The characteristics and microstructural changes of cyclic softening in hot-working die steels 5CrNiMo and 5Cr2NiMoVSi were studied under strain controlled low-cycle fatigue.The re- sults show that the cyclic softening...The characteristics and microstructural changes of cyclic softening in hot-working die steels 5CrNiMo and 5Cr2NiMoVSi were studied under strain controlled low-cycle fatigue.The re- sults show that the cyclic softening is featured in both steels hardened in different conditions under the strain controlled amplitude range of Δε_t/2=0.6-1.8×10^(-2).The softening effect mainly occurs in some initial cycles and the stress amplitude varies slightly in the sequential cycles,i.e.the softening effect is minified.No obvious stress saturation phenomenon was ob- served during the whole cyclic deformation.The TEM analysis shows that the cyclic softening is related to heterogenity of plastic deformation.The softening of the tested steels is caused by the formation of the dislocation cell structure with low density and low internal stress,and by the fragmentation and redissolution of fine carbides into matrix.展开更多
The low cycle fatigue (LCF) behavior of P92 martensitic steel was investigated under different controlled strain amplitudes at room and high temperatures (873 K). The cyclic stress responses at all temperatures an...The low cycle fatigue (LCF) behavior of P92 martensitic steel was investigated under different controlled strain amplitudes at room and high temperatures (873 K). The cyclic stress responses at all temperatures and strain amplitudes exhibited obviously rapid softening behavior at the early stage of fatigue life, and there was no saturated stage at high temperature. The fracture surfaces of the fatigue samples were observed by scanning electron microsco py (SEM) and optical microscopy. It was shown that crack initiation and propagation occurred transgranularly at both testing temperatures. A typical character was the high density crack branches or secondary cracks along fatigue striations at high temperature, which initiated from the oxidized inclusions and grain boundaries. Further investiga- tion by transmission electron microscopy (TEM) showed that the softening behavior was attributed to the micro- structure evolution during fatigue life, such as annihilation of dislocations and migration of martensite laths as well as carbide coarsening, especially for samples tested at high temperature.展开更多
The effect of rare earth (RE) on cyclic softening of low frequency fatigue of the hot rolled steel 60CrMnMo at high temperature was investigated. The hardness of specimens before thermal fatigue test and being cycled ...The effect of rare earth (RE) on cyclic softening of low frequency fatigue of the hot rolled steel 60CrMnMo at high temperature was investigated. The hardness of specimens before thermal fatigue test and being cycled 180 times from room temperature to 650℃ was compared. The results show that by adding a certain amount of RE in steel 60CrMnMo, the cyclic softening during low frequency fatigue test at high temperature can be restrained considerly. The carbide particles were refined during tempering treatment and the agglomeration and growth of carbide particles can be obstructed during thermal cycle.展开更多
A series of fully reversed axial, torsional strain-controlled cyclic tests and two multiaxial ratcheting tests were conducted on weld metal specimens using an Instron8521 tension-torsional servo-controlled testing mac...A series of fully reversed axial, torsional strain-controlled cyclic tests and two multiaxial ratcheting tests were conducted on weld metal specimens using an Instron8521 tension-torsional servo-controlled testing machine. The weld metal showed clear cyclic softening under axial, torsional and multiaxial loading. A modified kinematic hardening rule was proposed in which a multiaxial-loading-dependent parameter incorporated the radial evanescence term of the Burlet-Cailletaud mode with the Ohno-Wang kinematic hardening rule to predict the multiaxial ratcheting effects. The introduction of yield stress evolved with accumulated plasticity strain enables the model to predict cyclic plasticity behavior of cyclic softening or cyclic hardening materials. Thus modified model considers the isotropic hardening as well as kinematic hardening of yield surface, and it can present description of plasticity behavior and ratcheting of cyclic softening and cyclic hardening materials well under multiaxial loading.展开更多
The strain cyclic characteristics and ratcheting behavior of 25CDV4.11 steel were studied by the experiments under uniaxial cyclic loading with relatively high cyclic number and at room temperature. The cyclic hardeni...The strain cyclic characteristics and ratcheting behavior of 25CDV4.11 steel were studied by the experiments under uniaxial cyclic loading with relatively high cyclic number and at room temperature. The cyclic hardening/softening feature of the material was first observed under the uniaxial strain cycling with various strain amplitudes. Then, the ratcheting behavior of the material was researched in detail, and the effects of stress amplitude and mean stress on the ratcheting were discussed under uniaxial asymmetrical stress cycling. Comparing with the experimental results of SS316L stainless steel, it is concluded that the material exhibits remarkable cyclic softening feature, and then a special ratcheting behavior is caused. Some conclusions useful to establish corresponding constitutive model are obtained.展开更多
The low-cycle fatigue behavior of solutionized(T4)and aged(T6)WE43 magnesium alloys was studied at room temperature.The total strain amplitudes(△ε_(t)/2)were 0.4%,0.5%,0.6%,0.7%and 1.0%.Detailed microstructure evolu...The low-cycle fatigue behavior of solutionized(T4)and aged(T6)WE43 magnesium alloys was studied at room temperature.The total strain amplitudes(△ε_(t)/2)were 0.4%,0.5%,0.6%,0.7%and 1.0%.Detailed microstructure evolution was characterized by scanning electron microscope(SEM),electron backscattered diffraction(EBSD)and transmission electron microscopy(TEM).The results showed that plastic strain amplitude decreased with the increasing cycle number in T4 alloy,which is due to the dense persistent slip bands(PSBs)and dynamic precipitates hinderingdislocation slip.In contrast,the plastic strain amplitude increases gradually in T6 alloy,which is attributed to the enhanced activation of pyramidal slip.The low-cycle fatigue life of T6 alloy with larger fatigue ductility coefficient is longer than that of T4 alloy.The Coffin-Manson model can accurately predict the fatigue life of T4 and T6 alloys compared to Jahed-Varvani(JV)energy model.For T4 alloy,the fatigue damage mechanism was dominated by basal slip.For T6 alloy,the enhanced pyramidal slip plays an important role to accommodate plastic deformation.展开更多
Although the bearing capacity of plate anchors in clay has been studied extensively, the results considering the effects of offshore cyclic loading are relatively rare. In the present study, 1g model tests are carried...Although the bearing capacity of plate anchors in clay has been studied extensively, the results considering the effects of offshore cyclic loading are relatively rare. In the present study, 1g model tests are carried out to investigate the effect of cyclic loading on the bearing capacity of plate anchors in clay. The ultimate pullout capacity of plate anchors in clay decreases as the accumulated plastic shear strain grows due to the strain-softening of clay under cyclic loading. The load-displacement curves of these tests are presented and the effects of overburden stress and cyclic loading amplitude on the strain-softening behavior are discussed.展开更多
AISI H13 hot work tool steel is widely used for hot forging, hot-extrusion and die-casting because of its high temperature strength, impact toughness, heat checking resistance and wear resistance, etc. The thermally i...AISI H13 hot work tool steel is widely used for hot forging, hot-extrusion and die-casting because of its high temperature strength, impact toughness, heat checking resistance and wear resistance, etc. The thermally induced surface damage, i. e., thermal fatigne,is believed to be controlled by the magnitude of the imposed cyclic strain. The thermal fatigue on the surface of hot working die, which is responsible to the initiation of the cracks, is reported to result in more than 80 % of the failure of dies.展开更多
An investigation was conducted to examine the low cycle symmetric push-pull fatigue behaviour of the Cr-Mn-N dual-phase stainless steel.Two groups of specimens,A and B, were used,they were solution treated at 1050 and...An investigation was conducted to examine the low cycle symmetric push-pull fatigue behaviour of the Cr-Mn-N dual-phase stainless steel.Two groups of specimens,A and B, were used,they were solution treated at 1050 and 1250℃,respectively.The.fatigue life of group A is almost twice as long as that of group B under the same total strain amplitude.The energy loss during the fatigue tests and the mophology of the fracture surfaces have been stu- died and discussed.展开更多
Softening behavior of lath martensitic steels is related to the coarsening of laths and dislocation evolution during cyclic deformation.Involving the physical mechanism,we developed a dislocation-based model to study ...Softening behavior of lath martensitic steels is related to the coarsening of laths and dislocation evolution during cyclic deformation.Involving the physical mechanism,we developed a dislocation-based model to study the cyclic plastic response for lath martensitic steels.For a block,we proposed an interfacial dislocation evolution model to physically present the interaction between mobile dislocations in the block and interfacial dislocations by considering the coarsening mechanism of the laths.Moreover,the evolution behavior of backstress caused by dislocation pile up at the block boundary has been considered.Then,a hierarchical model based on the elastic-viscoplastic self-consistent(EVPSC)theory is developed,which can realize the scale transition among representative volume element(RVE),prior austenite grains(PAGs)and blocks.According to the proposed model,the effective mechanical responses including the cyclic hysteretic loop and peak stress at different cycles for lath martensitic steel have been theoretically predicted and investigated.展开更多
High temperature low cycle fatigue tests on GH4742 superalloy were studied under the total strain-con- trolled conditions at 650 ℃. Combined with fatigue test data, fatigue properties of the alloy were analyzed. Frac...High temperature low cycle fatigue tests on GH4742 superalloy were studied under the total strain-con- trolled conditions at 650 ℃. Combined with fatigue test data, fatigue properties of the alloy were analyzed. Fracture morphology and dislocation structure were observed by scanning electron microscopy and transmission electron mi- croscopy. The results showed that fatigue life and fatigue resistance of GH4742 alloy decreased significantly with in- creasing total strain amplitude. The cyclic hardening, cyclic softening and cyclic stability phenomena of the alloy oc- curred during the low cycle fatigue process. The increasing total strain amplitude is conducive to the formation of γ1 phase. Fatigue crack propagation is controlled jointly by ductile and brittle fracture. Inhomogeneous deformation and deformation restricted in slip bands are the main reasons for the reduction of fatigue life of GH4742 alloy.展开更多
文摘The characteristics and microstructural changes of cyclic softening in hot-working die steels 5CrNiMo and 5Cr2NiMoVSi were studied under strain controlled low-cycle fatigue.The re- sults show that the cyclic softening is featured in both steels hardened in different conditions under the strain controlled amplitude range of Δε_t/2=0.6-1.8×10^(-2).The softening effect mainly occurs in some initial cycles and the stress amplitude varies slightly in the sequential cycles,i.e.the softening effect is minified.No obvious stress saturation phenomenon was ob- served during the whole cyclic deformation.The TEM analysis shows that the cyclic softening is related to heterogenity of plastic deformation.The softening of the tested steels is caused by the formation of the dislocation cell structure with low density and low internal stress,and by the fragmentation and redissolution of fine carbides into matrix.
基金Sponsored by Key Project of Shanghai Science and Technology Commission of China(10521100500)
文摘The low cycle fatigue (LCF) behavior of P92 martensitic steel was investigated under different controlled strain amplitudes at room and high temperatures (873 K). The cyclic stress responses at all temperatures and strain amplitudes exhibited obviously rapid softening behavior at the early stage of fatigue life, and there was no saturated stage at high temperature. The fracture surfaces of the fatigue samples were observed by scanning electron microsco py (SEM) and optical microscopy. It was shown that crack initiation and propagation occurred transgranularly at both testing temperatures. A typical character was the high density crack branches or secondary cracks along fatigue striations at high temperature, which initiated from the oxidized inclusions and grain boundaries. Further investiga- tion by transmission electron microscopy (TEM) showed that the softening behavior was attributed to the micro- structure evolution during fatigue life, such as annihilation of dislocations and migration of martensite laths as well as carbide coarsening, especially for samples tested at high temperature.
文摘The effect of rare earth (RE) on cyclic softening of low frequency fatigue of the hot rolled steel 60CrMnMo at high temperature was investigated. The hardness of specimens before thermal fatigue test and being cycled 180 times from room temperature to 650℃ was compared. The results show that by adding a certain amount of RE in steel 60CrMnMo, the cyclic softening during low frequency fatigue test at high temperature can be restrained considerly. The carbide particles were refined during tempering treatment and the agglomeration and growth of carbide particles can be obstructed during thermal cycle.
文摘A series of fully reversed axial, torsional strain-controlled cyclic tests and two multiaxial ratcheting tests were conducted on weld metal specimens using an Instron8521 tension-torsional servo-controlled testing machine. The weld metal showed clear cyclic softening under axial, torsional and multiaxial loading. A modified kinematic hardening rule was proposed in which a multiaxial-loading-dependent parameter incorporated the radial evanescence term of the Burlet-Cailletaud mode with the Ohno-Wang kinematic hardening rule to predict the multiaxial ratcheting effects. The introduction of yield stress evolved with accumulated plasticity strain enables the model to predict cyclic plasticity behavior of cyclic softening or cyclic hardening materials. Thus modified model considers the isotropic hardening as well as kinematic hardening of yield surface, and it can present description of plasticity behavior and ratcheting of cyclic softening and cyclic hardening materials well under multiaxial loading.
基金This work was financially supported by Theoretical Research Fund of Sichuan Province(03JY029-062-2)the Project Sponsored by the Scientific Research Foundation for the Returned Overseas Chinese Scholars,Education Ministry of ChinaTheoretical Research Fund of Southwest Jiaotong University(2003XJB15).
文摘The strain cyclic characteristics and ratcheting behavior of 25CDV4.11 steel were studied by the experiments under uniaxial cyclic loading with relatively high cyclic number and at room temperature. The cyclic hardening/softening feature of the material was first observed under the uniaxial strain cycling with various strain amplitudes. Then, the ratcheting behavior of the material was researched in detail, and the effects of stress amplitude and mean stress on the ratcheting were discussed under uniaxial asymmetrical stress cycling. Comparing with the experimental results of SS316L stainless steel, it is concluded that the material exhibits remarkable cyclic softening feature, and then a special ratcheting behavior is caused. Some conclusions useful to establish corresponding constitutive model are obtained.
基金financially supported by the Natural Science Foundation of Liaoning Province(No.2020-MS-004)the Natural Science Foundation of Liaoning(ZR2021ME241)+1 种基金the National Natural Science Foundation of China(Nos.51601193 and 51701218)the National Key Research and Development Program of China(No.2016YFB0301104)。
文摘The low-cycle fatigue behavior of solutionized(T4)and aged(T6)WE43 magnesium alloys was studied at room temperature.The total strain amplitudes(△ε_(t)/2)were 0.4%,0.5%,0.6%,0.7%and 1.0%.Detailed microstructure evolution was characterized by scanning electron microscope(SEM),electron backscattered diffraction(EBSD)and transmission electron microscopy(TEM).The results showed that plastic strain amplitude decreased with the increasing cycle number in T4 alloy,which is due to the dense persistent slip bands(PSBs)and dynamic precipitates hinderingdislocation slip.In contrast,the plastic strain amplitude increases gradually in T6 alloy,which is attributed to the enhanced activation of pyramidal slip.The low-cycle fatigue life of T6 alloy with larger fatigue ductility coefficient is longer than that of T4 alloy.The Coffin-Manson model can accurately predict the fatigue life of T4 and T6 alloys compared to Jahed-Varvani(JV)energy model.For T4 alloy,the fatigue damage mechanism was dominated by basal slip.For T6 alloy,the enhanced pyramidal slip plays an important role to accommodate plastic deformation.
基金supported by the National Natural Science Foundation of China(51121005 and 51209033)the Natural Science Foundation of Liaoning Province,China(2013020154)the Fundamental Research Funds for the Central Universities of China (DUT14ZD206)
文摘Although the bearing capacity of plate anchors in clay has been studied extensively, the results considering the effects of offshore cyclic loading are relatively rare. In the present study, 1g model tests are carried out to investigate the effect of cyclic loading on the bearing capacity of plate anchors in clay. The ultimate pullout capacity of plate anchors in clay decreases as the accumulated plastic shear strain grows due to the strain-softening of clay under cyclic loading. The load-displacement curves of these tests are presented and the effects of overburden stress and cyclic loading amplitude on the strain-softening behavior are discussed.
文摘AISI H13 hot work tool steel is widely used for hot forging, hot-extrusion and die-casting because of its high temperature strength, impact toughness, heat checking resistance and wear resistance, etc. The thermally induced surface damage, i. e., thermal fatigne,is believed to be controlled by the magnitude of the imposed cyclic strain. The thermal fatigue on the surface of hot working die, which is responsible to the initiation of the cracks, is reported to result in more than 80 % of the failure of dies.
文摘An investigation was conducted to examine the low cycle symmetric push-pull fatigue behaviour of the Cr-Mn-N dual-phase stainless steel.Two groups of specimens,A and B, were used,they were solution treated at 1050 and 1250℃,respectively.The.fatigue life of group A is almost twice as long as that of group B under the same total strain amplitude.The energy loss during the fatigue tests and the mophology of the fracture surfaces have been stu- died and discussed.
基金supported by the National Natural Science Foundation of China(Grant Nos.11988102,12002005,11632001,11521202)the Science Challenge Project(Grant No.TZ2018001).
文摘Softening behavior of lath martensitic steels is related to the coarsening of laths and dislocation evolution during cyclic deformation.Involving the physical mechanism,we developed a dislocation-based model to study the cyclic plastic response for lath martensitic steels.For a block,we proposed an interfacial dislocation evolution model to physically present the interaction between mobile dislocations in the block and interfacial dislocations by considering the coarsening mechanism of the laths.Moreover,the evolution behavior of backstress caused by dislocation pile up at the block boundary has been considered.Then,a hierarchical model based on the elastic-viscoplastic self-consistent(EVPSC)theory is developed,which can realize the scale transition among representative volume element(RVE),prior austenite grains(PAGs)and blocks.According to the proposed model,the effective mechanical responses including the cyclic hysteretic loop and peak stress at different cycles for lath martensitic steel have been theoretically predicted and investigated.
基金Sponsored by Major National Science and Technology Project of High-end CNC Machine Tools and Basic Manufacturing Equipments of China(2012ZX04010081)
文摘High temperature low cycle fatigue tests on GH4742 superalloy were studied under the total strain-con- trolled conditions at 650 ℃. Combined with fatigue test data, fatigue properties of the alloy were analyzed. Fracture morphology and dislocation structure were observed by scanning electron microscopy and transmission electron mi- croscopy. The results showed that fatigue life and fatigue resistance of GH4742 alloy decreased significantly with in- creasing total strain amplitude. The cyclic hardening, cyclic softening and cyclic stability phenomena of the alloy oc- curred during the low cycle fatigue process. The increasing total strain amplitude is conducive to the formation of γ1 phase. Fatigue crack propagation is controlled jointly by ductile and brittle fracture. Inhomogeneous deformation and deformation restricted in slip bands are the main reasons for the reduction of fatigue life of GH4742 alloy.