Aiming to analyze the damage mechanism of UTAO from the perspective of meso-mechanical mechanism using discrete element method(DEM),we conducted study of diseases problems of UTAO in several provinces in China,and fou...Aiming to analyze the damage mechanism of UTAO from the perspective of meso-mechanical mechanism using discrete element method(DEM),we conducted study of diseases problems of UTAO in several provinces in China,and found that aggregate spalling was one of the main disease types of UTAO.A discrete element model of UTAO pavement structure was constructed to explore the meso-mechanical mechanism of UTAO damage under the influence of layer thickness,gradation,and bonding modulus.The experimental results show that,as the thickness of UTAO decreasing,the maximum value and the mean value of the contact force between all aggregate particles gradually increase,which leads to aggregates more prone to spalling.Compared with OGFC-5 UTAO,AC-5 UTAO presents smaller maximum and average values of all contact forces,and the loading pressure in AC-5 UTAO is fully diffused in the lateral direction.In addition,the increment of pavement modulus strengthens the overall force of aggregate particles inside UTAO,resulting in aggregate particles peeling off more easily.The increase of bonding modulus changes the position where the maximum value of the tangential force appears,whereas has no effect on the normal force.展开更多
Compared with PELE with inert fillings such as polyethylene and nylon,reactive PELE(RPELE)shows excellent damage effects when impacting concrete targets due to the filling deflagration reaction.In present work,an anal...Compared with PELE with inert fillings such as polyethylene and nylon,reactive PELE(RPELE)shows excellent damage effects when impacting concrete targets due to the filling deflagration reaction.In present work,an analytical model describing the jacket deformation and concrete target damage impacted by RPELE was presented,in which the radial rarefaction and filling deflagration reaction were considered.The impact tests of RPELE on concrete target in the 592-1012 m/s were carried out to verify the analytical model.Based on the analytical model,the angle-length evolution mechanism of the jacket bending-curling deformation was revealed,and the concrete target damage was further analyzed.One can find out that the average prediction errors of the front crater,opening and back crater are 6.8%,8.5%and 7.1%,respectively.Moreover,the effects of radial rarefaction and deflagration were discussed.It was found that the neglect of radial rarefaction overestimates the jacket deformation and concrete target damage,while the deflagration reaction of filling increases the diameter of the front crater,opening and back crater by 25.4%,24.3%and 31.1%,respectively.The research provides a valuable reference for understanding and predicting the jacket deformation and concrete target damage impacted by RPELE.展开更多
This study aims to investigate the mechanical response and acoustic emission(AE)characteristic of pre-flawed sandstone under both monotonic and multilevel constant-amplitude cyclic loads.Specifically,we explored how c...This study aims to investigate the mechanical response and acoustic emission(AE)characteristic of pre-flawed sandstone under both monotonic and multilevel constant-amplitude cyclic loads.Specifically,we explored how coplanar flaw angle and load type impact the strength and deformation behavior and microscopic damage mechanism.Results indicated that being fluctuated before rising with increasing fissure angle under monotonic loading,the peak strength of the specimen first increased slowly and then steeply under cyclic loading.The effect of multilevel cyclic loading on the mechanical parameters was more significant.For a single fatigue stage,the specimen underwent greater deformation in early cycles,which subsequently stabilized.Similar variation pattern was also reflected by AE count/energy/b-value.Crack behaviors were dominated by the fissure angle and load type and medium-scale crack accounted for 74.83%–86.44%of total crack.Compared with monotonic loading,crack distribution of specimen under cyclic loading was more complicated.Meanwhile,a simple model was proposed to describe the damage evolution of sandstone under cyclic loading.Finally,SEM images revealed that the microstructures at the fracture were mainly composed of intergranular fracture,and percentage of transgranular fracture jumped under cyclic loading due to the rapid release of elastic energy caused by high loading rate.展开更多
Strainburst is the most common type of rockbursts.The research of strainburst damage mechanisms is helpful to improve and optimize the rock support design in the burst-prone ground.In this study,an improved global-loc...Strainburst is the most common type of rockbursts.The research of strainburst damage mechanisms is helpful to improve and optimize the rock support design in the burst-prone ground.In this study,an improved global-local modeling approach was first adopted to study strainburst damage mechanisms.The extracted stresses induced by multiple excavations from a three-dimensional(3D)global model established by fast Lagrangian analysis of continua in 3 dimensions(FLAC3D)are used as boundary conditions for a two-dimensional(2D)local model of a deep roadway built by universal distinct element code(UDEC)to simulate realistic stress loading paths and conduct a detailed analysis of rockburst damage from both micro and macro perspectives.The results suggest that the deformation and damage level of the roadway gradually increase with the growth of surrounding rock stress caused by the superposition of mining-or excavation-induced stresses of the panel and nearby roadways.The significant increase of surrounding rock stresses will result in more accumulated strain energy in two sidewalls,providing a necessary condition for the strainburst occurrence in the dynamic stage.The strainburst damage mechanism for the study site combines three types of damage:rock ejection,rock bulking,and rockfall.During the strainburst,initiation,propagation,and development of tensile cracks play a crucial role in controlling macroscopic failure of surrounding rock masses,although the shear crack always accounts for the main proportion of damage levels.The deformation and damage level of the roadway during a strainburst positively correlate with the increasing peak particle velocities(PPVs).The yielding steel arch might not dissipate kinetic energy and mitigate strainburst damage effectively due to the limited energy absorption capacity.The principles to control and mitigate strainburst damage are proposed in this paper.This study presents a systematic framework to investigate strainburst damage mechanisms using the global-local modeling approach.展开更多
To improve the resource utilization of recycled aggregate concrete(RAC)and make use of the unique pozzolanic activation characteristics of iron ore tailing(IOT),the constitutive curves of tailing recycled concrete(TRC...To improve the resource utilization of recycled aggregate concrete(RAC)and make use of the unique pozzolanic activation characteristics of iron ore tailing(IOT),the constitutive curves of tailing recycled concrete(TRC)before and after carbonization were analyzed theoretically,experimentally and microscopically.Firstly,according to the experimental data,the damage constitutive and related damage parameters of TRC were theoretically established by Weibull probability distribution function.Secondly,the comprehensive damage parameter b under different working conditions was studied.Finally,the damage mechanism was formed by EDS and SEM.The results showed that the damage constitutive model based on Weibull probability distribution function was in good agreement with the experimental results.Under each carbonization period,the b first decreased and then rose with the increase of tailings content.When its content was 30%,the b values of TRC were minimized,which were 22.14%,20.99%,25.39%lower than those of NAC,and 41.09%,34.89%,35.44%lower than those of RAC,indicating that IOT had a relatively good optimization effect on the constitutive curve of RAC.The microscopic analysis results also proved that the IOT addition with a proper amount would improve the matrix structure of RAC and increased its compactness,but when the content was higher,it would also cause harmful cracks in its matrix structure and reduced its density.Therefore,the optimal tailing content was about 30%.This paper provided a new method for damage constitutive calculation and analysis of TRC before and after carbonization.展开更多
To study the damage mechanism of single-layer reticulated domes subject to severe earthquakes, three limit states of single-layer reticulated domes under earthquakes are defined firstly in this paper. Then, two failur...To study the damage mechanism of single-layer reticulated domes subject to severe earthquakes, three limit states of single-layer reticulated domes under earthquakes are defined firstly in this paper. Then, two failure modes are presented by analyzing damage behaviors, and their characteristics are pointed out respectively. Furthermore, the damage process is analyzed and the causes of structural damage in different levels are studied. Finally, by comparing deformation and vibration status of domes with different failure modes, the principles of different failures are revealed and an integrated frame of damage mechanism is set up.展开更多
To reveal the damage mechanism of high chrome bricks for opposed multi nozzle gasifier with expanded diameter,the chemical composition and the morphology of a used high chrome brick were researched using XRF,SEM and E...To reveal the damage mechanism of high chrome bricks for opposed multi nozzle gasifier with expanded diameter,the chemical composition and the morphology of a used high chrome brick were researched using XRF,SEM and EDS,and the properties of the high chrome bricks were improved by adding ultra fine alumina,alumina-chrome-iron oxide synthetic material with spinel structure,and chromium metal.The results show that(1)the high chrome brick is seriously damaged by the chemical dissolution of chrome as well as the chemical reactions at the slag/brick interface,the slag penetration and the structural spalling;(2)FeO in the slag reacts with Cr_(2)O_(3)in the brick to form a FeCr_(2)O_(4)layer on the particle surface thus leading to spalling;CaO reacts with SiO_(2)and Al2O3 in the brick forming a metamorphic layer of low melting point materials;due to the different thermal expansion coefficients of the metamorphic layer and the original brick,cracks appear and continue to expand and deepen under multiple temperature and pressure fluctuations thus leading to spalling of brick layer;(3)the improved brick has decreased apparent porosity,increased bulk density and compressive strength,and better thermal shock resistance compared with the original brick;after one cycle of on-site application,the furnace lining surface is smooth and flat with little damage,indicating that the improved high chrome bricks basically meet the working condition requirements of the opposed multi nozzle gasifier with expanded diameter,however,the final effects need to be evaluated in detail after the whole furnace service.展开更多
To study the damage mechanism of multi‐anchor piles in tunnel crossing landslide area under earthquake,the damping performance of multi‐anchor piles was discussed.The energy dissipation springs were used as the opti...To study the damage mechanism of multi‐anchor piles in tunnel crossing landslide area under earthquake,the damping performance of multi‐anchor piles was discussed.The energy dissipation springs were used as the optimization device of the anchor head to carry out the shaking table comparison test on the reinforced slope.The Hilbert spectrum and Hilbert marginal spectrum were proposed to analyze the seismic damage mechanism of the multi‐anchor piles,and the peak Fourier spectrum amplitude(PFSA)was used to verify the effectiveness of the method.The results show that the seismic energy is concentrated in the high‐frequency component(30-40Hz)of the Hilbert spectrum and the low‐frequency component(12-30 Hz)of the marginal spectrum.This indicates that they can be combined with the distribution law of the PFSA to identify the overall and local dynamic responses of the multi‐anchored piles,respectively.The stretchable deformation of the energy‐dissipation springs improves the coordination of the multi‐anchor piles,resulting in better pile integrity.The damage mechanism of the multi‐anchor piles is elucidated based on the energy method:local damage at the top and middle areas of the multi‐anchor piles is mainly caused by the low‐frequency component(12-30 Hz)of the marginal spectrum under the action of 0.15g and 0.20g seismic intensities.As the seismic intensity increases to 0.30g,the dynamic response of the slope is further amplified by the high‐frequency component(30-40 Hz)of the Hilbert energy spectrum,which leads to the overall damage of the multi‐anchor piles.展开更多
In the service period,the instability of ballastless track bed are mostly related to the damage of interlayers which are mainly resulted from the incompatible thermal deformation of interlayers.The temperature field w...In the service period,the instability of ballastless track bed are mostly related to the damage of interlayers which are mainly resulted from the incompatible thermal deformation of interlayers.The temperature field within the ballastless track bed shows significant non-uniformity due to the large difference in the materials of various structure layers,leading to a considerable difference in the force bearing of different structure layers.Unit Ballastless Track Bed(UBTB)is most significantly affected by temperature gradient.The thermal deformation of interlayers within UBTB follows the trend of ellipsoid-shape buckling under the effect of the temperature gradient,resulting in a variation of the contact relationship between structure layers and a significant periodic irregularity on the rail.When the train travels on the periodically irregular rail,the structure layers are locally contacted,and the contact zone moves with the variation of the wheel position.This wheel-followed local contact greatly magnifies the interlayer stress,causes interlayer damage,and leads to a considerable increase in the bending moment of the track slab.Continuous Ballastless Track Bed(CBTB)is most significantly affected by the overall temperature variation,which may cause damage to the joint in CBTB.Under the combined action of the overall temperature rise and the temperature gradient,the interlayer damage continuously expands,resulting in bonding failure between structural layers.The thermal force in the continuous track slabs will cause the up-heave buckling and the sudden large deformation of the track slab,and the loss of constraint boundary of the horizontal stability.For the design of a ballastless track structure,the change of bearing status and structural damage related to the incompatible thermal deformation of interlayers should be considered.展开更多
Electrochemical impedance spectroscopy (EIS), anodic polarization and scanning electron microscopy techniques were used to investigate the damage mechanism in the transpassive potential region of AISI 316 and AISI 3...Electrochemical impedance spectroscopy (EIS), anodic polarization and scanning electron microscopy techniques were used to investigate the damage mechanism in the transpassive potential region of AISI 316 and AISI 316L solution-annealed stainless steels (SS) with different degrees of sensitization. Depending on the DC potential applied during EIS tests, the AC responses in the transpassive region included three different regions:the first one associated with anodic dissolution of the passive layer, the second one contributed to the disso-lution at the area near grain boundaries, and the last one attributed to pitting corrosion. In addition, the fitting results to experimental data showed that as the DC bias during the EIS test increases the charge transfer resistance (Rct) decreases. Moreover, the Rct values decreased as the sensitization temperature increases but the AISI 316L SS samples exhibited a higher resistance to intergranular corrosion than 316 SS samples.展开更多
Owing to their unique structure and excellent electrical property, carbon nanotubes (CNTs) as an ideal candidate for making future electronic components have great application potentiality. In order to meet the requ...Owing to their unique structure and excellent electrical property, carbon nanotubes (CNTs) as an ideal candidate for making future electronic components have great application potentiality. In order to meet the requirements for space appli- cation in electronic components, it is necessary to study structural changes and damage mechanisms of multi-walled carbon nanotubes (MWCNTs), caused by the irradiations of 70 and 110 keV electrons. In the paper, the changes of structure and damage mechanisms in the irradiated MWCNTs, induced by the irradiations of 70 and 110 keV electrons, are investigated. The changes in surface morphology and structure of the irradiated MWCNT film are characterized using scanning electron microscopy (SEM), x-ray photoelectron spectroscopy (XPS), Raman spectroscopy, x-ray diffraction analysis (XRD), and electron paramagnetic resonance (EPR) spectroscopy. It is found that the MWCNTs show different behaviors in structural changes after 70 and 110 keV electron irradiation due to different damage mechanisms. SEM results reveal that the irra- diation of 70 keV electrons does not change surface morphology of the MWCNT film, while the irradiation of 110 keV electrons with a high fluence of 5 x 1015 cm-2 leads to evident morphological changes, such as the formation of a rough surface, the entanglement of nanotubes and the shrinkage of nanotubes. Based on Raman spectroscopy, XPS, and XRD analyses, it is confirmed that the irradiation of 70 keV electrons increases the interlayer spacing of the MWCNTs and disorders their structure through electronic excitations and ionization effects, while the irradiation of 110 keV electrons obviously reduces the interlayer spacing of the MWCNTs and improves their graphitic order through knock-on atom dis- placements. The improvement of the irradiated MWCNTs by 110 keV electrons is attributed to the restructuring of defect sites induced by knock-on atom displacements. EPR spectroscopic analyses reveal that the MWCNTs exposed to both 70 keV electrons and 110 keV electrons suffer ionization damage to some extent.展开更多
The process of thermal stress damage during 1080 nm laser ablation of single-crystal germanium was recorded in real time using a high-speed charge-coupled device.A three-dimensional finite element numerical model base...The process of thermal stress damage during 1080 nm laser ablation of single-crystal germanium was recorded in real time using a high-speed charge-coupled device.A three-dimensional finite element numerical model based on Fourier's heat conduction equation,Hooke's law and the Alexander–Hasson equation was developed to analyze the thermal stress damage mechanism involved.The damage morphology of the ablated samples was observed using an optical microscope.The results show that the cooling process has an important influence on fracture in the laser-irradiated region of single-crystal germanium.Fracture is the result of a combination of thermal stress and reduction in local yield strength.展开更多
Coupling with the periodical displacement boundary condition,a representative volume element(RVE) model is established to simulate the progressive damage behavior of 2D1×1 braided composites under unidirectional ...Coupling with the periodical displacement boundary condition,a representative volume element(RVE) model is established to simulate the progressive damage behavior of 2D1×1 braided composites under unidirectional tension by using the nonlinear finite element method.Tsai-Wu failure criterion with various damage modes and Mises criterion are considered for predicting damage initiation and progression of yarns and matrix.The anisotropic damage model for yarns and the isotropic damage model for matrix are used to simulate the microscopic damage propagation of 2D1×1braided composites.Murakami′s damage tensor is adopted to characterize each damage mode.In the simulation process,the damage mechanisms are revealed and the tensile strength of 2D1×1braided composites is predicted from the calculated average stress-average strain curve.Numerical results show good agreement with experimental data,thus the proposed simulation method is verified for damage mechanism analysis of 2D braided composites.展开更多
In order to improve the service performance and explore the damage mechanism of silicon carbide-mullite bricks for the transition zone of cement rotary kilns,the phase composition and the microstructure of a used bric...In order to improve the service performance and explore the damage mechanism of silicon carbide-mullite bricks for the transition zone of cement rotary kilns,the phase composition and the microstructure of a used brick in the transition zone of a cement rotary kiln were analyzed by XRD,SEM and EDS.The results show that the liquid and alkali vapor phases generated by the reaction between cement materials and the silicon carbide-mullite brick mostly enter the silicon carbide-mullite brick through the pores;meanwhile,Ca+and K+in the cement penetrate through the liquid maintaining a high chemical potential energy to dissolve Al2O3 and SiO2 at the top of the liquid phase thus enhancing the phase penetration;with the decreasing temperature,crystals such as gehlenite,potassium feldspar and potassium chloride are precipitated,which destroy the original structure and increase the difference of thermal expansion coefficient between the high temperature dense end and the metamorphic layer thus resulting in cracks,spalling,and rupture.展开更多
On the 2011 off the Pacific Coast of Tohoku Earthquake, gymnasium buildings exhibited the unexpected structural damages, which prevented a use as evacuation shelters in during- and post-disaster periods. The major fai...On the 2011 off the Pacific Coast of Tohoku Earthquake, gymnasium buildings exhibited the unexpected structural damages, which prevented a use as evacuation shelters in during- and post-disaster periods. The major failure occurr<span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">ing</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> on the connection between the RC column top and steel roof as well as the cracks in the RC column base w</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">as</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> observed during the emergent inspection. According to the earlier studies, it was implied that the presence of the slotted hole possibly deteriorates the seismic capacity;however, the length of slotted hole was fixed at a certain value. Facing this concern, this research attempts to clarify the influence of the slotted hole length through a comprehensive parametric study by pushover and seismic response analyses. In conclusion, it has been discovered that the slotted hole deteriorates the seismic capacity for the connection failure up to almost 50% of that without slotted hole. Moreover, the discrepancy of characteristics obtained by the static and dynamic analyses is originated by means of the presence of slotted hole. This slotted hole effect should be noted by structural engineers and researchers to provide the adequate seismic diagnosis and strengthening.</span></span></span>展开更多
With the in-depth development of the Sargiz oilfield in Kazakhstan, oil layer protection plays an extremely important role in the development process. The petrological characteristics and pore types of the reservoir w...With the in-depth development of the Sargiz oilfield in Kazakhstan, oil layer protection plays an extremely important role in the development process. The petrological characteristics and pore types of the reservoir were analyzed by X-ray diffraction and electron microscopy. The average face ratio of the reservoir was 19.30%. The main pore type was intergranular pore and the face rate was 17.52%. The total amount of clay minerals in the reservoir core is 7% - 10%, and the clay minerals are mainly illite, Yimeng, kaolinite and chlorite;the shale content of the main oil-bearing layer is about 3% - 10%. Refer to relevant industry standards for speed, water, stress, acid, and alkali sensitivity experiments to study the potential damage mechanism of the reservoir. According to the above experiments, the oilfield reservoirs have no speed-sensitive damage and are weakly water-sensitive reservoirs;the reservoirs are highly stress-sensitive and easy to produce sand when the stress changes;they have moderately weak acid sensitivity and weak-medium weak alkaline.展开更多
This paper presents a numerical study to improve the understanding of the complex subject of penetration and perforation of concrete targets impacted by low-velocity projectiles.The main focus is on the damage mechani...This paper presents a numerical study to improve the understanding of the complex subject of penetration and perforation of concrete targets impacted by low-velocity projectiles.The main focus is on the damage mechanisms and the major factors that account for the target resistance of the concrete.An improved continuous surface cap model recently proposed was employed.The model was first equipped with element erosion criteria and was adequately validated by comparisons with ballistic experiments.Comprehensive numerical simulations were carried out where the individual influence of tensile,shear,and volumetric behaviors(pore collapse)of a concrete target on its ballistic performance was investigated.Results demonstrated that cratering on the front face and scabbing on the rear face of the concrete target were mainly dominated by its tensile behavior.The major target resistance came from the second tunneling stage which was primarily governed by the shear and volumetric behaviors of the concrete.Particularly,this study captured the pore collapse-induced damage phenomenon during the high-pressure tunneling stage,which has been extensively reported in experiments but has usually been neglected in previous numerical investigations.展开更多
To improve the oxidation resistance of short carbon fiber(C_(sf))-reinforced mechanically alloyed SiBCN(MA-SiBCN)(C_(sf)/MA-SiBCN)composites,dense amorphous C_(sf)/SiBCN composites containing both MA-SiBCN and polymer...To improve the oxidation resistance of short carbon fiber(C_(sf))-reinforced mechanically alloyed SiBCN(MA-SiBCN)(C_(sf)/MA-SiBCN)composites,dense amorphous C_(sf)/SiBCN composites containing both MA-SiBCN and polymer-derived ceramics SiBCN(PDCs-SiBCN)were prepared by repeated polymer infiltration and pyrolysis(PIP)of layered C_(sf)/MA-SiBCN composites at 1100℃,and the oxidation behavior and damage mechanism of the as-prepared C_(sf)/SiBCN at 1300–1600℃ were compared and discussed with those of C_(sf)/MA-SiBCN.The C_(sf)/MA-SiBCN composites resist oxidation attack up to 1400℃ but fail at 1500℃ due to the collapse of the porous framework,while the PIP-densified C_(sf)/SiBCN composites are resistant to static air up to 1600℃.During oxidation,oxygen diffuses through preexisting pores and the pores left by oxidation of carbon fibers and pyrolytic carbon(PyC)to the interior of the matrix.Owing to the oxidative coupling effect of the MA-SiBCN and PDCs-SiBCN matrices,a relatively continuous and dense oxide layer is formed on the sample surface,and the interfacial region between the oxide layer and the matrix of the as-prepared composite contains an amorphous glassy structure mainly consisting of Si and O and an incompletely oxidized but partially crystallized matrix,which is primarily responsible for improving the oxidation resistance.展开更多
To study the damage and fracture mechanism of 6063 aluminum alloy under different stress states,three kinds of representative triaxial stress states have been adopted,namely smooth tensile,notch tensile,and pure shear...To study the damage and fracture mechanism of 6063 aluminum alloy under different stress states,three kinds of representative triaxial stress states have been adopted,namely smooth tensile,notch tensile,and pure shear.The results of the study indicate the following.During the notch tensile test,a relatively higher stress triaxiality appears in the root of the notch.With the applied loading increasing,the volume fraction of microvoids in the root of the notch increases continuously.When it reaches the critical volume fraction of microvoids,the specimen fractures.During the pure shear test,the stress triaxiality almost equals to zero,and there is almost no microvoids but a shear band at the center of the butterfly specimen.The shear band results from nonuniform deformation constantly under the shear stress.With stress concentration,cracks are produced within the shear band and are later coalesced.When the equivalent plastic strain reaches the critical value(equivalent plastic fracture strain),the butterfly specimen fractures.During the smooth tensile test,the stress triaxiality in the gauge of the specimen remains constant at 0.33.Thus,the volume of microvoids of the smooth tensile test is less than that of the notch tensile test and the smooth specimen fractures due to shearing between microvoids.The G-T-N damage model and Johnson-Cook model are used to simulate the notch tensile and shear test,respectively.The simulated engineering stress-strain curves fit the measured engineering stress-strain curves very well.In addition,the empirical damage evolution equation for the notch specimen is obtained from the experimental data and FEM simulations.展开更多
The lower head of reactor pressure vessel (RPV) will endure a great temperature gradient above the phase transition temperature, and the creep and fracture will be the primary failure mode for the RPV material in su...The lower head of reactor pressure vessel (RPV) will endure a great temperature gradient above the phase transition temperature, and the creep and fracture will be the primary failure mode for the RPV material in such a situation. The interrupted creep tests were performed on a typical RPV material, SA508 Gr3 steel, at 800 ℃. The microstructure of different creep stages was examined by scanning electron microscopy and transmission electron microscopy. The results showed that the microscopic damage is mainly induced by creep cavities and coarse second-phase particles. Furthermore, the volume fractions of creep cavities and coarse second-phase particles show a linear relationship with the extended creep time. The second-phase particles are determined to be MoC in the second creep stage and Mo2C in the third creep stage, according to the results of selected-area electron diffraction pattern. Combined with energy-dispersive spectrum analysis, the segregation of precipitates caused by the migration of atoms is finally unveiled, which leads to the coarsening of the particles.展开更多
文摘Aiming to analyze the damage mechanism of UTAO from the perspective of meso-mechanical mechanism using discrete element method(DEM),we conducted study of diseases problems of UTAO in several provinces in China,and found that aggregate spalling was one of the main disease types of UTAO.A discrete element model of UTAO pavement structure was constructed to explore the meso-mechanical mechanism of UTAO damage under the influence of layer thickness,gradation,and bonding modulus.The experimental results show that,as the thickness of UTAO decreasing,the maximum value and the mean value of the contact force between all aggregate particles gradually increase,which leads to aggregates more prone to spalling.Compared with OGFC-5 UTAO,AC-5 UTAO presents smaller maximum and average values of all contact forces,and the loading pressure in AC-5 UTAO is fully diffused in the lateral direction.In addition,the increment of pavement modulus strengthens the overall force of aggregate particles inside UTAO,resulting in aggregate particles peeling off more easily.The increase of bonding modulus changes the position where the maximum value of the tangential force appears,whereas has no effect on the normal force.
基金funding from the National Natural Science Foundation of China(Grant Nos.12132003 and 12302460)。
文摘Compared with PELE with inert fillings such as polyethylene and nylon,reactive PELE(RPELE)shows excellent damage effects when impacting concrete targets due to the filling deflagration reaction.In present work,an analytical model describing the jacket deformation and concrete target damage impacted by RPELE was presented,in which the radial rarefaction and filling deflagration reaction were considered.The impact tests of RPELE on concrete target in the 592-1012 m/s were carried out to verify the analytical model.Based on the analytical model,the angle-length evolution mechanism of the jacket bending-curling deformation was revealed,and the concrete target damage was further analyzed.One can find out that the average prediction errors of the front crater,opening and back crater are 6.8%,8.5%and 7.1%,respectively.Moreover,the effects of radial rarefaction and deflagration were discussed.It was found that the neglect of radial rarefaction overestimates the jacket deformation and concrete target damage,while the deflagration reaction of filling increases the diameter of the front crater,opening and back crater by 25.4%,24.3%and 31.1%,respectively.The research provides a valuable reference for understanding and predicting the jacket deformation and concrete target damage impacted by RPELE.
基金This work was financially supported by the National Natural Science Foundation of China(Nos.42077231 and 51574156).
文摘This study aims to investigate the mechanical response and acoustic emission(AE)characteristic of pre-flawed sandstone under both monotonic and multilevel constant-amplitude cyclic loads.Specifically,we explored how coplanar flaw angle and load type impact the strength and deformation behavior and microscopic damage mechanism.Results indicated that being fluctuated before rising with increasing fissure angle under monotonic loading,the peak strength of the specimen first increased slowly and then steeply under cyclic loading.The effect of multilevel cyclic loading on the mechanical parameters was more significant.For a single fatigue stage,the specimen underwent greater deformation in early cycles,which subsequently stabilized.Similar variation pattern was also reflected by AE count/energy/b-value.Crack behaviors were dominated by the fissure angle and load type and medium-scale crack accounted for 74.83%–86.44%of total crack.Compared with monotonic loading,crack distribution of specimen under cyclic loading was more complicated.Meanwhile,a simple model was proposed to describe the damage evolution of sandstone under cyclic loading.Finally,SEM images revealed that the microstructures at the fracture were mainly composed of intergranular fracture,and percentage of transgranular fracture jumped under cyclic loading due to the rapid release of elastic energy caused by high loading rate.
基金Support from China Scholarship Council is also acknowledged by the first author。
文摘Strainburst is the most common type of rockbursts.The research of strainburst damage mechanisms is helpful to improve and optimize the rock support design in the burst-prone ground.In this study,an improved global-local modeling approach was first adopted to study strainburst damage mechanisms.The extracted stresses induced by multiple excavations from a three-dimensional(3D)global model established by fast Lagrangian analysis of continua in 3 dimensions(FLAC3D)are used as boundary conditions for a two-dimensional(2D)local model of a deep roadway built by universal distinct element code(UDEC)to simulate realistic stress loading paths and conduct a detailed analysis of rockburst damage from both micro and macro perspectives.The results suggest that the deformation and damage level of the roadway gradually increase with the growth of surrounding rock stress caused by the superposition of mining-or excavation-induced stresses of the panel and nearby roadways.The significant increase of surrounding rock stresses will result in more accumulated strain energy in two sidewalls,providing a necessary condition for the strainburst occurrence in the dynamic stage.The strainburst damage mechanism for the study site combines three types of damage:rock ejection,rock bulking,and rockfall.During the strainburst,initiation,propagation,and development of tensile cracks play a crucial role in controlling macroscopic failure of surrounding rock masses,although the shear crack always accounts for the main proportion of damage levels.The deformation and damage level of the roadway during a strainburst positively correlate with the increasing peak particle velocities(PPVs).The yielding steel arch might not dissipate kinetic energy and mitigate strainburst damage effectively due to the limited energy absorption capacity.The principles to control and mitigate strainburst damage are proposed in this paper.This study presents a systematic framework to investigate strainburst damage mechanisms using the global-local modeling approach.
基金This work was funded by the Natural Science Foundation of China(No.51678480)Ministry of Education Cooperative Education Project(201802308007)+3 种基金Innovation Capability Support Program of Shaanxi(2020PT-038)Henan Province Key Scientific Research Projects of Colleges and Universities(19A560016)Henan Province Key Projects of Science and Technology(192102310277,182102310834)Scientific Research Projects of Shaanxi Education Department(16JK1244).
文摘To improve the resource utilization of recycled aggregate concrete(RAC)and make use of the unique pozzolanic activation characteristics of iron ore tailing(IOT),the constitutive curves of tailing recycled concrete(TRC)before and after carbonization were analyzed theoretically,experimentally and microscopically.Firstly,according to the experimental data,the damage constitutive and related damage parameters of TRC were theoretically established by Weibull probability distribution function.Secondly,the comprehensive damage parameter b under different working conditions was studied.Finally,the damage mechanism was formed by EDS and SEM.The results showed that the damage constitutive model based on Weibull probability distribution function was in good agreement with the experimental results.Under each carbonization period,the b first decreased and then rose with the increase of tailings content.When its content was 30%,the b values of TRC were minimized,which were 22.14%,20.99%,25.39%lower than those of NAC,and 41.09%,34.89%,35.44%lower than those of RAC,indicating that IOT had a relatively good optimization effect on the constitutive curve of RAC.The microscopic analysis results also proved that the IOT addition with a proper amount would improve the matrix structure of RAC and increased its compactness,but when the content was higher,it would also cause harmful cracks in its matrix structure and reduced its density.Therefore,the optimal tailing content was about 30%.This paper provided a new method for damage constitutive calculation and analysis of TRC before and after carbonization.
基金Sponsored by the National Natural Science Foundation of China(Grant No.90715034)
文摘To study the damage mechanism of single-layer reticulated domes subject to severe earthquakes, three limit states of single-layer reticulated domes under earthquakes are defined firstly in this paper. Then, two failure modes are presented by analyzing damage behaviors, and their characteristics are pointed out respectively. Furthermore, the damage process is analyzed and the causes of structural damage in different levels are studied. Finally, by comparing deformation and vibration status of domes with different failure modes, the principles of different failures are revealed and an integrated frame of damage mechanism is set up.
文摘To reveal the damage mechanism of high chrome bricks for opposed multi nozzle gasifier with expanded diameter,the chemical composition and the morphology of a used high chrome brick were researched using XRF,SEM and EDS,and the properties of the high chrome bricks were improved by adding ultra fine alumina,alumina-chrome-iron oxide synthetic material with spinel structure,and chromium metal.The results show that(1)the high chrome brick is seriously damaged by the chemical dissolution of chrome as well as the chemical reactions at the slag/brick interface,the slag penetration and the structural spalling;(2)FeO in the slag reacts with Cr_(2)O_(3)in the brick to form a FeCr_(2)O_(4)layer on the particle surface thus leading to spalling;CaO reacts with SiO_(2)and Al2O3 in the brick forming a metamorphic layer of low melting point materials;due to the different thermal expansion coefficients of the metamorphic layer and the original brick,cracks appear and continue to expand and deepen under multiple temperature and pressure fluctuations thus leading to spalling of brick layer;(3)the improved brick has decreased apparent porosity,increased bulk density and compressive strength,and better thermal shock resistance compared with the original brick;after one cycle of on-site application,the furnace lining surface is smooth and flat with little damage,indicating that the improved high chrome bricks basically meet the working condition requirements of the opposed multi nozzle gasifier with expanded diameter,however,the final effects need to be evaluated in detail after the whole furnace service.
基金Science and technology development project of China Railway Ninth Bureau Group Co.,Ltd,Grant/Award Number:DLF‐ML‐JSFW‐2021‐09Science and Technology Development Project of China Railway Research Institute Co.Ltd,Grant/Award Number:2017‐KJ008‐Z008‐XB+2 种基金Gansu Province Youth Science and Technology Fund program,China,Grant/Award Number:21JR7RA739Natural Science Foundation of Gansu Province,China,Grant/Award Number:21JR7RA738National Key R&D Program of China,Grant/Award Number:2018YFC1504901。
文摘To study the damage mechanism of multi‐anchor piles in tunnel crossing landslide area under earthquake,the damping performance of multi‐anchor piles was discussed.The energy dissipation springs were used as the optimization device of the anchor head to carry out the shaking table comparison test on the reinforced slope.The Hilbert spectrum and Hilbert marginal spectrum were proposed to analyze the seismic damage mechanism of the multi‐anchor piles,and the peak Fourier spectrum amplitude(PFSA)was used to verify the effectiveness of the method.The results show that the seismic energy is concentrated in the high‐frequency component(30-40Hz)of the Hilbert spectrum and the low‐frequency component(12-30 Hz)of the marginal spectrum.This indicates that they can be combined with the distribution law of the PFSA to identify the overall and local dynamic responses of the multi‐anchored piles,respectively.The stretchable deformation of the energy‐dissipation springs improves the coordination of the multi‐anchor piles,resulting in better pile integrity.The damage mechanism of the multi‐anchor piles is elucidated based on the energy method:local damage at the top and middle areas of the multi‐anchor piles is mainly caused by the low‐frequency component(12-30 Hz)of the marginal spectrum under the action of 0.15g and 0.20g seismic intensities.As the seismic intensity increases to 0.30g,the dynamic response of the slope is further amplified by the high‐frequency component(30-40 Hz)of the Hilbert energy spectrum,which leads to the overall damage of the multi‐anchor piles.
基金supported by the National Natural Science Foundation of China(grant numbers 52278466).
文摘In the service period,the instability of ballastless track bed are mostly related to the damage of interlayers which are mainly resulted from the incompatible thermal deformation of interlayers.The temperature field within the ballastless track bed shows significant non-uniformity due to the large difference in the materials of various structure layers,leading to a considerable difference in the force bearing of different structure layers.Unit Ballastless Track Bed(UBTB)is most significantly affected by temperature gradient.The thermal deformation of interlayers within UBTB follows the trend of ellipsoid-shape buckling under the effect of the temperature gradient,resulting in a variation of the contact relationship between structure layers and a significant periodic irregularity on the rail.When the train travels on the periodically irregular rail,the structure layers are locally contacted,and the contact zone moves with the variation of the wheel position.This wheel-followed local contact greatly magnifies the interlayer stress,causes interlayer damage,and leads to a considerable increase in the bending moment of the track slab.Continuous Ballastless Track Bed(CBTB)is most significantly affected by the overall temperature variation,which may cause damage to the joint in CBTB.Under the combined action of the overall temperature rise and the temperature gradient,the interlayer damage continuously expands,resulting in bonding failure between structural layers.The thermal force in the continuous track slabs will cause the up-heave buckling and the sudden large deformation of the track slab,and the loss of constraint boundary of the horizontal stability.For the design of a ballastless track structure,the change of bearing status and structural damage related to the incompatible thermal deformation of interlayers should be considered.
文摘Electrochemical impedance spectroscopy (EIS), anodic polarization and scanning electron microscopy techniques were used to investigate the damage mechanism in the transpassive potential region of AISI 316 and AISI 316L solution-annealed stainless steels (SS) with different degrees of sensitization. Depending on the DC potential applied during EIS tests, the AC responses in the transpassive region included three different regions:the first one associated with anodic dissolution of the passive layer, the second one contributed to the disso-lution at the area near grain boundaries, and the last one attributed to pitting corrosion. In addition, the fitting results to experimental data showed that as the DC bias during the EIS test increases the charge transfer resistance (Rct) decreases. Moreover, the Rct values decreased as the sensitization temperature increases but the AISI 316L SS samples exhibited a higher resistance to intergranular corrosion than 316 SS samples.
基金supported by the National Natural Science Foundation of China(Grant No.51503053)
文摘Owing to their unique structure and excellent electrical property, carbon nanotubes (CNTs) as an ideal candidate for making future electronic components have great application potentiality. In order to meet the requirements for space appli- cation in electronic components, it is necessary to study structural changes and damage mechanisms of multi-walled carbon nanotubes (MWCNTs), caused by the irradiations of 70 and 110 keV electrons. In the paper, the changes of structure and damage mechanisms in the irradiated MWCNTs, induced by the irradiations of 70 and 110 keV electrons, are investigated. The changes in surface morphology and structure of the irradiated MWCNT film are characterized using scanning electron microscopy (SEM), x-ray photoelectron spectroscopy (XPS), Raman spectroscopy, x-ray diffraction analysis (XRD), and electron paramagnetic resonance (EPR) spectroscopy. It is found that the MWCNTs show different behaviors in structural changes after 70 and 110 keV electron irradiation due to different damage mechanisms. SEM results reveal that the irra- diation of 70 keV electrons does not change surface morphology of the MWCNT film, while the irradiation of 110 keV electrons with a high fluence of 5 x 1015 cm-2 leads to evident morphological changes, such as the formation of a rough surface, the entanglement of nanotubes and the shrinkage of nanotubes. Based on Raman spectroscopy, XPS, and XRD analyses, it is confirmed that the irradiation of 70 keV electrons increases the interlayer spacing of the MWCNTs and disorders their structure through electronic excitations and ionization effects, while the irradiation of 110 keV electrons obviously reduces the interlayer spacing of the MWCNTs and improves their graphitic order through knock-on atom dis- placements. The improvement of the irradiated MWCNTs by 110 keV electrons is attributed to the restructuring of defect sites induced by knock-on atom displacements. EPR spectroscopic analyses reveal that the MWCNTs exposed to both 70 keV electrons and 110 keV electrons suffer ionization damage to some extent.
文摘The process of thermal stress damage during 1080 nm laser ablation of single-crystal germanium was recorded in real time using a high-speed charge-coupled device.A three-dimensional finite element numerical model based on Fourier's heat conduction equation,Hooke's law and the Alexander–Hasson equation was developed to analyze the thermal stress damage mechanism involved.The damage morphology of the ablated samples was observed using an optical microscope.The results show that the cooling process has an important influence on fracture in the laser-irradiated region of single-crystal germanium.Fracture is the result of a combination of thermal stress and reduction in local yield strength.
基金Supported by the National Natural Science Foundation of China(10672075)
文摘Coupling with the periodical displacement boundary condition,a representative volume element(RVE) model is established to simulate the progressive damage behavior of 2D1×1 braided composites under unidirectional tension by using the nonlinear finite element method.Tsai-Wu failure criterion with various damage modes and Mises criterion are considered for predicting damage initiation and progression of yarns and matrix.The anisotropic damage model for yarns and the isotropic damage model for matrix are used to simulate the microscopic damage propagation of 2D1×1braided composites.Murakami′s damage tensor is adopted to characterize each damage mode.In the simulation process,the damage mechanisms are revealed and the tensile strength of 2D1×1braided composites is predicted from the calculated average stress-average strain curve.Numerical results show good agreement with experimental data,thus the proposed simulation method is verified for damage mechanism analysis of 2D braided composites.
文摘In order to improve the service performance and explore the damage mechanism of silicon carbide-mullite bricks for the transition zone of cement rotary kilns,the phase composition and the microstructure of a used brick in the transition zone of a cement rotary kiln were analyzed by XRD,SEM and EDS.The results show that the liquid and alkali vapor phases generated by the reaction between cement materials and the silicon carbide-mullite brick mostly enter the silicon carbide-mullite brick through the pores;meanwhile,Ca+and K+in the cement penetrate through the liquid maintaining a high chemical potential energy to dissolve Al2O3 and SiO2 at the top of the liquid phase thus enhancing the phase penetration;with the decreasing temperature,crystals such as gehlenite,potassium feldspar and potassium chloride are precipitated,which destroy the original structure and increase the difference of thermal expansion coefficient between the high temperature dense end and the metamorphic layer thus resulting in cracks,spalling,and rupture.
文摘On the 2011 off the Pacific Coast of Tohoku Earthquake, gymnasium buildings exhibited the unexpected structural damages, which prevented a use as evacuation shelters in during- and post-disaster periods. The major failure occurr<span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">ing</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> on the connection between the RC column top and steel roof as well as the cracks in the RC column base w</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">as</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> observed during the emergent inspection. According to the earlier studies, it was implied that the presence of the slotted hole possibly deteriorates the seismic capacity;however, the length of slotted hole was fixed at a certain value. Facing this concern, this research attempts to clarify the influence of the slotted hole length through a comprehensive parametric study by pushover and seismic response analyses. In conclusion, it has been discovered that the slotted hole deteriorates the seismic capacity for the connection failure up to almost 50% of that without slotted hole. Moreover, the discrepancy of characteristics obtained by the static and dynamic analyses is originated by means of the presence of slotted hole. This slotted hole effect should be noted by structural engineers and researchers to provide the adequate seismic diagnosis and strengthening.</span></span></span>
文摘With the in-depth development of the Sargiz oilfield in Kazakhstan, oil layer protection plays an extremely important role in the development process. The petrological characteristics and pore types of the reservoir were analyzed by X-ray diffraction and electron microscopy. The average face ratio of the reservoir was 19.30%. The main pore type was intergranular pore and the face rate was 17.52%. The total amount of clay minerals in the reservoir core is 7% - 10%, and the clay minerals are mainly illite, Yimeng, kaolinite and chlorite;the shale content of the main oil-bearing layer is about 3% - 10%. Refer to relevant industry standards for speed, water, stress, acid, and alkali sensitivity experiments to study the potential damage mechanism of the reservoir. According to the above experiments, the oilfield reservoirs have no speed-sensitive damage and are weakly water-sensitive reservoirs;the reservoirs are highly stress-sensitive and easy to produce sand when the stress changes;they have moderately weak acid sensitivity and weak-medium weak alkaline.
基金This work is supported by the Basic Science Center Program for Multiphase Evolution in Hypergravity of the National Natural Science Foundation of China(No.51988101)the Postdoctoral Fellowship Program of China Postdoctoral Science Foundation(No.GZC20232338).
文摘This paper presents a numerical study to improve the understanding of the complex subject of penetration and perforation of concrete targets impacted by low-velocity projectiles.The main focus is on the damage mechanisms and the major factors that account for the target resistance of the concrete.An improved continuous surface cap model recently proposed was employed.The model was first equipped with element erosion criteria and was adequately validated by comparisons with ballistic experiments.Comprehensive numerical simulations were carried out where the individual influence of tensile,shear,and volumetric behaviors(pore collapse)of a concrete target on its ballistic performance was investigated.Results demonstrated that cratering on the front face and scabbing on the rear face of the concrete target were mainly dominated by its tensile behavior.The major target resistance came from the second tunneling stage which was primarily governed by the shear and volumetric behaviors of the concrete.Particularly,this study captured the pore collapse-induced damage phenomenon during the high-pressure tunneling stage,which has been extensively reported in experiments but has usually been neglected in previous numerical investigations.
基金the National Natural Science Foundation of China(Nos.52372059,52172068,52232004,and 52002092)the Heilongjiang Natural Science Fund for Young Scholars(No.YQ2021E017)+3 种基金the Fundamental Research Funds for the Central Universities(No.2022FRFK060012)the Heilongjiang Touyan Team Program,and the Advanced Talents Scientific Research Foundation of Shenzhen:Yu Zhou.the Beijing Engineering Research Center of Efficient and Green Aerospace Propulsion Technology and Advanced Space Propulsion Laboratory of BICE(No.LabASP-2023-11)the Huiyan Action(No.1A423653)the Key Technologies R&D Program of CNBM(No.2023SJYL05).Ralf Riedel also gratefully acknowledges the financial support provided by the Research Training Group 2561“MatCom-ComMat:Materials Compounds from Composite Materials for Applications in Extreme Conditions”funded by the Deutsche Forschungsgemeinschaft(DFG),Bonn,Germany.
文摘To improve the oxidation resistance of short carbon fiber(C_(sf))-reinforced mechanically alloyed SiBCN(MA-SiBCN)(C_(sf)/MA-SiBCN)composites,dense amorphous C_(sf)/SiBCN composites containing both MA-SiBCN and polymer-derived ceramics SiBCN(PDCs-SiBCN)were prepared by repeated polymer infiltration and pyrolysis(PIP)of layered C_(sf)/MA-SiBCN composites at 1100℃,and the oxidation behavior and damage mechanism of the as-prepared C_(sf)/SiBCN at 1300–1600℃ were compared and discussed with those of C_(sf)/MA-SiBCN.The C_(sf)/MA-SiBCN composites resist oxidation attack up to 1400℃ but fail at 1500℃ due to the collapse of the porous framework,while the PIP-densified C_(sf)/SiBCN composites are resistant to static air up to 1600℃.During oxidation,oxygen diffuses through preexisting pores and the pores left by oxidation of carbon fibers and pyrolytic carbon(PyC)to the interior of the matrix.Owing to the oxidative coupling effect of the MA-SiBCN and PDCs-SiBCN matrices,a relatively continuous and dense oxide layer is formed on the sample surface,and the interfacial region between the oxide layer and the matrix of the as-prepared composite contains an amorphous glassy structure mainly consisting of Si and O and an incompletely oxidized but partially crystallized matrix,which is primarily responsible for improving the oxidation resistance.
文摘To study the damage and fracture mechanism of 6063 aluminum alloy under different stress states,three kinds of representative triaxial stress states have been adopted,namely smooth tensile,notch tensile,and pure shear.The results of the study indicate the following.During the notch tensile test,a relatively higher stress triaxiality appears in the root of the notch.With the applied loading increasing,the volume fraction of microvoids in the root of the notch increases continuously.When it reaches the critical volume fraction of microvoids,the specimen fractures.During the pure shear test,the stress triaxiality almost equals to zero,and there is almost no microvoids but a shear band at the center of the butterfly specimen.The shear band results from nonuniform deformation constantly under the shear stress.With stress concentration,cracks are produced within the shear band and are later coalesced.When the equivalent plastic strain reaches the critical value(equivalent plastic fracture strain),the butterfly specimen fractures.During the smooth tensile test,the stress triaxiality in the gauge of the specimen remains constant at 0.33.Thus,the volume of microvoids of the smooth tensile test is less than that of the notch tensile test and the smooth specimen fractures due to shearing between microvoids.The G-T-N damage model and Johnson-Cook model are used to simulate the notch tensile and shear test,respectively.The simulated engineering stress-strain curves fit the measured engineering stress-strain curves very well.In addition,the empirical damage evolution equation for the notch specimen is obtained from the experimental data and FEM simulations.
基金This research was supported by the National Natural Science Foundation of China (51575489) and National 13th Five-Year Key Technologies R&D Program (No. 2016YFC0801902).
文摘The lower head of reactor pressure vessel (RPV) will endure a great temperature gradient above the phase transition temperature, and the creep and fracture will be the primary failure mode for the RPV material in such a situation. The interrupted creep tests were performed on a typical RPV material, SA508 Gr3 steel, at 800 ℃. The microstructure of different creep stages was examined by scanning electron microscopy and transmission electron microscopy. The results showed that the microscopic damage is mainly induced by creep cavities and coarse second-phase particles. Furthermore, the volume fractions of creep cavities and coarse second-phase particles show a linear relationship with the extended creep time. The second-phase particles are determined to be MoC in the second creep stage and Mo2C in the third creep stage, according to the results of selected-area electron diffraction pattern. Combined with energy-dispersive spectrum analysis, the segregation of precipitates caused by the migration of atoms is finally unveiled, which leads to the coarsening of the particles.