y2020-15).
文摘To improve the vibration-isolation performance of cab seats,the optimization model of the seat suspension system of construction machinery cabs is proposed based on the negative stiffness structure.The negative stiffness nonlinear kinetic equation is established by designing the seat negative stiffness suspension structure(NSS).Using MATLAB,the different parameters of the suspension system and their influences on the dynamic stiffness are analyzed.The ideal configuration parameter range of the suspension system is obtained.Meanwhile,the optimization model of NSS is proposed,and the vibration transmissibility characteristics are simulated and analyzed by different methods.The results show that the displacement and acceleration amplitudes of the optimized seat suspension system are evidently reduced,and the four-time power vibration dose value and root mean square calculation values in the vertical vibration direction of the seat decrease by 86%and 87%,respectively.Seat effective amplitude transmissibility(SEAT)and the vibration transmissibility ratio values also decrease.Moreover,the peak frequencies of the vibration transmitted to the driver deviate from the key frequency values,which easily cause human discomfort.Thus,the design of the seat suspension system has no effect on the health condition of the driver after being vibrated.The findings also illustrate that the NSS suspension system has good vibration-isolation performance,and the driver's ride comfort is improved.