期刊文献+
共找到815篇文章
< 1 2 41 >
每页显示 20 50 100
Enhanced corrosion resistance of epoxy resin coating via addition of CeO_(2) and benzotriazole
1
作者 Xu Han Ruijie Guo +1 位作者 Baolong Niu Hong Yan 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第3期89-96,共8页
The use of fillers to enhance the corrosion protection of epoxy resins has been widely applied.In this work,cerium dioxide(CeO_(2))and benzotriazole(BTA)were introduced into an epoxy resin to enhance the corrosion res... The use of fillers to enhance the corrosion protection of epoxy resins has been widely applied.In this work,cerium dioxide(CeO_(2))and benzotriazole(BTA)were introduced into an epoxy resin to enhance the corrosion resistance of Q235 carbon steel.Scanning electron microscopy results indicated that the CeO_(2) grains were rod-like and ellipsoidal in shape,and the distribution pattern of BTA was analyzed by energy dispersive spectroscope.The dynamic potential polarization curve proved the excellent corrosion resistance of the composite epoxy resin with CeO_(2) and BTA co-addition,and electrochemical impedance spectroscopy test analysis indicated the significantly enhanced long-term corrosion protection performance of the composite coating.And the optimal protective performance was provided by the coating containing 0.3%(mass)CeO_(2) and 20%(mass)BTA,which was attributed to the barrier performance of CeO_(2) particles and the chemical barrier effect of BTA.The formation of corrosion products was analyzed using X-ray diffraction.In addition,the corrosion resistance mechanism of the coating was also discussed in detail. 展开更多
关键词 BENZOTRIAZOLE Cerium dioxide corrosion resistance Carbon steel Epoxy resin coating Preparation
下载PDF
Evolution of mechanical properties,localized corrosion resistance and microstructure of a high purity Al-Zn-Mg-Cu alloy during non-isothermal aging
2
作者 DAI Xuan-xuan LI Yu-zhang +2 位作者 LIU Sheng-dan YE Ling-ying BAO Chong-jun 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第6期1790-1807,共18页
The evolution of mechanical properties,localized corrosion resistance of a high purity Al-Zn-Mg-Cu alloy during non-isothermal aging(NIA)was investigated by hardness test,electrical conductivity test,tensile test,inte... The evolution of mechanical properties,localized corrosion resistance of a high purity Al-Zn-Mg-Cu alloy during non-isothermal aging(NIA)was investigated by hardness test,electrical conductivity test,tensile test,intergranular corrosion test,exfoliation corrosion test,slow strain rate tensile test and electrochemical test,and the mechanism has been discussed based on microstructure examination by optical microscopy,electron back scattered diffraction,scanning electron microscopy and scanning transmission electron microscopy.The NIA treatment includes a heating stage from 40℃to 180℃with a rate of 20℃/h and a cooling stage from 180℃to 40℃with a rate of 10℃/h.The results show that the hardness and strength increase rapidly during the heating stage of NIA since the increasing temperature favors the nucleation and the growth of strengthening precipitates and promotes the transformation of Guinier-Preston(GPI)zones toη'phase.During the cooling stage,the sizes ofη'phase increase with a little change in the number density,leading to a further slight increase of the hardness and strength.As NIA proceeds,the corroded morphology in the alloy changes from a layering feature to a wavy feature,the maximum corrosion depth decreases,and the reason has been analyzed based on the microstructural and microchemical feature of precipitates at grain boundaries and subgrain boundaries. 展开更多
关键词 Al-Zn-Mg-Cu alloy non-isothermal aging mechanical properties localized corrosion resistance MICROSTRUCTURE
下载PDF
Micro-alloying of Zn and Ca in vacuum induction casted bioresorbable Mg system:Perspectives on corrosion resistance,cytocompatibility,and inflammatory response
3
作者 Manisha Behera Agnès Denys +2 位作者 Rajashekhara Shabadi Fabrice Allain Cosmin Gruescu 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第7期2812-2825,共14页
There is an increasing interest in biodegradable materials,such as magnesium,for orthopaedic implants.This is driven by their potential to address challenges like stress shielding and the need for secondary removal su... There is an increasing interest in biodegradable materials,such as magnesium,for orthopaedic implants.This is driven by their potential to address challenges like stress shielding and the need for secondary removal surgery.In this study,biodegradable magnesium alloys were produced using the Vacuum Induction Casting technique.The impact of micro-alloying Zn and Ca in Mg-xZn-0.2Ca(x=0.1,0.2,0.3,and 0.4 wt%)alloys on corrosion resistance,cytocompatibility,and early-stage inflammatory response was investigated.XRD and SEM-EDS analysis confirmed the presence of Ca_(2)Mg_(6)Zn_(3)secondary phases in all alloys.The Mg-0.3Zn-0.2Ca alloy exhibited the lowest corrosion rate and an elastic modulus of 36.8 GPa,resembling that of natural bone.Electrochemical measurements indicated a correlation between grain size and secondary phase volume fraction in explaining corrosion behaviour.In vitro degradation in simulated body fluid(SBF)for 21 days showed hydroxyapatite formation on alloy surfaces,aligning with electrochemical studies.In vitro cytotoxicity tests demonstrated the cytocompatibility of all alloys,with Mg-0.3Zn-0.2Ca having the highest cell viability over a 6-day cell culture.Investigation into the inflammatory response with RAW-Blue macrophages revealed the anti-inflammatory properties of Mg-0.3Zn-0.2Ca alloys.Micro-alloying with 0.3 wt%Zn and 0.2 wt%Ca enhanced mechanical properties,corrosion resistance,cytocompatibility,and immunomodulatory properties.This positions the Mg-0.3Zn-0.2Ca alloy as a promising biodegradable implant for bone fixation applications. 展开更多
关键词 Micro-alloying MgZnCa corrosion resistance In vitro Anti-inflammatory response
下载PDF
GPa-level pressure-induced enhanced corrosion resistance in TiZrTaNbSn biomedical high-entropy alloy
4
作者 Xiao-hong Wang Yu-lei Deng +6 位作者 Qiao-yu Li Zhi-xin Xu Teng-fei Ma Xing Yang Duo Dong Dong-dong Zhu Xiao-hong Yang 《China Foundry》 SCIE EI CAS CSCD 2024年第3期265-275,共11页
TiZrTaNb-based high-entropy alloys(HEAs)are research frontier of biomedical materials due to their high hardness,good yield strength,excellent wear resistance and corrosion resistance.Sn,as an essential trace element ... TiZrTaNb-based high-entropy alloys(HEAs)are research frontier of biomedical materials due to their high hardness,good yield strength,excellent wear resistance and corrosion resistance.Sn,as an essential trace element in the human body that plays a significant role in physiological process.It has stable chemical properties and a low elastic modulus.In this study,a new material,TiZrTaNbSn HEAs,was proposed as a potential biomedical alloy.The Ti_(35)Zr_(25)Ta_(15)Nb_(15)Sn_(10)biomedical high-entropy alloys(BHEAs)were successfully prepared through an arc melting furnace and then remelted using a German high-temperature and high-pressure apparatus under GPa-level(4 GPa and 7 GPa).The precipitation behavior of the needle-like HCP-Zr_(5)Sn_(3)phase that precipitates discontinuously at the grain boundary was successfully controlled.The phase constitution,microstructure,and corrosion resistance of the alloy were studied.The results show that the needle-like HCP-Zr_(5)Sn_(3)phase is eliminated and the(Zr,Sn)-rich nano-precipitated phase is precipitated in the microstructure under high pressure,which leads to the narrowing of grain boundaries and consequently improves the corrosion resistance of the alloy.In addition,the formation mechanisms of(Zr,Sn)-rich nanoprecipitates in BHEAs were discussed.More Zr and Sn dissolve in the matrix due to the effect of high pressure,during the cooling process,they precipitate to form a(Zr,Sn)-rich nano-precipitated phase. 展开更多
关键词 biomedical HEAs precipitation grain boundary corrosion resistance TiZrTaNbSn
下载PDF
Effect of In doping on the evolution of microstructure,magnetic properties and corrosion resistance of NdFeB magnets
5
作者 李豫豪 范晓东 +8 位作者 贾智 范璐 丁广飞 刘新才 郭帅 郑波 曹帅 陈仁杰 闫阿儒 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第3期623-629,共7页
The grain boundary phase affects the magnetic properties and corrosion resistance of sintered NdFeB magnets.In this work,a small amount of In was added to NdFeB magnets by induction melting to systematically investiga... The grain boundary phase affects the magnetic properties and corrosion resistance of sintered NdFeB magnets.In this work,a small amount of In was added to NdFeB magnets by induction melting to systematically investigate its effect on the evolution of the microstructure,magnetic properties and corrosion resistance of NdFeB magnets.Microstructural analysis illustrated that minor In addition generated more grain boundary phases and an abundant amorphous phase at the triple-junction grain boundary.While the addition of In failed to enhance the magnetic isolation effect between adjacent matrix grains,its incorporation fortuitously elevated the electrochemical potential of the In-containing magnets.Besides,during corrosion,an In-rich precipitate phase formed,hindering the ingress of the corrosive medium into the magnet.Consequently,this significantly bolstered the corrosion resistance of the sintered NdFeB magnets.The phase formation,magnetic properties and corrosion resistance of In-doped NdFeB magnets are detailed in this work,which provides new prospects for the preparation of high-performance sintered NdFeB magnets. 展开更多
关键词 In-doping NdFeB magnets magnetic properties corrosion resistance
下载PDF
Enhancing corrosion resistance of plasma electrolytic oxidation coatings on AM50 Mg alloy by inhibitor containing Ba(NO_(3))_(2) solutions
6
作者 Jirui Ma Xiaopeng Lu +3 位作者 Santosh Prasad Sah Qianqian Chen You Zhang Fuhui Wang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第9期2048-2061,共14页
To enhance the long-term corrosion resistance of the plasma electrolytic oxidation(PEO)coating on the magnesium(Mg)alloy,an inorganic salt combined with corrosion inhibitors was used for posttreatment of the coating.I... To enhance the long-term corrosion resistance of the plasma electrolytic oxidation(PEO)coating on the magnesium(Mg)alloy,an inorganic salt combined with corrosion inhibitors was used for posttreatment of the coating.In this study,the corrosion performance of PEO-coated AM50 Mg was significantly improved by loading sodium lauryl sulfonate(SDS)and sodium dodecyl benzene sulf-onate into Ba(NO_(3))_(2) post-sealing solutions.Scanning electron microscopy,X-ray photoelectron spectroscopy,X-ray diffraction,Fourier transform infrared spectrometer,and ultraviolet-visible analyses showed that the inhibitors enhanced the incorporation of BaO_(2) into PEO coatings.Electrochemical impedance showed that post-sealing in Ba(NO_(3))_(2)/SDS treatment enhanced corrosion resistance by three orders of magnitude.The total impedance value remained at 926Ω·cm^(2)after immersing in a 0.5wt%NaCl solution for 768 h.A salt spray test for 40 days did not show any obvious region of corrosion,proving excellent post-sealing by Ba(NO_(3))_(2)/SDS treatment.The corrosion resistance of the coating was enhanced through the synergistic effect of BaO2 pore sealing and SDS adsorption. 展开更多
关键词 Mg plasma electrolytic oxidation posttreatment corrosion resistance
下载PDF
Improving corrosion resistance of additively manufactured WE43 magnesium alloy by high temperature oxidation for biodegradable applications
7
作者 Jinge Liu Bangzhao Yin +7 位作者 Fei Song Bingchuan Liu Bo Peng Peng Wen Yun Tian Yufeng Zheng Xiaolin Ma Caimei Wang 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第3期940-953,共14页
Laser powder bed fusion(L-PBF)has been employed to additively manufacture WE43 magnesium(Mg)alloy biodegradable implants,but WE43 L-PBF samples exhibit excessively rapid corrosion.In this work,dense WE43 L-PBF samples... Laser powder bed fusion(L-PBF)has been employed to additively manufacture WE43 magnesium(Mg)alloy biodegradable implants,but WE43 L-PBF samples exhibit excessively rapid corrosion.In this work,dense WE43 L-PBF samples were built with the relativity density reaching 99.9%.High temperature oxidation was performed on the L-PBF samples in circulating air via various heating temperatures and holding durations.The oxidation and diffusion at the elevated temperature generated a gradient structure composed of an oxide layer at the surface,a transition layer in the middle and the matrix.The oxide layer consisted of rare earth(RE)oxides,and became dense and thick with increasing the holding duration.The matrix was composed ofα-Mg,RE oxides and Mg_(24)RE_(5) precipitates.The precipitates almost disappeared in the transition layer.Enhanced passivation effect was observed in the samples treated by a suitable high temperature oxidation.The original L-PBF samples lost 40%weight after 3-day immersion in Hank’s solution,and broke into fragments after 7-day immersion.The casted and solution treated samples lost roughly half of the weight after 28-day immersion.The high temperature oxidation samples,which were heated at 525℃ for 8 h,kept the structural integrity,and lost only 6.88%weight after 28-day immersion.The substantially improved corrosion resistance was contributed to the gradient structure at the surface.On one hand,the outmost dense layer of RE oxides isolated the corrosive medium;on the other hand,the transition layer considerably inhibited the corrosion owing to the lack of precipitates.Overall,high temperature oxidation provides an efficient,economic and safe approach to inhibit the corrosion of WE43 L-PBF samples,and has promising prospects for future clinical applications. 展开更多
关键词 Laser powder bed fusion Biodegradable magnesium alloy High temperature oxidation corrosion resistance WE43.
下载PDF
First Principles Calculations for Corrosion in Mg-Li-Al Alloys with Focus on Corrosion Resistance: A Comprehensive Review
8
作者 Muhammad Abdullah Khan Muhammad Usman Yuhong Zhao 《Computers, Materials & Continua》 SCIE EI 2024年第11期1905-1952,共48页
This comprehensive review examines the structural,mechanical,electronic,and thermodynamic properties of Mg-Li-Al alloys,focusing on their corrosion resistance and mechanical performance enhancement.Utilizing first-pri... This comprehensive review examines the structural,mechanical,electronic,and thermodynamic properties of Mg-Li-Al alloys,focusing on their corrosion resistance and mechanical performance enhancement.Utilizing first-principles calculations based on Density Functional Theory(DFT)and the quasi-harmonic approximation(QHA),the combined properties of the Mg-Li-Al phase are explored,revealing superior incompressibility,shear resistance,and stiffness compared to individual elements.The review highlights the brittleness of the alloy,supported by B/G ratios,Cauchy pressures,and Poisson’s ratios.Electronic structure analysis shows metallic behavior with varied covalent bonding characteristics,while Mulliken population analysis emphasizes significant electron transfer within the alloy.This paper also studied thermodynamic properties,including Debye temperature,heat capacity,enthalpy,free energy,and entropy,which are precisely examined,highlighting the Mg-Li-Al phase sensitive to thermal conductivity and thermal performance potential.Phonon density of states(PHDOS)confirms dynamic stability,while anisotropic sound velocities reveal elastic anisotropies.This comprehensive review not only consolidates the current understanding of the Mg-Li-Al alloy’s properties but also proposes innovative strategies for enhancing corrosion resistance.Among these strategies is the introduction of a corrosion barrier akin to the Mg-Li-Al network,which holds promise for advancing both the applications and performance of these alloys.This review serves as a crucial foundation for future research aimed at optimizing alloy design and processing methods. 展开更多
关键词 First-principles calculations Mg-Li-Al alloys corrosion resistance thermodynamic properties mechanical properties
下载PDF
Improvement of corrosion resistance of PEO coated dissimilar Ti/Mg0.6Ca couple
9
作者 Ting Wu Mohammad Fazel +8 位作者 Maria Serdechnova Vasil M.Garamus D.C.Florian Wieland Fabian Wilde Julian Moosmann Thomas Ebel Regine Willumeit-Römer Carsten B.lawert Mikhail L.Zheludkevich 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第7期2741-2755,共15页
With the growing demand for weight reduction,the application of joint lightweight structural materials is increasing.Magnesium alloys feature low density,high specific strength and good formability,offering significan... With the growing demand for weight reduction,the application of joint lightweight structural materials is increasing.Magnesium alloys feature low density,high specific strength and good formability,offering significant advantages for fuel efficiency and load capacity.Combined with Ti,a dissimilar Ti/Mg composite material provides great flexibility combining the properties of each material.However,because of the great differences in chemical and electrochemical properties between Mg and Ti,it is imperative to address the galvanic corrosion problem of such dissimilar Ti/Mg components.This work presents an investigation of the PEO processing of sintered Ti/Mg0.6Ca couples,aiming to improve the corrosion resistance of such dissimilar alloy combinations using a phosphate-aluminate electrolyte.The results show that uniform and continuous coatings can be formed on the dissimilar Ti/Mg0.6Ca couple.The coating mainly contains MgO and MgAl_(2)O_(4)on the Mg0.6Ca side,and Al_(2)TiO_(5)is the dominant phase on the Ti side.The work also took advantage of synchrotron X-ray computed tomography(CT)scanning to achieve 3D reconstruction of the coating morphology,which can be a fast method to assess the porosity and compactness of the coating and further predict the coating corrosion resistance.The coating effectively improved the corrosion resistance of the dissimilar Ti/Mg0.6Ca couple. 展开更多
关键词 Plasma electrolytic oxidation Galvanically couple Material mix corrosion resistance
下载PDF
Effect of low concentration electrolytes on the formation and corrosion resistance of PEO coatings on AM50 magnesium alloy
10
作者 Peng Xie Carsten Blawert +4 位作者 Maria Serdechnova Natalia Konchakova Tatsiana Shulha Ting Wu Mikhail L.Zheludkevich 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第4期1386-1405,共20页
In this paper,the formation process,morphology,and electrochemical performance of PEO coatings on AM50 magnesium alloy prepared in low concentration phosphate,aluminate,and phosphate-aluminate electrolytes were system... In this paper,the formation process,morphology,and electrochemical performance of PEO coatings on AM50 magnesium alloy prepared in low concentration phosphate,aluminate,and phosphate-aluminate electrolytes were systematically studied.The results show that the coatings prepared from the phosphate electrolytes have a higher thickness and better corrosion resistance properties compared to the other electrolytes.The coatings prepared from low concentration phosphate-aluminate mixed electrolytes have slightly thinner thickness,a similar coating structure and an order of magnitude lower value of electrochemical impedance compared with phosphate electrolyte coatings.The Coatings prepared from low concentration aluminate electrolytes have the lowest thickness and the worst corrosion resistance properties which gets close to corrosion behavior of the bare AM50 under the same test conditions.Considering application,coatings prepared from single low concentration phosphate electrolytes and low concentration phosphate-aluminate electrolytes have greater potential than single low concentration aluminate coatings.However,reducing the electrolyte concentrations of coating forming ions too much has negative influence on the coating growth rate. 展开更多
关键词 Plasma electrolytic oxidation Low concentration electrolytes corrosion resistance AM50 magnesium alloy
下载PDF
Performance Assessment on Corrosion Resistance of Refractory Materials Based on High-temperature Machine Vision Technology
11
作者 Chenchen LIU Ao HUANG +3 位作者 Yan YU Guoping WEI Shenghao LI Huazhi GU 《China's Refractories》 CAS 2024年第3期42-48,共7页
Refractory materials,as the crucial foundational materials in high-temperature industrial processes such as metallurgy and construction,are inevitably subjected to corrosion and penetration from high-temperature media... Refractory materials,as the crucial foundational materials in high-temperature industrial processes such as metallurgy and construction,are inevitably subjected to corrosion and penetration from high-temperature media during their service.Traditionally,observing the in-situ degradation process of refractory materials in complex high-temperature environments has presented challenges.Post-corrosion analysis are commonly employed to assess the slag resistance of refractory materials and understand the corrosion mechanisms.However,these methods often lack information on the process under the conditions of thermal-chemical-mechanical coupling,leading to potential biases in the analysis results.In this work,we developed a non-contact high-temperature machine vision technology by the integrating Digital Image Correlation(DIC)with a high-temperature visualization system to explore the corrosion behavior of Al2O3-SiO2 refractories against molten glass and Al2O3-MgO dry ramming refractories against molten slag at different temperatures.This technology enables realtime monitoring of the 2D or 3D overall strain and average strain curves of the refractory materials and provides continuous feedback on the progressive corrosion of the materials under the coupling conditions of thermal,chemical,and mechanical factors.Therefore,it is an innovative approach for evaluating the service behavior and performance of refractory materials,and is expected to promote the digitization and intelligence of the refractory industry,contributing to the optimization and upgrading of product performance. 展开更多
关键词 refractory materials high-temperature machine vision Digital Image Correlation(DIC) corrosion resistance
下载PDF
NaF assisted preparation and the improved corrosion resistance of high content ZnO doped plasma electrolytic oxidation coating on AZ31B alloy
12
作者 Chao Yang Jian Huang +7 位作者 Suihan Cui Ricky Fu Liyuan Sheng Daokui Xu Xiubo Tian Yufeng Zheng Paul K.Chu Zhongzhen Wu 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第9期3602-3615,共14页
In the present research,the NaF assisted plasma electrolytic oxidation(PEO)is designed to fabricate the high-content ZnO nanoparti-cles doped coating on AZ31B alloy.The microstructure,phase constituents and corrosion ... In the present research,the NaF assisted plasma electrolytic oxidation(PEO)is designed to fabricate the high-content ZnO nanoparti-cles doped coating on AZ31B alloy.The microstructure,phase constituents and corrosion behavior of the PEO coatings are investigated systematically.The results reveal that the introduction of NaF promotes the formation of MgF2 nanophases in the passivation layer on Mg alloy,decreasing the breakdown voltage and discharge voltage.As a result,the continuous arcing caused by high discharge voltage is alleviated.With the increasing of NaF content,the Zn content in the PEO coating is enhanced and the pore size in the coating is decreased correspondingly.Due to the high-content ZnO doping,the PEO coating protected AZ31B alloy demonstrates the better corrosion resistance.Compared with the bare AZ31B alloy,the high-content ZnO doped PEO coated sample shows an increased corrosion potential from-1.465 V to-1.008 V,a decreased corrosion current density from 3.043×10^(-5) A·cm^(-2) to 3.960×10^(-8) A·cm^(-2) and an increased charge transfer resistance from 1.213×10^(2) ohm·cm^(2) to 2.598×10^(5) ohm·cm^(2).Besides,the high-content ZnO doped PEO coated sample also has the excellent corrosion resistance in salt solution,exhibiting no obvious corrosion after more than 2000 h neutral salt spraying and 28 days’immersion testing.The improved corrosion resistance can be ascribed to the relative uniform distribution of ZnO in PEO coating which can transform to Zn(OH)2 and form a continuous protective layer along the corrosion interface. 展开更多
关键词 AZ31B alloy Plasma electrolytic oxidation(PEO) ZnO doping NAF corrosion resistant
下载PDF
Corrosion resistance and anti-soiling performance of micro-arc oxidation/graphene oxide/stearic acid superhydrophobic composite coating on magnesium alloys 被引量:7
13
作者 Dong Wang Chen Ma +4 位作者 Jinyu Liu Weidong Li Wei Shang Ning Peng Yuqing Wen 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第6期1128-1139,共12页
Magnesium(Mg)alloys,the lightest metal construction material used in industry,play a vital role in future development.However,the poor corrosion resistance of Mg alloys in corrosion environments largely limits their p... Magnesium(Mg)alloys,the lightest metal construction material used in industry,play a vital role in future development.However,the poor corrosion resistance of Mg alloys in corrosion environments largely limits their potential wide applications.Therefore,a micro-arc oxidation/graphene oxide/stearic acid(MAO/GO/SA)superhydrophobic composite coating with superior corrosion resistance was fabricated on a Mg alloy AZ91D through micro-arc oxidation(MAO)technology,electrodeposition technique,and self-assembly technology.The composition and microstructure of the coating were characterized by scanning electron microscopy,X-ray diffraction,energy dispersive spectroscopy,and Raman spectroscopy.The effective protection of the MAO/GO/SA composite coating applied to a substrate was evaluated using potentiodynamic polarization,electrochemical impedance spectroscopy tests,and salt spray tests.The results showed that the MAO/GO/SA composite coating with a petal spherical structure had the best superhydrophobicity,and it attained a contact angle of 159.53°±2°.The MAO/GO/SA composite coating exhibited high resistance to corrosion,according to electrochemical and salt spray tests. 展开更多
关键词 magnesium alloy composite coating SUPERHYDROPHOBIC corrosion resistance anti-soiling performance
下载PDF
ZIF-8-based micro-arc oxidation composite coatings enhanced the corrosion resistance and superhydrophobicity of a Mg alloy 被引量:7
14
作者 Shiquan Jiang Zhiyuan Zhang +3 位作者 Dong Wang Yuqing Wen Ning Peng Wei Shang 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第4期1367-1380,共14页
Mg alloys are considered the most promising engineering materials because of their unique properties.However,the uncontrolled corrosion rate of these alloys limits their applications.Therefore,in this study,a micro-ar... Mg alloys are considered the most promising engineering materials because of their unique properties.However,the uncontrolled corrosion rate of these alloys limits their applications.Therefore,in this study,a micro-arc oxidation layer was used as a transition layer to“directly”grow a zinc-based metal-organic framework(MOF)composite coating on the surface of a Mg alloy(AZ91D).Herein,the two zeolitic imidazolate framework(ZIF-8)coatings with different morphologies were separately prepared by homologous metal oxide induction and a one-step in-situ growth method.The superhydrophobic composite coating showed strong hydrophobicity and self-cleaning properties,which could prevent the penetration of water and corrosive ions(Cl^(−))into the surface of AZ91D.Electrochemical tests demonstrated that the super-hydrophobic composite coatings greatly enhanced the corrosion resistance of AZ91D,and the corrosion current density decreased from 10^(−5)to 10^(−9)A/cm^(2).These results indicate that the ZIF-8 coatings are beneficial for improving the hydrophobicity and enhancing the corrosion resistance of Mg alloys.Therefore,MOF composite coatings provide a new strategy that can be used to prepare multifunctional anticorrosion coatings on metal substrates. 展开更多
关键词 Mg alloy Composite coating Metal-organic framework corrosion resistance SUPERHYDROPHOBICITY
下载PDF
ZnO@ZIF-8 core-shell structure nanorods superhydrophobic coating on magnesium alloy with corrosion resistance and self-cleaning 被引量:2
15
作者 Shiquan Jiang Weidong Li +5 位作者 Jinyu Liu Jiqiong Jiang Zhe Zhang Wei Shang Ning Peng Yuqing Wen 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第9期3287-3301,共15页
A longstanding quest in material science has been the development of superhydrophobic coating based on a single material, without the requirement of fluorination or silane treatment. In this work, the micro-arc oxidat... A longstanding quest in material science has been the development of superhydrophobic coating based on a single material, without the requirement of fluorination or silane treatment. In this work, the micro-arc oxidation(MAO) coating as transition layer can effectively enhance the bonding force of the superhydrophobic coating. The semiconductor@metal organic frameworks(MOFs) core-shell structure was synthesized by a simple self-templating method, and obtained ZnO@2-methylimidazole zinc salt(ZIF-8) nanorods array on magnesium(Mg)alloy. ZnO nanorods not only act as the template but also provide Zn^(2+) for ZIF-8. In addition, we proved that the ligand concentration,synthesis time and temperature are the keys to the preparation of ZnO@ZIF-8 nanorods. As we expect, the ZnO@ZIF-8 nanorods array can trap air in the gaps to form an air layer, and the coating exhibits superhydrophobic properties(154.81°). Excitingly, ZnO@ZIF-8 nanorods array shown a superhydrophobic property, without the requirement of fluorination or silane treatment. The results shown that the coating has good chemical stability and self-cleaning performance. Meanwhile, the corrosion resistance has been significantly improved, R_(ct) was increased from 1.044×10^(3) to 1.414×10^(6) Ω/cm^(2) and I_(corr) was reduced from 4.275×10^(-5) to 5.611×10^(-9)A/cm^2. Therefore, the semiconductor@MOFs core-shell structure has broad application prospects in anti-corrosion. 展开更多
关键词 Mg alloy ZnO@ZIF-8 Coatings corrosion resistance SUPERHYDROPHOBIC
下载PDF
Corrosion resistance of Mg-Al-LDH steam coating on AZ80 Mg alloy:Effects of citric acid pretreatment and intermetallic compounds 被引量:2
16
作者 Jin-Meng Wang Xiang Sun +6 位作者 Liang Song M.Bobby Kannan Fen Zhang Lan-Yue Cui Yu-Hong Zou Shuo-Qi Li Rong-Chang Zeng 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第8期2967-2979,共13页
In this study,the effects of intermetallic compounds(Mg_(17)Al_(12)and Al_(8)Mn_(5))on the Mg-Al layered double hydroxide(LDH)formation mechanism and corrosion behavior of an in-situ LDH/Mg(OH)_(2)steam coatings on AZ... In this study,the effects of intermetallic compounds(Mg_(17)Al_(12)and Al_(8)Mn_(5))on the Mg-Al layered double hydroxide(LDH)formation mechanism and corrosion behavior of an in-situ LDH/Mg(OH)_(2)steam coatings on AZ80 Mg alloy were investigated.Citric acid(CA)was used to activate the alloy surface during the pretreatment process.The alloy was first pretreated with CA and then subjected to a hydrothermal process using ultrapure water to produce Mg-Al-LDH/Mg(OH)_(2)steam coating.The effect of different time of acid pretreatment on the activation of the intermetallic compounds was investigated.The microstructure and elemental composition of the obtained coatings were analyzed using FE-SEM,EDS,XRD and FT-IR.The corrosion resistance of the coated samples was evaluated using different techniques,i.e.,potentiodynamic polarization(PDP),electrochemical impedance spectrum(EIS)and hydrogen evolution test.The results indicated that the CA pretreatment significantly influenced the activity of the alloy surface by exposing the intermetallic compounds.The surface area fraction of Mg_(17)Al_(12)and Al_(8)Mn_(5)phases on the surface of the alloy was significantly higher after the CA pretreatment,and thus promoted the growth of the subsequent Mg-Al-LDH coatings.The CA pretreatment for 30 s resulted in a denser and thicker LDH coating.Increase in the CA pretreatment time significantly led to the improvement in corrosion resistance of the coated AZ80 alloy.The corrosion current density of the coated alloy was lower by three orders of magnitude as compared to the uncoated alloy. 展开更多
关键词 Magnesium alloy Citric acid pretreatment Steam coating Layered double hydroxide Intermetallic compounds corrosion resistance
下载PDF
Corrosion resistance and electrical conductivity of V/Ce conversion coating on magnesium alloy AZ31B 被引量:2
17
作者 Jinxiao Yang Xudong Wang +1 位作者 Yiren Cai Xiuyu Yang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第4期653-659,共7页
A V/Ce conversion coating was deposited in the surface of AZ31B magnesium alloy in a solution containing vanadate and cerium nitrate.The coating composition and morphology were examined.The conversion coating appears ... A V/Ce conversion coating was deposited in the surface of AZ31B magnesium alloy in a solution containing vanadate and cerium nitrate.The coating composition and morphology were examined.The conversion coating appears to consist of a thin and cracked coating with a scattering of spherical particles.The corrosion behavior of the substrate and conversion coating was studied by potentiodynamic polarization and electrochemical impedance spectroscopy (EIS).Compared with AZ31B magnesium alloy,the corrosion current density of the conversion coating is decreased by two orders of magnitude.The total impedance of the V/Ce conversion coating rise to 1.6×10^(3)Ω·cm^(2)in contrast with2.2×10^(2)Ω·cm^(2)of the bare AZ31B.In addition,the electrical conductivity of the coating was assessed by conductivity meter and Mott-Schottky measurement.The results reveal a high dependence of the conductivity of the coating on the semiconductor properties of the phase compositions. 展开更多
关键词 AZ31B magnesium alloy conversion coating CONDUCTIVITY corrosion resistance
下载PDF
Self-repairing functionality and corrosion resistance of in-situ Mg-Al LDH film on Al-alloyed AZ31 surface 被引量:2
18
作者 Yi-Xing Zhu Guang-Ling Song Peng-Peng Wu 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第5期1567-1579,共13页
A novel Mg-Al LDH film was in-situ prepared hydrothermally in an alkaline aqueous solution on an Al-alloyed AZ31 substrate.The structural,chemical and functional characteristics of the film were explored by means of s... A novel Mg-Al LDH film was in-situ prepared hydrothermally in an alkaline aqueous solution on an Al-alloyed AZ31 substrate.The structural,chemical and functional characteristics of the film were explored by means of scanning electron microscope(SEM),X-ray diffraction(XRD),energy dispersive spectrometer(EDS),polarization curve,AC impedance and salt immersion tests,respectively.The anti-corrosion results indicated that the Mg-Al LDH film on the Al-alloyed AZ31 surface could effectively protect the AZ31 from corrosion attack even after 90 days of immersion in 3.5 wt.%NaCl solution.The protection performance is surprisingly better than most of the reported coatings on Mg alloys.More interestingly,when the Mg-Al LDH film was scratched,the exposed Al-alloyed surface might gradually release metal ions and re-generate dense LDH nano-sheets in the corrosive environment to inhibit the further corrosion there,exhibiting a self-repairing behavior.The combination of the benign long-term protection and desirable self-repairing performance in this new process of surface-alloying and LDH-formation may significantly extend the practical application of magnesium alloys. 展开更多
关键词 LDH film Surface alloying corrosion resistance SELF-REPAIRING
下载PDF
Effect of modified MgAl-LDH coating on corrosion resistance and friction properties of aluminum alloy
19
作者 Zuokai Wang Zhuangzhuang Xiong +6 位作者 Xinxin Li Di Wang Yuelin Wang Shangcheng Wu Lixia Ying Zhideng Wang Guixiang Wang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第11期81-95,共15页
The in-situ growing approach was utilized in this article to construct the magnesium–aluminum layered double hydroxide(MgAl-LDH)film on the surface of a 1060 aluminum anodized film.To improve the corrosion resistance... The in-situ growing approach was utilized in this article to construct the magnesium–aluminum layered double hydroxide(MgAl-LDH)film on the surface of a 1060 aluminum anodized film.To improve the corrosion resistance and friction qualities of aluminum alloy,the MgAl-LDH coating was treated using stearic acid(SA)and thiourea(TU).The aluminum substrate and anodized aluminum film layer corroded to varying degrees after 24 h of immersion in 3.5%(mass)NaCl solution,while the modified hydrotalcite film layer continued to exhibit the same microscopic morphology even after being immersed for 7 d.The results show that the synergistic action of thiourea and stearic acid can effectively improve the corrosion resistance of the MgAl-LDH substrate.The tribological testing reveals that the hydrotalcite film layer and the modified film layer lowered the friction coefficient of the anodized aluminum surface substantially.The results of the simulations and experiments demonstrate that SA forms the dense LDH-TU interlayer film layer by exchanging NO_(3)^(-)ions between TU layers on the one hand and the LDH-SA film layer by adsorption on the surface of LDH on the other.Together,these two processes create LDH-TUSA,which can significantly increase the substrate’s corrosion resistance.This synergistically modified superhydrophobic and retardant hydrotalcite film layer offers a novel approach to the investigation of wear reduction and corrosion protection on the surface of aluminum and its alloys. 展开更多
关键词 ANODIZING Layered double hydroxide SUPERHYDROPHOBIC corrosion resistance Tribological properties
下载PDF
Incorporation of Mg-phenolic networks as a protective coating for magnesium alloy to enhance corrosion resistance and osteogenesis in vivo
20
作者 Chang Wang Bo Zhang +6 位作者 Sen Yu Hao Zhang Wenhao Zhou Rifang Luo Yunbing Wang Weiguo Bian Genwen Mao 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第11期4247-4262,共16页
Magnesium(Mg) and its alloys have been intensively studied to develop the next generation of bone implants recently, but their clinical application is restricted by rapid degradation and unsatisfied osteogenic effect ... Magnesium(Mg) and its alloys have been intensively studied to develop the next generation of bone implants recently, but their clinical application is restricted by rapid degradation and unsatisfied osteogenic effect in vivo. A bioactive chemical conversion Mg-phenolic networks complex coating(e EGCG) was stepwise incorporated by epigallocatechin-3-gallate(EGCG) and exogenous Mg^(2+)on Mg-2Zn magnesium alloy. Simplex EGCG induced chemical conversion coating(c EGCG) was set as compare group. The in vitro corrosion behavior of Mg-2Zn alloy, c EGCG and e EGCG was evaluated in SBF using electrochemical(PDP, EIS) and immersion test. The cytocompatibility was investigated with rat bone marrow mesenchymal stem cells(r BMSCs). Furthermore, the in vivo tests using a rabbit model involved micro computed tomography(Micro-CT) analysis, histological observation, and interface analysis. The results showed that the e EGCG is Mgphenolic multilayer coating incorporated Mg-phenolic networks, which is rougher, more compact and much thicker than c EGCG. The e EGCG highly improved the corrosion resistance of Mg-2Zn alloy, combined with its lower average hemolytic ratios, continuous high scavenging effect ability and relatively moderate contact angle features, resulting in a stable and suitable biological environment, obviously promoted r BMSCs adhesion and proliferation. More importantly, Micro-CT, histological and interface elements distribution evaluations all revealed that the e EGCG effectively inhibited degradation and enhanced bone tissue formation of Mg alloy implants. This study puts forward a promising bioactive chemical conversion coating with Mg-phenolic networks for the application of biodegradable orthopedic implants. 展开更多
关键词 Mg-phenolic networks Bioactive coating Mg-2Zn alloy corrosion resistance OSTEOGENESIS
下载PDF
上一页 1 2 41 下一页 到第
使用帮助 返回顶部