The growing demand for substitutes of lithium chemistries in battery leads to a surge in budding novel anion-based electrochemical energy storage,where the chloride ion batteries(CIBs)take over the role.The applicatio...The growing demand for substitutes of lithium chemistries in battery leads to a surge in budding novel anion-based electrochemical energy storage,where the chloride ion batteries(CIBs)take over the role.The application of CIBs is limited by the dissolution and side reaction of chloride-based electrode materials in a liquid electrolyte.On the flipside,its solid-state electrolytes are scarcely reported due to the challenge in realizing fast Cl^(-)conductivity.The present study reports[Al(DMSO)_(6)]Cl_(3),a solid-state metal-organic material,allows chloride ion transfer.The strong Al-Cl bonds in AlCl_(3)are broken down after coordinating of Al^(3+)by ligand DMSO,and Cl^(-)in the resulting compound is weakly bound to complexions[Al(DMSO)_(6)]^(3+),which may facilitate Cl^(-)migration.By partial replacement of Cl^(-)with PF_(6)^(-),the room-temperature ionic conductivity of as-prepared electrolyte is increased by one order of magnitude from 2.172×10^(-5)S cm^(-1)to 2.012×10^(-4)S cm^(-1).When they are assembled with Ag(anode)/Ag-AgCl(cathode)electrode system,reversible electrochemical redox reactions occur on both sides,demonstrating its potential for solid-state chloride ion batteries.The strategy by weakening the bonding interaction using organic ligands between Cl^(-)and central metallic ions may provide new ideas for developing solid chloride-ion conductors.展开更多
The title complex Co(DMSO)2(H2O)2(SCN)2 has been prepared and structurally characterized. It crystallizes in monoclinic, space group P21/n with a= 5.1981(9), b = 11.944(2), c = 12.646(2) A,β = 98.686(2)...The title complex Co(DMSO)2(H2O)2(SCN)2 has been prepared and structurally characterized. It crystallizes in monoclinic, space group P21/n with a= 5.1981(9), b = 11.944(2), c = 12.646(2) A,β = 98.686(2)°, V = 776.2(2) A^3, C6H16CoN2O4S4, Mr = 367.38, Z = 2, De = 1.572 g/cm^3, F(000) = 378 and μ(MoKa) = 1.646 mm^-1. The structure was refined to R= 0.0232 and wR = 0.0645 for 1241 observed reflections with I 〉 2σ(I). In the title complex, each Co(II) atom is octahedrally coordinated by four O atoms from two DMSO ligands and two water molecules as well as two N atoms from SCN^- ions. The title molecules are connected to each other through intermolecular hydrogen bonds to form a 1-D structure extended by eight-membered Co2O4H2 rings.展开更多
The cyclic voltammetry and potential step methods were used to investigate the electrochemical behavior of Fe 2+ and La 3+ in FeCl 2 LiCl DMSO and LaCl 3 LiCl DMSO systems on Pt, Cu and Ni cathodes. Th...The cyclic voltammetry and potential step methods were used to investigate the electrochemical behavior of Fe 2+ and La 3+ in FeCl 2 LiCl DMSO and LaCl 3 LiCl DMSO systems on Pt, Cu and Ni cathodes. The electroreduction of Fe 2+ to Fe is irreversible in one step,while the electroreduction of La 3+ to La is quasi reversible. The diffusion coefficient of La 3+ in LaCl 3 LiCl DMSO system at 298 K was 3 1×10 -6 cm 2·s -1 . The diffusion coefficient and transfer coefficient of Fe 2+ in FeCl 2 LiCl DMSO system at 298 K were 2 54×10 -6 cm 2·s -1 and 0 24, respectively. La Fe alloy films containing La from 22 7% to 37 1% (mass fraction) were prepared by potentiostatic electrolysis on Cu substrates at a deposition potential from -1 750 to -2 450 V (vs SCE). The fine La Fe alloy films were also obtained by pulse electrolysis at a pulse current densities from 2 to 6 mA·cm -2 . The surfaces of these alloy films are smooth, adhesive and uniform, and have metallic luster.展开更多
Seasonal and spatial distributions of dissolved and particulate dimethylsulfoxide(DMSOd,DMSOp)were measured in the East China Sea and the Yellow Sea during March–April 2011 and October–November 2011.The concentratio...Seasonal and spatial distributions of dissolved and particulate dimethylsulfoxide(DMSOd,DMSOp)were measured in the East China Sea and the Yellow Sea during March–April 2011 and October–November 2011.The concentrations of DMSOd and DMSOp in the surface water were 20.6(5.13–73.8)and 8.90(3.75–29.6)nmol/L in spring,and 13.4(4.17–42.7)and 8.18(3.44–22.6)nmol/L in autumn,respectively.Both DMSOd and DMSOp concentrations revealed similar seasonal changes with higher values occurring in spring,mainly because of the higher phytoplankton biomass observed in spring.Moreover,the ratios of DMSOp/chlorophyll a also exhibited an apparent seasonal change with higher values in autumn(35.7 mmol/g)and lower values in spring(23.4 mmol/g),thereby corresponding with the seasonal variation in the proportion of DMSO producers in the phytoplankton community between spring and autumn.In addition,DMSOd and DMSOp concentrations in the surface seawater revealed obvious diurnal variations with the maxima appearing in the afternoon.展开更多
The brown metallic luster La-Ni alloy powders were prepared by potentiostatic electrolysis technique in dimethylsulfoxide solution at room temperature. The atomic rate of La and Ni in alloy powders are 11∶1 and 10∶1...The brown metallic luster La-Ni alloy powders were prepared by potentiostatic electrolysis technique in dimethylsulfoxide solution at room temperature. The atomic rate of La and Ni in alloy powders are 11∶1 and 10∶1. The size of metal grains is about 0.1 to 100 μm. It shows that the micrometer powders of rare earth alloys can be obtained by controlling electrodeposition conditions. The peak potentials of -2.81 and 1.75 V are attributed to reduction of La 3+ and Ni 3+ ions, respectively. The peak potentials at -2.20 and -0.168 V are the oxidation peaks of lanthanum and nickel, respectively. When potential is more negative than -1.74 V, La(Ⅲ) and Ni(Ⅱ) will codeposit. Increasing cyclic times, the value of peak current is decreasing, and the reduction peak of La(Ⅲ) was finally disappeared.展开更多
Two diadochy cyanide-bridged bimetallic complexes [Pr(DMSO)2(H2O)3Co(CN)6]·H2O 1 and [Nd(DMSO)2(H2O)3Co(CN)6]·H2O 2 have been synthesized, and their crystal structures were determined by single-crystal X-ray...Two diadochy cyanide-bridged bimetallic complexes [Pr(DMSO)2(H2O)3Co(CN)6]·H2O 1 and [Nd(DMSO)2(H2O)3Co(CN)6]·H2O 2 have been synthesized, and their crystal structures were determined by single-crystal X-ray diffraction methods. Crystal data for 1: monoclinic, space group P21/c, a = 7.692(2), b = 30.791(10), c = 9.131(3) (A), β =100.645(5)o, V = 2125.4(11) (A)3, Z = 4, the final R = 0.0422 and Wr = 0.0904 for 3484 observed reflections with I > 2σ(I); and those for 2: monoclinic, space group P21/c, a = 7.692(3), b = 30.902(11), c = 9.152(3) (A), β = 100.665(5)o, V = 2137.8(13) (A)3, Z = 4, the final R = 0.0515 and wR = 0.0906 for 3268 observed reflections with I > 2σ(I). The LN atoms are linked to the Co atoms by cyanide bridging, forming a two-dimensional gridding structure. The LN3+ ions are both eight-coordinated by three cyano nitrogen and five oxygen atoms of two DMSO and three water molecules. The X-ray single-crystal structure analysis shows that the unbridged cyanide ligands between the closest layers interact with the coordinated water molecules through hydrogen bonds to connect the two layers. Therefore, the molecular structure is a 3D hydrogen-bonded network derived from LNCo chains.展开更多
In this study, the authors characterized the raw clayey soil of Moukosso and modified by dimethylsulfoxide (DMSO) by several analytical methods, namely: X-ray diffraction (XRD), Fourier transform infrared (FTIR) and g...In this study, the authors characterized the raw clayey soil of Moukosso and modified by dimethylsulfoxide (DMSO) by several analytical methods, namely: X-ray diffraction (XRD), Fourier transform infrared (FTIR) and gravimetric thermal analysis (TGA). The cation exchange capacity (CEC) was also determined. Mineralogical analysis by XRD revealed the presence of muscovite (29.7%), kaolinite (8.9%), anatase (2.4%) and quartz (58.9%). The characterization of the organo-clay by infrared and by thermogravimetric analysis confirmed the intercalation of DMSO by the presence of vibration bands at 1008 cm<sup>-1</sup> and 1070 cm<sup>-1</sup> and a strong increase in the loss of mass. The cation exchange capacity of the raw material is 7.4 meq/100g. Rapid adsorption of Pb<sup>2+</sup> ions was observed between 5 and 15 minutes of stirring time in both cases (raw clay and organomodified clay). The modeling of the isotherms by the models of Langmuir and Freudlich showed that these are of type S with a maximum amount of adsorption of 22.471 mg/g for the fine fraction and 41.493 mg/g for the clay intercalated with DMSO. Langmuir’s model best reproduces the experimental data of this study.展开更多
基金supported by the Czech Science Foundation(GACR No.2016124J)supported by the grant of Specific university researchgrant No.A2_FCHT_2022_056
文摘The growing demand for substitutes of lithium chemistries in battery leads to a surge in budding novel anion-based electrochemical energy storage,where the chloride ion batteries(CIBs)take over the role.The application of CIBs is limited by the dissolution and side reaction of chloride-based electrode materials in a liquid electrolyte.On the flipside,its solid-state electrolytes are scarcely reported due to the challenge in realizing fast Cl^(-)conductivity.The present study reports[Al(DMSO)_(6)]Cl_(3),a solid-state metal-organic material,allows chloride ion transfer.The strong Al-Cl bonds in AlCl_(3)are broken down after coordinating of Al^(3+)by ligand DMSO,and Cl^(-)in the resulting compound is weakly bound to complexions[Al(DMSO)_(6)]^(3+),which may facilitate Cl^(-)migration.By partial replacement of Cl^(-)with PF_(6)^(-),the room-temperature ionic conductivity of as-prepared electrolyte is increased by one order of magnitude from 2.172×10^(-5)S cm^(-1)to 2.012×10^(-4)S cm^(-1).When they are assembled with Ag(anode)/Ag-AgCl(cathode)electrode system,reversible electrochemical redox reactions occur on both sides,demonstrating its potential for solid-state chloride ion batteries.The strategy by weakening the bonding interaction using organic ligands between Cl^(-)and central metallic ions may provide new ideas for developing solid chloride-ion conductors.
基金This work was supported by the National Natural Science Foundation of China (No. 50572040)
文摘The title complex Co(DMSO)2(H2O)2(SCN)2 has been prepared and structurally characterized. It crystallizes in monoclinic, space group P21/n with a= 5.1981(9), b = 11.944(2), c = 12.646(2) A,β = 98.686(2)°, V = 776.2(2) A^3, C6H16CoN2O4S4, Mr = 367.38, Z = 2, De = 1.572 g/cm^3, F(000) = 378 and μ(MoKa) = 1.646 mm^-1. The structure was refined to R= 0.0232 and wR = 0.0645 for 1241 observed reflections with I 〉 2σ(I). In the title complex, each Co(II) atom is octahedrally coordinated by four O atoms from two DMSO ligands and two water molecules as well as two N atoms from SCN^- ions. The title molecules are connected to each other through intermolecular hydrogen bonds to form a 1-D structure extended by eight-membered Co2O4H2 rings.
文摘The cyclic voltammetry and potential step methods were used to investigate the electrochemical behavior of Fe 2+ and La 3+ in FeCl 2 LiCl DMSO and LaCl 3 LiCl DMSO systems on Pt, Cu and Ni cathodes. The electroreduction of Fe 2+ to Fe is irreversible in one step,while the electroreduction of La 3+ to La is quasi reversible. The diffusion coefficient of La 3+ in LaCl 3 LiCl DMSO system at 298 K was 3 1×10 -6 cm 2·s -1 . The diffusion coefficient and transfer coefficient of Fe 2+ in FeCl 2 LiCl DMSO system at 298 K were 2 54×10 -6 cm 2·s -1 and 0 24, respectively. La Fe alloy films containing La from 22 7% to 37 1% (mass fraction) were prepared by potentiostatic electrolysis on Cu substrates at a deposition potential from -1 750 to -2 450 V (vs SCE). The fine La Fe alloy films were also obtained by pulse electrolysis at a pulse current densities from 2 to 6 mA·cm -2 . The surfaces of these alloy films are smooth, adhesive and uniform, and have metallic luster.
基金The National Natural Science Foundation of China under contract Nos 41576073,41306069 and 41320104008the National Key Research and Development Program of China under contract No.2016YFA0601301
文摘Seasonal and spatial distributions of dissolved and particulate dimethylsulfoxide(DMSOd,DMSOp)were measured in the East China Sea and the Yellow Sea during March–April 2011 and October–November 2011.The concentrations of DMSOd and DMSOp in the surface water were 20.6(5.13–73.8)and 8.90(3.75–29.6)nmol/L in spring,and 13.4(4.17–42.7)and 8.18(3.44–22.6)nmol/L in autumn,respectively.Both DMSOd and DMSOp concentrations revealed similar seasonal changes with higher values occurring in spring,mainly because of the higher phytoplankton biomass observed in spring.Moreover,the ratios of DMSOp/chlorophyll a also exhibited an apparent seasonal change with higher values in autumn(35.7 mmol/g)and lower values in spring(23.4 mmol/g),thereby corresponding with the seasonal variation in the proportion of DMSO producers in the phytoplankton community between spring and autumn.In addition,DMSOd and DMSOp concentrations in the surface seawater revealed obvious diurnal variations with the maxima appearing in the afternoon.
文摘The brown metallic luster La-Ni alloy powders were prepared by potentiostatic electrolysis technique in dimethylsulfoxide solution at room temperature. The atomic rate of La and Ni in alloy powders are 11∶1 and 10∶1. The size of metal grains is about 0.1 to 100 μm. It shows that the micrometer powders of rare earth alloys can be obtained by controlling electrodeposition conditions. The peak potentials of -2.81 and 1.75 V are attributed to reduction of La 3+ and Ni 3+ ions, respectively. The peak potentials at -2.20 and -0.168 V are the oxidation peaks of lanthanum and nickel, respectively. When potential is more negative than -1.74 V, La(Ⅲ) and Ni(Ⅱ) will codeposit. Increasing cyclic times, the value of peak current is decreasing, and the reduction peak of La(Ⅲ) was finally disappeared.
文摘Two diadochy cyanide-bridged bimetallic complexes [Pr(DMSO)2(H2O)3Co(CN)6]·H2O 1 and [Nd(DMSO)2(H2O)3Co(CN)6]·H2O 2 have been synthesized, and their crystal structures were determined by single-crystal X-ray diffraction methods. Crystal data for 1: monoclinic, space group P21/c, a = 7.692(2), b = 30.791(10), c = 9.131(3) (A), β =100.645(5)o, V = 2125.4(11) (A)3, Z = 4, the final R = 0.0422 and Wr = 0.0904 for 3484 observed reflections with I > 2σ(I); and those for 2: monoclinic, space group P21/c, a = 7.692(3), b = 30.902(11), c = 9.152(3) (A), β = 100.665(5)o, V = 2137.8(13) (A)3, Z = 4, the final R = 0.0515 and wR = 0.0906 for 3268 observed reflections with I > 2σ(I). The LN atoms are linked to the Co atoms by cyanide bridging, forming a two-dimensional gridding structure. The LN3+ ions are both eight-coordinated by three cyano nitrogen and five oxygen atoms of two DMSO and three water molecules. The X-ray single-crystal structure analysis shows that the unbridged cyanide ligands between the closest layers interact with the coordinated water molecules through hydrogen bonds to connect the two layers. Therefore, the molecular structure is a 3D hydrogen-bonded network derived from LNCo chains.
文摘In this study, the authors characterized the raw clayey soil of Moukosso and modified by dimethylsulfoxide (DMSO) by several analytical methods, namely: X-ray diffraction (XRD), Fourier transform infrared (FTIR) and gravimetric thermal analysis (TGA). The cation exchange capacity (CEC) was also determined. Mineralogical analysis by XRD revealed the presence of muscovite (29.7%), kaolinite (8.9%), anatase (2.4%) and quartz (58.9%). The characterization of the organo-clay by infrared and by thermogravimetric analysis confirmed the intercalation of DMSO by the presence of vibration bands at 1008 cm<sup>-1</sup> and 1070 cm<sup>-1</sup> and a strong increase in the loss of mass. The cation exchange capacity of the raw material is 7.4 meq/100g. Rapid adsorption of Pb<sup>2+</sup> ions was observed between 5 and 15 minutes of stirring time in both cases (raw clay and organomodified clay). The modeling of the isotherms by the models of Langmuir and Freudlich showed that these are of type S with a maximum amount of adsorption of 22.471 mg/g for the fine fraction and 41.493 mg/g for the clay intercalated with DMSO. Langmuir’s model best reproduces the experimental data of this study.