BACKGROUND Among the most frequent hip fractures are trochanteric fractures,which usually occur from low-energy trauma like minor falls,especially in older people with osteoporotic bones.AIM To evaluate the treatment ...BACKGROUND Among the most frequent hip fractures are trochanteric fractures,which usually occur from low-energy trauma like minor falls,especially in older people with osteoporotic bones.AIM To evaluate the treatment efficacy of dynamic condylar screws(DCS)and proximal femoral nails(PFN)for unstable intertrochanteric fractures.METHODS To find pertinent randomized controlled trials and retrospective observational studies comparing PFN with DCS for the management of unstable femoral intertrochanteric fractures,a thorough search was carried out.For research studies published between January 1996 and April 2024,PubMed,EMBASE,Scopus,Web of Science,Cochrane Library,and Google Scholar were all searched.The complete texts of the papers were retrieved,vetted,and independently examined by two investigators.Disputes were settled by consensus,and any disagreements that persisted were arbitrated by a third author.RESULTS This study included six articles,comprising a total of 173 patients.Compared to the DCS,the PFN had a shorter operation time[mean difference(MD):-41.7 min,95%confidence interval(95%CI):-63.04 to-20.35,P=0.0001],higher success rates with closed reduction techniques[risk ratio(RR):34.05,95%CI:11.12-104.31,P<0.00001],and required less intraoperative blood transfusion(MD:-1.4 units,95%CI:-1.80 to-1.00,P<0.00001).Additionally,the PFN showed shorter fracture union time(MD:-6.92 wk,95%CI:-10.27 to-3.57,P<0.0001)and a lower incidence of reoperation(RR:0.37,95%CI:0.17-0.82,P=0.01).However,there was no discernible variation regarding hospital stay,implant-related complications,and infections.CONCLUSION Compared to DCS,PFN offers shorter operative times,reduces the blood transfusions requirements,achieves higher closed reduction success,enables faster fracture healing,and lowers reoperation incidence.展开更多
This paper presents dynamic-behavior comparisons and related forensic analyses of a submerged floating tunnel(SFT)between numerical simulation and physical experiment under regular and irregular waves.The experiments ...This paper presents dynamic-behavior comparisons and related forensic analyses of a submerged floating tunnel(SFT)between numerical simulation and physical experiment under regular and irregular waves.The experiments are conducted in the 3Dwave tank with 1:33.3 scale,and the corresponding coupled time-domain simulation tool is devised for comparison.The entire SFT systemconsists of a long concrete tunnel and 12 tubular aluminummooring lines.Two numerical simulation models,the Cummins equation with 3D potential theory including second-order wave-body interaction effects and the much simpler Morison-equation-based formula with the lumped-massbased line model,are designed and compared.Forensic analyses for mooring-line adjustments in the simulation are carried out in view of the best representation of the physical system.After that,the measured pre-tension distribution and systemstiffness of twelvemooring lines arewell reproduced in the numericalmodel.Subsequently,the dynamic responses and mooring tensions of the SFT are compared under regular and irregular waves.The measured and simulated results coincide reasonably well for both regular-and irregular-wave conditions.展开更多
The hydrostatic or confining pressure of deep rocks has a significant impact on the mechanical behavior of brittle materials.Especially when confining pressure is applied,the mechanical properties of rock materials will ...The hydrostatic or confining pressure of deep rocks has a significant impact on the mechanical behavior of brittle materials.Especially when confining pressure is applied,the mechanical properties of rock materials will undergo significant changes.Considering that the process of shale sample subjected to impact load is in a closed container in the dynamic triaxial SHPB test,the failure process of the sample cannot be observed.Meanwhile,the activation volume of the shale sample would be large and local failure would occur in the test under the high strain rate loading.Therefore,thefinite element model of shale considering the bedding effect under confining pressure was established in this study.Taking shale materials with different bedding dip angles as simulation objects,the dynamic failure characteristics of shale were studied using the dynamic analysis software ANSYS/LS‐DYNA from three aspects:stress‐strain curve,failure growth process,and failure morphology.The research results obtained can serve as the key technical parameters for deep resource extraction.展开更多
This numerical study of the Bohai Sea wintertime circulation by means of a two dimensional barotropic model with resolution of 1/24° in longitude and latitude showed that the Bohai Sea wintertime circulation is d...This numerical study of the Bohai Sea wintertime circulation by means of a two dimensional barotropic model with resolution of 1/24° in longitude and latitude showed that the Bohai Sea wintertime circulation is dominated by local monsoon winds. The major current components include the Bohai Warm Current, the North Shandong Coastal Current, and the Liaodong Gyre. The Bohai Warm Current originates from the Yellow Sea Warm Current at the northern part of Bohai Strait, meanders westwards and finally enters the northern part of Bohai Bay. The North Shandong Coastal Current flows along the southwest shore of Bohai Bay and Laizhou Bay and exits from the Bohai Sea through the south Bohai Strait. The anticyclonic Liaodong Gyre is located in the north of Liaodong Bay. A pair of eddies and the small scale Jinzhou Gyre are found between the Bohai Warm Current and the Liaodong Gyre. The computed volume transport for both the Bohai Warm Current and North Shandong Coastal Current is about 0.03 Sv (1 Sv=1×10 6 m 3/s). The numerical experiments showed that the combined effect of local monsoon winds and bottom topography dominate the formation of the circulation pattern. The Coriolis force and the wind stress curl are of certain importance. The beta effect, the momentum advection and the open boundary condition have little influence on the circulation pattern.展开更多
A new meso-mechanical testing scheme based on SEM was developed to carry out the experiment of microfracturing process of rocks. The microfracturing process of the pre-crack marble sample on surrounding rock in the im...A new meso-mechanical testing scheme based on SEM was developed to carry out the experiment of microfracturing process of rocks. The microfracturing process of the pre-crack marble sample on surrounding rock in the immerged Long-big tunnel in Jinping Cascade II Hydropower Station under uniaxial compression was recorded by using the testing scheme. According to the stereology theory, the propagation and coalescent of cracks at meso-scale were quantitatively investigated with digital technology. Therefore, the basic geometric information of rock microcracks such as area, angle, length, width, perimeter, was obtained from binary images after segmentation. The failure mechanism of specimen under uniaxial compression with the quantitative information was studied from macro and microscopic point of view. The results show that the image of microfracturing process of the specimen can be observed and recorded digitally. During the damage of the specimen, the distribution of microcracks in the specimen is still subjected to exponential distribution with some microcracks concentrated in certain regions. Finally, the change law of the fractal dimension of the local element in marble sample under different external load conditions is obtained by means of the statistical calculation of the fractal dimension.展开更多
An experimental apparatus composed of microscope, video camera. image-processing, and mini reactor which can be used for real-time measurement of the growth of polymer particle in gas phase polymerization was built up...An experimental apparatus composed of microscope, video camera. image-processing, and mini reactor which can be used for real-time measurement of the growth of polymer particle in gas phase polymerization was built up to carry out dynamic study of gas phase polymerization of butadiene by heterogeneous catalyst based on neodymium(Nd). The studies of the shape duplication of polymer particles and catalyst particles and the growth rate of polymer particle were made. Results show that the apparatus and procedure designed can be well utilized to make dynamic observation and data collection of the growth of polymer particle in gas phase polymerization. A phenomenon of shape duplication of polymer particles and catalyst particles was observed by the real-time measurement. The result also concludes that the activity of individual catalyst particle is different, and the effect of reaction pressure on the growth of polymer particle is significant.展开更多
FITC-conjugated nanoferrofluid (FNFF) was synthesized and characterized to study the dynamic of laser-induced transport of NPs in water. The results confirmed a definite laser-induced enhanced velocity of NPs (100 &am...FITC-conjugated nanoferrofluid (FNFF) was synthesized and characterized to study the dynamic of laser-induced transport of NPs in water. The results confirmed a definite laser-induced enhanced velocity of NPs (100 μm⋅s−1) almost twice as much the without laser (i.e. Brownian motion). The diffusion coefficients of 17 × 10−6 m2⋅s−1 and 55 × 10−6 m2⋅s−1 were found for the cases without and with laser action respectively. The act of laser when switched on after NPs had reached the steady state was very prominent. The laser-induced heat and power generated by NPs were calculated 0.2μW⋅cm−3 and 0.4 pW⋅cm−2 respectively. Our experiment condition was non-adiabatic and that the heat generated was diffused into the surrounding. We considered the Maxwell’s criteria (Kp/Kw −1⋅K−1. Based on the Brownian diffusion and DLVO theory, at earlier times where the NPs are more dispersed within the medium are displaced faster. However, at later stages they become less mobile as they are agglomerated. The mechanisms for the enhanced mobility and laser transport of NPs are thought to be due to e.m.w induced force (i.e. an oscillatory motion) and laser absorptive force (i.e., photothermophoresis). A beam divergence of about 5.24°(or 91 mrad) was determined. A non-linear behaviour of laser beam was observed as a trajectory path within the water due to thermal heating hence causing the change of refractive index of medium and redistribution of NPs concentration.展开更多
A numerical investigation is conducted to explore the evolution of a plasma discharge and its interaction with the fluid flow based on a self-consistent fluid model which couples the discharge dynamics with the fluid ...A numerical investigation is conducted to explore the evolution of a plasma discharge and its interaction with the fluid flow based on a self-consistent fluid model which couples the discharge dynamics with the fluid dynamics.The effects of the applied voltage on the distribution of velocity and temperature in initially static air are parainetrically studied.Furthermore,the spatial structure of plasma discharge and the resulting force contours in streamwise and normal directions are discussed in detail.The result shows that the plasma actuator produces a net force that should always be directed away from the exposed electrode,which results in an ionic wind pushing particles into a jet downstream of the actuator.When the energy added by the plasma is taken into account,the ambient air temperature is increased slightly around the electrode,but the velocity is almost not affected.Therefore it is unlikely that the induced flow is buoyancy driven.For the operating voltages considered in this paper,the maximum induced velocity is found to follow a power law,i.e.,it is proportional to the applied voltage to the 3.5 power.This promises an efficient application in the flow control with plasma actuators.展开更多
The mass flow rate of a granular flow through an aperture under gravity is a long-standing challenge issue in physical science. We show that for steady flow field close to laminar flow, the dynamical equations togethe...The mass flow rate of a granular flow through an aperture under gravity is a long-standing challenge issue in physical science. We show that for steady flow field close to laminar flow, the dynamical equations together with the continue equation and Mohr-circle description of the stress are closed, and hence solvable. In a case of streamline guided by the two-dimensional hopper, we obtain a consistent condition and use it to determine the stress and the velocity distribution. Our result indicates that 3/2 power scaling behavior is recovered with a coefficient C(μ,α) being a function of frictional coefficient and the hopper angle. It is found that the predicted coefficient C(μ,α) is compatible with previous studies.展开更多
The dynamic ~1H and ^(13)C-NMR studies on [Li(2D)][Nd(η~8-C_3H_5)_4] (D=dioxane)were reported The four allyls coordinated to Hd^(8+) ion are equivalent and hydrogens appear as three groups in ~1H-NMR spectra with the...The dynamic ~1H and ^(13)C-NMR studies on [Li(2D)][Nd(η~8-C_3H_5)_4] (D=dioxane)were reported The four allyls coordinated to Hd^(8+) ion are equivalent and hydrogens appear as three groups in ~1H-NMR spectra with their chemical shifts changing with temperature.C_1 and Ca are equivalent showing the characteristic of η~2=-allyl.The paramagnetic shifts of carbons in allyls induced by Nd^(2+) ere separated sucessfully.C_1 and C_3 located on the zero-dipolar cone.The content of contact shift is greater than that of dipolar slift to Co.展开更多
The U-Nb alloy,as a kind of nuclear material with good corrosion resistance and mechanical properties,plays an important role in the nuclear industry.However,the experimental measurements and theoretical calculations ...The U-Nb alloy,as a kind of nuclear material with good corrosion resistance and mechanical properties,plays an important role in the nuclear industry.However,the experimental measurements and theoretical calculations of many parameters which are essential in describing the dynamical properties of this alloy melt,including density,diffusivity,and viscosity,have not been carried out yet.The lack of data on the dynamical properties of nuclear materials seriously hinders the high-performance nuclear materials from being developed and applied.In this work,the dynamical properties of the U-Nb alloy melt are systematically studied by means of ab initio molecular dynamics simulations and their corresponding mathematical models are established,thereby being able to rapidly calculate the densities,diffusion coefficients,viscosities,and their activation energies in the whole U-Nb liquid region.This work provides a new idea for investigating the dynamical properties of binary alloy melts,thereby promoting the development of melt research.展开更多
The 1H and 13C NMR spectra of the dinuclear complexes of molybdenum(VI) withethylenediaminetetraacetic acid ([Mo(VI)]2-EDTA) and 3,12-bis(carboxymethyl)-6.9-dioxa-3,12-diazatetra-decanedioic acid(tMo(VI)]2-EGTA) at va...The 1H and 13C NMR spectra of the dinuclear complexes of molybdenum(VI) withethylenediaminetetraacetic acid ([Mo(VI)]2-EDTA) and 3,12-bis(carboxymethyl)-6.9-dioxa-3,12-diazatetra-decanedioic acid(tMo(VI)]2-EGTA) at various temperatures were measured. The solutionstructure of the two dinuclear complexes was determined and the possible exchange process of theisomers is suggested展开更多
Based on investigations of 112 Chinese firms and studies on foreign leading corporations, a theoretical framework of dynamic capabilities based strategy innovation (SI) is put forward. Several large firms in China wi...Based on investigations of 112 Chinese firms and studies on foreign leading corporations, a theoretical framework of dynamic capabilities based strategy innovation (SI) is put forward. Several large firms in China winning through SI were studied empirically. This paper complements previous publications on the theories of innovation and strategy. This work's findings will be useful for managers interested in our approach, which highlights the importance of SI and focuses on and points out the major pitfalls in the innovation processes. Implementing the dynamic capabilities based strategy innovation can effectively cultivate and develop core competences of corporations. It is concluded that implementing SI is the only path for Chinese enterprise growth in the intensified competition in the knowledge economy.展开更多
Dynamical behaviors and stability properties of a flat space Friedmann-Robertson-Walker universe filled with pressureless dark matter and viscous dark energy are studied in the context of standard classical and loop q...Dynamical behaviors and stability properties of a flat space Friedmann-Robertson-Walker universe filled with pressureless dark matter and viscous dark energy are studied in the context of standard classical and loop quantum cosmology. Assuming that the dark energy has a constant bulk viscosity, it is found that the bulk viscosity effects influence only the quintessence model case leading to the existence of a viscous late time attractor solution of de- Sitter type, whereas the quantum geometry effects influence the phantom model case where the big rip singularity is removed. Moreover, our results of the Hubble parameter as a function of the redshift are in good agreement with the more recent data.展开更多
Starting from vorticity equation, the triggering mechanism and amplitude decay of shear waves in the ocean are discussed in this paper. The theoretical analysis indicates that by the action of stripped external force ...Starting from vorticity equation, the triggering mechanism and amplitude decay of shear waves in the ocean are discussed in this paper. The theoretical analysis indicates that by the action of stripped external force (for examples, the sudden setting of stripped wind, moving stripped wind, etc. ), shear waves can be triggered. This is qualitatively consistent with satellite observations. The amplitude decay process of shear waves by the action of side friction is also discussed in the paper. The theoretical model is quantitatively consistent with satellite observations.展开更多
The Si-O bond breaking event in the a-quartz at the first triplet (T1) excitation state is studied by using ab initio molecular dynamics (AIMD) and nudged elastic band calculations. A meta-stable non-bridging oxyg...The Si-O bond breaking event in the a-quartz at the first triplet (T1) excitation state is studied by using ab initio molecular dynamics (AIMD) and nudged elastic band calculations. A meta-stable non-bridging oxygen hole center and E1 center (NBOHC-E) is observed in the AIMD which consists of a broken Si-O bond with a Si-O distance of 2.54A. By disallowing the re-bonding of the Si and 0 atoms, another defect configuration (lll- Si/V-Si) is obtained and validated to be stable at both ground and excitation states. The NBOHC-E is found to present on the minimal energy pathway of the initial to IlI-Si/V-Si transition, showing that the generating of the NBOHC-E is an important step of the excitation induced structure defect. The energy barriers to produce the NBQHC-E' and Ⅲ-Si/V-Si defects are calculated to be 1.19 and 1.28eV, respectively. The electronic structures of the two defects are calculated by the self-consistent GW calculations and the results show a clear electron transition from the bonding orbital to the non-bonding orbital.展开更多
Molecular dynamics simulations are carried out in order to Study the atomic structure of crystalline component of nanocrystalline α-Fe when it is consolidated from small grains. A two-dimensional computational block ...Molecular dynamics simulations are carried out in order to Study the atomic structure of crystalline component of nanocrystalline α-Fe when it is consolidated from small grains. A two-dimensional computational block is used to simulate the consolidation process. All the preset dislocations in the original grains glide out of them in the consolidation process, but new dislocations can generate when the grain size is large enough. It shows that dislocations exist in the consolidated material rather than in the original grains. Whether dislocations exist in the crystalline component of the resultant model nano-material depends upon grain size. The critical value of grain size for dislocation generation appears to be about 9 nm. This result agrees with experiments qualitatively.展开更多
A computer program has been developed for the moIlcular dynamics calculation of ionic orstrong-ionic covalent systems. Ewald summation algorithm and Keating potentiaI model areadopted to calculate the long-range Coulo...A computer program has been developed for the moIlcular dynamics calculation of ionic orstrong-ionic covalent systems. Ewald summation algorithm and Keating potentiaI model areadopted to calculate the long-range Coulomb interaction and the short-range bonding forces,respectively. A theoretical study on the domain boundary structures in epitaxial wurtzite GaN film is accomplished with the program. The calculation result is used in the structure formationexplanation of an interesting defect observed by HREM experiment.展开更多
Carbon stable isotope techniques were extensively employed to trace the dynamics of soil organic carbon(SOC)across a land-use change involving a shift to vegetation with different photosynthetic pathways.Based on the ...Carbon stable isotope techniques were extensively employed to trace the dynamics of soil organic carbon(SOC)across a land-use change involving a shift to vegetation with different photosynthetic pathways.Based on the isotopic mass balance equation,relative contributions of new versus old SOC,and SOC turnover rate in corn fields were evaluated world-wide.However,most previous research had not analyzed corn debris left in the field,instead using an average corn plant δ^(13)C value or a measured value to calculate the proportion of corn-derived SOC,either of which could bias results.This paper carried out a detailed analysis of isotopic fractionation in corn plants and deduced the maximum possible bias of SOC dynamics study.The results show approximately 3‰ isotopic fractionation from top to bottom of the corn leaf.The ^(13)C enrichment sequence in corn plant was tassel﹥stalk or cob﹥root﹥leaves.Individual parts accounting for the total dry mass of corn returned distinct values.Consequently,the average δ^(13)C value of corn does not represent the actual isotopic composition of corn debris.Furthermore,we deduced that the greater the fractionation in corn plant,the greater the possible bias.To alleviate bias of SOC dynamics study,we suggest two measures:analyze isotopic compositions and proportions of each part of the corn and determine which parts of the corn plant are left in the field and incorporated into SOC.展开更多
文摘BACKGROUND Among the most frequent hip fractures are trochanteric fractures,which usually occur from low-energy trauma like minor falls,especially in older people with osteoporotic bones.AIM To evaluate the treatment efficacy of dynamic condylar screws(DCS)and proximal femoral nails(PFN)for unstable intertrochanteric fractures.METHODS To find pertinent randomized controlled trials and retrospective observational studies comparing PFN with DCS for the management of unstable femoral intertrochanteric fractures,a thorough search was carried out.For research studies published between January 1996 and April 2024,PubMed,EMBASE,Scopus,Web of Science,Cochrane Library,and Google Scholar were all searched.The complete texts of the papers were retrieved,vetted,and independently examined by two investigators.Disputes were settled by consensus,and any disagreements that persisted were arbitrated by a third author.RESULTS This study included six articles,comprising a total of 173 patients.Compared to the DCS,the PFN had a shorter operation time[mean difference(MD):-41.7 min,95%confidence interval(95%CI):-63.04 to-20.35,P=0.0001],higher success rates with closed reduction techniques[risk ratio(RR):34.05,95%CI:11.12-104.31,P<0.00001],and required less intraoperative blood transfusion(MD:-1.4 units,95%CI:-1.80 to-1.00,P<0.00001).Additionally,the PFN showed shorter fracture union time(MD:-6.92 wk,95%CI:-10.27 to-3.57,P<0.0001)and a lower incidence of reoperation(RR:0.37,95%CI:0.17-0.82,P=0.01).However,there was no discernible variation regarding hospital stay,implant-related complications,and infections.CONCLUSION Compared to DCS,PFN offers shorter operative times,reduces the blood transfusions requirements,achieves higher closed reduction success,enables faster fracture healing,and lowers reoperation incidence.
基金supported by the National Research Foundation of Korea(NRF)grant funded by the Korea Government(MSIT)(No.2017R1A5A1014883).
文摘This paper presents dynamic-behavior comparisons and related forensic analyses of a submerged floating tunnel(SFT)between numerical simulation and physical experiment under regular and irregular waves.The experiments are conducted in the 3Dwave tank with 1:33.3 scale,and the corresponding coupled time-domain simulation tool is devised for comparison.The entire SFT systemconsists of a long concrete tunnel and 12 tubular aluminummooring lines.Two numerical simulation models,the Cummins equation with 3D potential theory including second-order wave-body interaction effects and the much simpler Morison-equation-based formula with the lumped-massbased line model,are designed and compared.Forensic analyses for mooring-line adjustments in the simulation are carried out in view of the best representation of the physical system.After that,the measured pre-tension distribution and systemstiffness of twelvemooring lines arewell reproduced in the numericalmodel.Subsequently,the dynamic responses and mooring tensions of the SFT are compared under regular and irregular waves.The measured and simulated results coincide reasonably well for both regular-and irregular-wave conditions.
基金National Key Research and Development Project of China,Grant/Award Number:2020YFA0711800National Natural Science Foundation of China,Grant/Award Numbers:12072363,12372373。
文摘The hydrostatic or confining pressure of deep rocks has a significant impact on the mechanical behavior of brittle materials.Especially when confining pressure is applied,the mechanical properties of rock materials will undergo significant changes.Considering that the process of shale sample subjected to impact load is in a closed container in the dynamic triaxial SHPB test,the failure process of the sample cannot be observed.Meanwhile,the activation volume of the shale sample would be large and local failure would occur in the test under the high strain rate loading.Therefore,thefinite element model of shale considering the bedding effect under confining pressure was established in this study.Taking shale materials with different bedding dip angles as simulation objects,the dynamic failure characteristics of shale were studied using the dynamic analysis software ANSYS/LS‐DYNA from three aspects:stress‐strain curve,failure growth process,and failure morphology.The research results obtained can serve as the key technical parameters for deep resource extraction.
文摘This numerical study of the Bohai Sea wintertime circulation by means of a two dimensional barotropic model with resolution of 1/24° in longitude and latitude showed that the Bohai Sea wintertime circulation is dominated by local monsoon winds. The major current components include the Bohai Warm Current, the North Shandong Coastal Current, and the Liaodong Gyre. The Bohai Warm Current originates from the Yellow Sea Warm Current at the northern part of Bohai Strait, meanders westwards and finally enters the northern part of Bohai Bay. The North Shandong Coastal Current flows along the southwest shore of Bohai Bay and Laizhou Bay and exits from the Bohai Sea through the south Bohai Strait. The anticyclonic Liaodong Gyre is located in the north of Liaodong Bay. A pair of eddies and the small scale Jinzhou Gyre are found between the Bohai Warm Current and the Liaodong Gyre. The computed volume transport for both the Bohai Warm Current and North Shandong Coastal Current is about 0.03 Sv (1 Sv=1×10 6 m 3/s). The numerical experiments showed that the combined effect of local monsoon winds and bottom topography dominate the formation of the circulation pattern. The Coriolis force and the wind stress curl are of certain importance. The beta effect, the momentum advection and the open boundary condition have little influence on the circulation pattern.
基金Projects(50674040, 50539090) supported by the National Natural Science Foundation of ChinaProject(CX07B_128z) supported by the Cultivate Creative Postgraduate Foundation of Jiangsu Province, China
文摘A new meso-mechanical testing scheme based on SEM was developed to carry out the experiment of microfracturing process of rocks. The microfracturing process of the pre-crack marble sample on surrounding rock in the immerged Long-big tunnel in Jinping Cascade II Hydropower Station under uniaxial compression was recorded by using the testing scheme. According to the stereology theory, the propagation and coalescent of cracks at meso-scale were quantitatively investigated with digital technology. Therefore, the basic geometric information of rock microcracks such as area, angle, length, width, perimeter, was obtained from binary images after segmentation. The failure mechanism of specimen under uniaxial compression with the quantitative information was studied from macro and microscopic point of view. The results show that the image of microfracturing process of the specimen can be observed and recorded digitally. During the damage of the specimen, the distribution of microcracks in the specimen is still subjected to exponential distribution with some microcracks concentrated in certain regions. Finally, the change law of the fractal dimension of the local element in marble sample under different external load conditions is obtained by means of the statistical calculation of the fractal dimension.
基金the National Natural Science Foundation of China (No. 29876035).
文摘An experimental apparatus composed of microscope, video camera. image-processing, and mini reactor which can be used for real-time measurement of the growth of polymer particle in gas phase polymerization was built up to carry out dynamic study of gas phase polymerization of butadiene by heterogeneous catalyst based on neodymium(Nd). The studies of the shape duplication of polymer particles and catalyst particles and the growth rate of polymer particle were made. Results show that the apparatus and procedure designed can be well utilized to make dynamic observation and data collection of the growth of polymer particle in gas phase polymerization. A phenomenon of shape duplication of polymer particles and catalyst particles was observed by the real-time measurement. The result also concludes that the activity of individual catalyst particle is different, and the effect of reaction pressure on the growth of polymer particle is significant.
文摘FITC-conjugated nanoferrofluid (FNFF) was synthesized and characterized to study the dynamic of laser-induced transport of NPs in water. The results confirmed a definite laser-induced enhanced velocity of NPs (100 μm⋅s−1) almost twice as much the without laser (i.e. Brownian motion). The diffusion coefficients of 17 × 10−6 m2⋅s−1 and 55 × 10−6 m2⋅s−1 were found for the cases without and with laser action respectively. The act of laser when switched on after NPs had reached the steady state was very prominent. The laser-induced heat and power generated by NPs were calculated 0.2μW⋅cm−3 and 0.4 pW⋅cm−2 respectively. Our experiment condition was non-adiabatic and that the heat generated was diffused into the surrounding. We considered the Maxwell’s criteria (Kp/Kw −1⋅K−1. Based on the Brownian diffusion and DLVO theory, at earlier times where the NPs are more dispersed within the medium are displaced faster. However, at later stages they become less mobile as they are agglomerated. The mechanisms for the enhanced mobility and laser transport of NPs are thought to be due to e.m.w induced force (i.e. an oscillatory motion) and laser absorptive force (i.e., photothermophoresis). A beam divergence of about 5.24°(or 91 mrad) was determined. A non-linear behaviour of laser beam was observed as a trajectory path within the water due to thermal heating hence causing the change of refractive index of medium and redistribution of NPs concentration.
基金supported by the Foundation for Innovative Research Groups of National Natural Science Foundation of China(No.51121004)National Natural Science Foundation of China(No.50976026)
文摘A numerical investigation is conducted to explore the evolution of a plasma discharge and its interaction with the fluid flow based on a self-consistent fluid model which couples the discharge dynamics with the fluid dynamics.The effects of the applied voltage on the distribution of velocity and temperature in initially static air are parainetrically studied.Furthermore,the spatial structure of plasma discharge and the resulting force contours in streamwise and normal directions are discussed in detail.The result shows that the plasma actuator produces a net force that should always be directed away from the exposed electrode,which results in an ionic wind pushing particles into a jet downstream of the actuator.When the energy added by the plasma is taken into account,the ambient air temperature is increased slightly around the electrode,but the velocity is almost not affected.Therefore it is unlikely that the induced flow is buoyancy driven.For the operating voltages considered in this paper,the maximum induced velocity is found to follow a power law,i.e.,it is proportional to the applied voltage to the 3.5 power.This promises an efficient application in the flow control with plasma actuators.
基金Supported by the Key Research Program of Frontier Science of the Chinese Academy of Sciences under Grant No QYZDYSSW-SYS006
文摘The mass flow rate of a granular flow through an aperture under gravity is a long-standing challenge issue in physical science. We show that for steady flow field close to laminar flow, the dynamical equations together with the continue equation and Mohr-circle description of the stress are closed, and hence solvable. In a case of streamline guided by the two-dimensional hopper, we obtain a consistent condition and use it to determine the stress and the velocity distribution. Our result indicates that 3/2 power scaling behavior is recovered with a coefficient C(μ,α) being a function of frictional coefficient and the hopper angle. It is found that the predicted coefficient C(μ,α) is compatible with previous studies.
文摘The dynamic ~1H and ^(13)C-NMR studies on [Li(2D)][Nd(η~8-C_3H_5)_4] (D=dioxane)were reported The four allyls coordinated to Hd^(8+) ion are equivalent and hydrogens appear as three groups in ~1H-NMR spectra with their chemical shifts changing with temperature.C_1 and Ca are equivalent showing the characteristic of η~2=-allyl.The paramagnetic shifts of carbons in allyls induced by Nd^(2+) ere separated sucessfully.C_1 and C_3 located on the zero-dipolar cone.The content of contact shift is greater than that of dipolar slift to Co.
基金Project supported by the Science Challenging Project,China(Grant No.TZ2016004)the National Natural Science Foundation of China(Grant No.51701193)。
文摘The U-Nb alloy,as a kind of nuclear material with good corrosion resistance and mechanical properties,plays an important role in the nuclear industry.However,the experimental measurements and theoretical calculations of many parameters which are essential in describing the dynamical properties of this alloy melt,including density,diffusivity,and viscosity,have not been carried out yet.The lack of data on the dynamical properties of nuclear materials seriously hinders the high-performance nuclear materials from being developed and applied.In this work,the dynamical properties of the U-Nb alloy melt are systematically studied by means of ab initio molecular dynamics simulations and their corresponding mathematical models are established,thereby being able to rapidly calculate the densities,diffusion coefficients,viscosities,and their activation energies in the whole U-Nb liquid region.This work provides a new idea for investigating the dynamical properties of binary alloy melts,thereby promoting the development of melt research.
文摘The 1H and 13C NMR spectra of the dinuclear complexes of molybdenum(VI) withethylenediaminetetraacetic acid ([Mo(VI)]2-EDTA) and 3,12-bis(carboxymethyl)-6.9-dioxa-3,12-diazatetra-decanedioic acid(tMo(VI)]2-EGTA) at various temperatures were measured. The solutionstructure of the two dinuclear complexes was determined and the possible exchange process of theisomers is suggested
文摘Based on investigations of 112 Chinese firms and studies on foreign leading corporations, a theoretical framework of dynamic capabilities based strategy innovation (SI) is put forward. Several large firms in China winning through SI were studied empirically. This paper complements previous publications on the theories of innovation and strategy. This work's findings will be useful for managers interested in our approach, which highlights the importance of SI and focuses on and points out the major pitfalls in the innovation processes. Implementing the dynamic capabilities based strategy innovation can effectively cultivate and develop core competences of corporations. It is concluded that implementing SI is the only path for Chinese enterprise growth in the intensified competition in the knowledge economy.
基金Supported by the Algerian Ministry of Education and ResearchDGRSDT
文摘Dynamical behaviors and stability properties of a flat space Friedmann-Robertson-Walker universe filled with pressureless dark matter and viscous dark energy are studied in the context of standard classical and loop quantum cosmology. Assuming that the dark energy has a constant bulk viscosity, it is found that the bulk viscosity effects influence only the quintessence model case leading to the existence of a viscous late time attractor solution of de- Sitter type, whereas the quantum geometry effects influence the phantom model case where the big rip singularity is removed. Moreover, our results of the Hubble parameter as a function of the redshift are in good agreement with the more recent data.
文摘Starting from vorticity equation, the triggering mechanism and amplitude decay of shear waves in the ocean are discussed in this paper. The theoretical analysis indicates that by the action of stripped external force (for examples, the sudden setting of stripped wind, moving stripped wind, etc. ), shear waves can be triggered. This is qualitatively consistent with satellite observations. The amplitude decay process of shear waves by the action of side friction is also discussed in the paper. The theoretical model is quantitatively consistent with satellite observations.
基金Supported by the National Natural Science Foundation of China under Grant Nos 10744048 and 11202032the Defense Industrial Technology Development Program of China under Grant No B1520132013
文摘The Si-O bond breaking event in the a-quartz at the first triplet (T1) excitation state is studied by using ab initio molecular dynamics (AIMD) and nudged elastic band calculations. A meta-stable non-bridging oxygen hole center and E1 center (NBOHC-E) is observed in the AIMD which consists of a broken Si-O bond with a Si-O distance of 2.54A. By disallowing the re-bonding of the Si and 0 atoms, another defect configuration (lll- Si/V-Si) is obtained and validated to be stable at both ground and excitation states. The NBOHC-E is found to present on the minimal energy pathway of the initial to IlI-Si/V-Si transition, showing that the generating of the NBOHC-E is an important step of the excitation induced structure defect. The energy barriers to produce the NBQHC-E' and Ⅲ-Si/V-Si defects are calculated to be 1.19 and 1.28eV, respectively. The electronic structures of the two defects are calculated by the self-consistent GW calculations and the results show a clear electron transition from the bonding orbital to the non-bonding orbital.
文摘Molecular dynamics simulations are carried out in order to Study the atomic structure of crystalline component of nanocrystalline α-Fe when it is consolidated from small grains. A two-dimensional computational block is used to simulate the consolidation process. All the preset dislocations in the original grains glide out of them in the consolidation process, but new dislocations can generate when the grain size is large enough. It shows that dislocations exist in the consolidated material rather than in the original grains. Whether dislocations exist in the crystalline component of the resultant model nano-material depends upon grain size. The critical value of grain size for dislocation generation appears to be about 9 nm. This result agrees with experiments qualitatively.
文摘A computer program has been developed for the moIlcular dynamics calculation of ionic orstrong-ionic covalent systems. Ewald summation algorithm and Keating potentiaI model areadopted to calculate the long-range Coulomb interaction and the short-range bonding forces,respectively. A theoretical study on the domain boundary structures in epitaxial wurtzite GaN film is accomplished with the program. The calculation result is used in the structure formationexplanation of an interesting defect observed by HREM experiment.
基金financially supported by National Natural Science Foundation of China(Grant No.2013CB95670241573012+1 种基金4157113004141261058)
文摘Carbon stable isotope techniques were extensively employed to trace the dynamics of soil organic carbon(SOC)across a land-use change involving a shift to vegetation with different photosynthetic pathways.Based on the isotopic mass balance equation,relative contributions of new versus old SOC,and SOC turnover rate in corn fields were evaluated world-wide.However,most previous research had not analyzed corn debris left in the field,instead using an average corn plant δ^(13)C value or a measured value to calculate the proportion of corn-derived SOC,either of which could bias results.This paper carried out a detailed analysis of isotopic fractionation in corn plants and deduced the maximum possible bias of SOC dynamics study.The results show approximately 3‰ isotopic fractionation from top to bottom of the corn leaf.The ^(13)C enrichment sequence in corn plant was tassel﹥stalk or cob﹥root﹥leaves.Individual parts accounting for the total dry mass of corn returned distinct values.Consequently,the average δ^(13)C value of corn does not represent the actual isotopic composition of corn debris.Furthermore,we deduced that the greater the fractionation in corn plant,the greater the possible bias.To alleviate bias of SOC dynamics study,we suggest two measures:analyze isotopic compositions and proportions of each part of the corn and determine which parts of the corn plant are left in the field and incorporated into SOC.