Experiments of dense-phase pneumatic conveying of pulverized coal using nitrogen are carded out in an experimental test facility with the conveying pressure up to 4. 0 MPa and the gas-solid ratio up to 450 kg/m^3. The...Experiments of dense-phase pneumatic conveying of pulverized coal using nitrogen are carded out in an experimental test facility with the conveying pressure up to 4. 0 MPa and the gas-solid ratio up to 450 kg/m^3. The influences of different conveying differential pressures, coal moisture contents, gas volume flow rates and superficial velocities on the solid-gas ratios are investigated. Shannon entropy analysis of pressure fluctuation time series is developed to reveal the flow characteristics. Through investigation of the distribution of the Shannon entropy under different conditions, the flow stability and the evolutional tendency of the Shannon entropy in different regimes and regime transition processes are discovered, and the relationship between the Shannon entropy and the flow regimes is also established. The results indicate that the solid-gas ratio and the Shannon entropy rise with the increase in conveying differential pressure. The solid-gas ratio and the Shannon entropy reveal preferable regularity with gas volume flow rates. The Shannon entropy is different for different flow regimes, and can be used to identify the flow regimes. Both mass flow rate and the Shannon entropy decrease with the increase in moisture contents. The Shannon entropy analysis is a feasible approach for researching the characteristics of flow regimes, flow stability and flow regime transitions in dense-phase pneumatic conveying under high pressure.展开更多
This paper presents the results of an ongoing investigation into the fluctuations of pressure signals due to solids-gas flows for dense-phase pneumatic conveying of fine powders. Pressure signals were obtained from pr...This paper presents the results of an ongoing investigation into the fluctuations of pressure signals due to solids-gas flows for dense-phase pneumatic conveying of fine powders. Pressure signals were obtained from pressure transducers installed along different locations of a pipeline for the fluidized dense-phase pneumatic conveying of fly ash (median particle diameter 30μm; particle density 2300 kg/m^3; loose- poured bulk density 700 kg/m^3) and white powder (median particle diameter 55 p.m; particle density 1600 kg/m^3 ; loose-poured bulk density 620 kg/m^3) from dilute to fluidized dense-phase. Standard deviation and Shannon entropy were employed to investigate the pressure signal fluctuations. It was found that there is an increase in the values of Shannon entropy and standard deviation for both of the prod- ucts along the flow direction through the straight pipe sections. However, both the Shannon entropy and standard deviation values tend to decrease after the flow through bend(s), This result could be attributed to the deceleration of particles while flowing through the bends, resulting in dampened particle fluctua- tion and turbulence. Lower values of Shannon entropy in the early parts of the pipeline could be due to the non-suspension nature of flow (dense-phase), i.e., there is a higher probability that the particles are concentrated toward the bottom of pipe, compared with dilute-phase or suspension flow (high velocity), where the particles could be expected to be distributed homogenously throughout the pipe bore (as the flow is in suspension). Changes in straight-pipe pneumatic conveying characteristics along the flow direction also indicate a change in the flow regime along the flow.展开更多
Clean utilization and conversion of coal resources is significant to China’s energy sustainable development.Entrained-flow coal gasification technology is an important method used for clean and efficient conversion o...Clean utilization and conversion of coal resources is significant to China’s energy sustainable development.Entrained-flow coal gasification technology is an important method used for clean and efficient conversion of coal.The characteristics and stability of high-pressure dense-phase pneumatic conveying of pulverized coal is crucial to the safe and stable operation of dry-feed entrained-flow coal gasifiers.Dense-phase pneumatic conveying experiments were carried out using a high-volatile bituminous coal in pipes with diameters of 25,15 and 10 mm,respectively,and at back pressures of 1.0-4.0 MPag.The conveying characteristics and effects of operating and structure parameters were studied.Pressure drop models were established for horizontal and vertical upward conveying.The prediction uncertainty was within±30%for the horizontal conveying and±20%for the vertical upward conveying.The relative standard deviation of solid flow rate was proposed to explain conveying stability.The effect of operating parameters on conveying stability was systematically analyzed.The gas velocity-related criterion was proposed for stable conveying.展开更多
The gas/solid flow regime of dense-phase pneumatic conveying of pulverized coal under a pressure of 4.0 MPa in horizontal pipeline 10 mm in diameter, is monitored by electrical capacitance tomography (ECT) using 8 e...The gas/solid flow regime of dense-phase pneumatic conveying of pulverized coal under a pressure of 4.0 MPa in horizontal pipeline 10 mm in diameter, is monitored by electrical capacitance tomography (ECT) using 8 electrodes. To improve the accuracy of the capacitance measurement, an AC-based singlechannel capacitance measuring circuit was developed, and a modified iterative Landweber algorithm was used to reconstruct the image. A two-fluid model based on the kinetic theory of granular flow was used to study the three-dimensional steady-state flow behavior of dense-phase pneumatic conveying of pulverized coal.展开更多
To deeply knowledge of the flow behaviors of pulverized coal particles in dense gas-solid two-phase flow,a multi-scale analysis method based on electrostatic sensor array is applied for the multi-scale characterizatio...To deeply knowledge of the flow behaviors of pulverized coal particles in dense gas-solid two-phase flow,a multi-scale analysis method based on electrostatic sensor array is applied for the multi-scale characterization of flow behaviors of dense gas-solid flow.The experimental results indicate that:for steady flow,with the increment of conveying pressure difference,the individual particles increase and the particle clusters decrease,the individual particle distribution is always inhomogeneous but the particle cluster distribution tends to be more homogeneous over the cross-section of pipe,while the average flow behavior of pulverized coal particles is always in the relatively static state.For unsteady flow,the average flow behavior of pulverized coal particles is dynamic,and the flow behaviors of the multi-scale flow structures over the cross-section of pipe are all significantly inhomogeneous.Moreover,the effect of particle size on flow behavior of pulverized coal is also investigated and validated.展开更多
This paper presents results of an ongoing investigation into modelling fluidized dense-phase pneumatic conveying of powders. For the reliable design of dense-phase pneumatic conveying systems, an accurate estimation o...This paper presents results of an ongoing investigation into modelling fluidized dense-phase pneumatic conveying of powders. For the reliable design of dense-phase pneumatic conveying systems, an accurate estimation of the blockage boundary condition or the minimum transport velocity requirement is of sig- nificant importance. The existing empirical models for fine powder conveying in fluidized dense-phase mode are either based on only a particular pipeline and product or have not been tested for their accuracy under a wide range of scale-up conditions. In this paper, a validated test design procedure has been devel- oped to accurately scale-up the blockage boundary with the help of a modelling format that employs solids loading ratio and Froude number at pipe inlet conditions using conveying data of two different samples of fly ash, electro-static precipitation (ESP) dust and cement (particle densities: 2197-3637 kgJm3; loose poured bulk densities: 634-1070kg/m3; median size: 7-30 l^m). The developed models (in power func- tion format) have been used to predict the blockage boundary for larger diameter and longer pipelines (e.g. models based on 69 mm I.D. ~ 168 m long pipe have been scaled up to 105 mm I.D. and 554 m length). The predicted blockage boundaries for the scale-up conditions were found to provide better accuracy compared to the existing models.展开更多
Results are presented of an ongoing investigation into modeling friction in fiuidized dense-phase pneumatic transport of bulk solids. Many popular modeling methods of the solids friction use the dimen- sionless solids...Results are presented of an ongoing investigation into modeling friction in fiuidized dense-phase pneumatic transport of bulk solids. Many popular modeling methods of the solids friction use the dimen- sionless solids loading ratio and Froude number. When evaluated under proper scale-up conditions of pipe diameter and length, many of these models have resulted in significant inaccuracy. A technique for modeling solids friction has been developed using a new combination of dimensionless numbers, volu- metric loading ratio and the ratio of particle free settling velocity to superficial conveying air velocity, to replace the solids loading ratio and Froude number. The models developed using the new formalism were evaluated for accuracy and stability under significant scale-up conditions for four different prod- ucts conveyed through four different test rigs (subject to diameter and length scale-up conditions). The new model considerably improves predictions compared with those obtained using the existing model, especially in the dense-phase region. Whereas the latter yields absolute average relative errors varying between 10% and 86%, the former yielded results with errors from 4% to 20% for a wide range of scale-up conditions. This represents a more reliable and narrower range of prediction that is suitable for industrial scale-up requirements.展开更多
Accurate prediction of the solids friction factor through horizontal straight pipes is important for the reliable design of a pneumatic conveying system, but it is a challenging assignment to date because of the highl...Accurate prediction of the solids friction factor through horizontal straight pipes is important for the reliable design of a pneumatic conveying system, but it is a challenging assignment to date because of the highly concentrated, turbulent, and complex nature of the gas-solids mixture. Power-station fly ash was transported through different pipeline configurations. Numerical simulation of the dense-phase pneumatic conveying systems for three different solids and two different air flow rates have shown that particle and actual gas velocities and the ratio of the two velocities increases in the flow direction, whereas the reverse trend was found to occur for the solids volumetric concentration. To develop a solids friction-factor model suitable for dense-phase flow, we modified an existing pure dilute-phase model by incorporating sub-models for particle and actual gas velocities and impact and solids friction factor. The solids friction-factor model was validated by using it for scale-up predictions for total pipeline pressure drops in longer and larger pipes and by comparing experimental and predicted pneumatic conveying characteristics for different solids flow rates. The accuracy of the prediction was compared with a recently developed two-layer-based model. We discussed the effect of incorporating the particle and actual gas velocity terms in the solids friction-factor model instead of superficial air velocity.展开更多
In making the gas-solid-liquid phase analysis, based on the collaborative study of the internal and external humidification ratio of desulfurization efficiency, determine the humidifier ratio within 60% to 75%, that c...In making the gas-solid-liquid phase analysis, based on the collaborative study of the internal and external humidification ratio of desulfurization efficiency, determine the humidifier ratio within 60% to 75%, that can make the best balance between the respective merits of a simple tower humidifiers tower humidifier way, optimizing the overall desulfurization reaction, effectively reducing the sticky wall, stick in the desulfurization efficiency and reduce the wall to achieve a balance between the balance, without increasing the sorbent and process water, under the premise can promote the desulfurization reaction, improve the desulfurization sorbent utilization and efficiency, help desulfurization reaction system is stable, efficient and economic operation, the gas-liquid-solid three-phase to achieve better synergy.展开更多
基金The National Basic Research Program of China(973 Program) (No2004CB217702-01)the Foundation of ExcellentPhDThesis of Southeast University
文摘Experiments of dense-phase pneumatic conveying of pulverized coal using nitrogen are carded out in an experimental test facility with the conveying pressure up to 4. 0 MPa and the gas-solid ratio up to 450 kg/m^3. The influences of different conveying differential pressures, coal moisture contents, gas volume flow rates and superficial velocities on the solid-gas ratios are investigated. Shannon entropy analysis of pressure fluctuation time series is developed to reveal the flow characteristics. Through investigation of the distribution of the Shannon entropy under different conditions, the flow stability and the evolutional tendency of the Shannon entropy in different regimes and regime transition processes are discovered, and the relationship between the Shannon entropy and the flow regimes is also established. The results indicate that the solid-gas ratio and the Shannon entropy rise with the increase in conveying differential pressure. The solid-gas ratio and the Shannon entropy reveal preferable regularity with gas volume flow rates. The Shannon entropy is different for different flow regimes, and can be used to identify the flow regimes. Both mass flow rate and the Shannon entropy decrease with the increase in moisture contents. The Shannon entropy analysis is a feasible approach for researching the characteristics of flow regimes, flow stability and flow regime transitions in dense-phase pneumatic conveying under high pressure.
文摘This paper presents the results of an ongoing investigation into the fluctuations of pressure signals due to solids-gas flows for dense-phase pneumatic conveying of fine powders. Pressure signals were obtained from pressure transducers installed along different locations of a pipeline for the fluidized dense-phase pneumatic conveying of fly ash (median particle diameter 30μm; particle density 2300 kg/m^3; loose- poured bulk density 700 kg/m^3) and white powder (median particle diameter 55 p.m; particle density 1600 kg/m^3 ; loose-poured bulk density 620 kg/m^3) from dilute to fluidized dense-phase. Standard deviation and Shannon entropy were employed to investigate the pressure signal fluctuations. It was found that there is an increase in the values of Shannon entropy and standard deviation for both of the prod- ucts along the flow direction through the straight pipe sections. However, both the Shannon entropy and standard deviation values tend to decrease after the flow through bend(s), This result could be attributed to the deceleration of particles while flowing through the bends, resulting in dampened particle fluctua- tion and turbulence. Lower values of Shannon entropy in the early parts of the pipeline could be due to the non-suspension nature of flow (dense-phase), i.e., there is a higher probability that the particles are concentrated toward the bottom of pipe, compared with dilute-phase or suspension flow (high velocity), where the particles could be expected to be distributed homogenously throughout the pipe bore (as the flow is in suspension). Changes in straight-pipe pneumatic conveying characteristics along the flow direction also indicate a change in the flow regime along the flow.
基金This article was funded by Shenhua S&T Innovation Project(ST930014SH02).
文摘Clean utilization and conversion of coal resources is significant to China’s energy sustainable development.Entrained-flow coal gasification technology is an important method used for clean and efficient conversion of coal.The characteristics and stability of high-pressure dense-phase pneumatic conveying of pulverized coal is crucial to the safe and stable operation of dry-feed entrained-flow coal gasifiers.Dense-phase pneumatic conveying experiments were carried out using a high-volatile bituminous coal in pipes with diameters of 25,15 and 10 mm,respectively,and at back pressures of 1.0-4.0 MPag.The conveying characteristics and effects of operating and structure parameters were studied.Pressure drop models were established for horizontal and vertical upward conveying.The prediction uncertainty was within±30%for the horizontal conveying and±20%for the vertical upward conveying.The relative standard deviation of solid flow rate was proposed to explain conveying stability.The effect of operating parameters on conveying stability was systematically analyzed.The gas velocity-related criterion was proposed for stable conveying.
基金supported by National Natural Science Foun-dation of China under grants 50836003, 50906012,50906013Major State Basic Research Projects (grant 2010CB227002)
文摘The gas/solid flow regime of dense-phase pneumatic conveying of pulverized coal under a pressure of 4.0 MPa in horizontal pipeline 10 mm in diameter, is monitored by electrical capacitance tomography (ECT) using 8 electrodes. To improve the accuracy of the capacitance measurement, an AC-based singlechannel capacitance measuring circuit was developed, and a modified iterative Landweber algorithm was used to reconstruct the image. A two-fluid model based on the kinetic theory of granular flow was used to study the three-dimensional steady-state flow behavior of dense-phase pneumatic conveying of pulverized coal.
基金This work was financially supported by the National Natural Science Foundation of China(grant No.51406164).
文摘To deeply knowledge of the flow behaviors of pulverized coal particles in dense gas-solid two-phase flow,a multi-scale analysis method based on electrostatic sensor array is applied for the multi-scale characterization of flow behaviors of dense gas-solid flow.The experimental results indicate that:for steady flow,with the increment of conveying pressure difference,the individual particles increase and the particle clusters decrease,the individual particle distribution is always inhomogeneous but the particle cluster distribution tends to be more homogeneous over the cross-section of pipe,while the average flow behavior of pulverized coal particles is always in the relatively static state.For unsteady flow,the average flow behavior of pulverized coal particles is dynamic,and the flow behaviors of the multi-scale flow structures over the cross-section of pipe are all significantly inhomogeneous.Moreover,the effect of particle size on flow behavior of pulverized coal is also investigated and validated.
文摘This paper presents results of an ongoing investigation into modelling fluidized dense-phase pneumatic conveying of powders. For the reliable design of dense-phase pneumatic conveying systems, an accurate estimation of the blockage boundary condition or the minimum transport velocity requirement is of sig- nificant importance. The existing empirical models for fine powder conveying in fluidized dense-phase mode are either based on only a particular pipeline and product or have not been tested for their accuracy under a wide range of scale-up conditions. In this paper, a validated test design procedure has been devel- oped to accurately scale-up the blockage boundary with the help of a modelling format that employs solids loading ratio and Froude number at pipe inlet conditions using conveying data of two different samples of fly ash, electro-static precipitation (ESP) dust and cement (particle densities: 2197-3637 kgJm3; loose poured bulk densities: 634-1070kg/m3; median size: 7-30 l^m). The developed models (in power func- tion format) have been used to predict the blockage boundary for larger diameter and longer pipelines (e.g. models based on 69 mm I.D. ~ 168 m long pipe have been scaled up to 105 mm I.D. and 554 m length). The predicted blockage boundaries for the scale-up conditions were found to provide better accuracy compared to the existing models.
文摘Results are presented of an ongoing investigation into modeling friction in fiuidized dense-phase pneumatic transport of bulk solids. Many popular modeling methods of the solids friction use the dimen- sionless solids loading ratio and Froude number. When evaluated under proper scale-up conditions of pipe diameter and length, many of these models have resulted in significant inaccuracy. A technique for modeling solids friction has been developed using a new combination of dimensionless numbers, volu- metric loading ratio and the ratio of particle free settling velocity to superficial conveying air velocity, to replace the solids loading ratio and Froude number. The models developed using the new formalism were evaluated for accuracy and stability under significant scale-up conditions for four different prod- ucts conveyed through four different test rigs (subject to diameter and length scale-up conditions). The new model considerably improves predictions compared with those obtained using the existing model, especially in the dense-phase region. Whereas the latter yields absolute average relative errors varying between 10% and 86%, the former yielded results with errors from 4% to 20% for a wide range of scale-up conditions. This represents a more reliable and narrower range of prediction that is suitable for industrial scale-up requirements.
文摘Accurate prediction of the solids friction factor through horizontal straight pipes is important for the reliable design of a pneumatic conveying system, but it is a challenging assignment to date because of the highly concentrated, turbulent, and complex nature of the gas-solids mixture. Power-station fly ash was transported through different pipeline configurations. Numerical simulation of the dense-phase pneumatic conveying systems for three different solids and two different air flow rates have shown that particle and actual gas velocities and the ratio of the two velocities increases in the flow direction, whereas the reverse trend was found to occur for the solids volumetric concentration. To develop a solids friction-factor model suitable for dense-phase flow, we modified an existing pure dilute-phase model by incorporating sub-models for particle and actual gas velocities and impact and solids friction factor. The solids friction-factor model was validated by using it for scale-up predictions for total pipeline pressure drops in longer and larger pipes and by comparing experimental and predicted pneumatic conveying characteristics for different solids flow rates. The accuracy of the prediction was compared with a recently developed two-layer-based model. We discussed the effect of incorporating the particle and actual gas velocity terms in the solids friction-factor model instead of superficial air velocity.
文摘In making the gas-solid-liquid phase analysis, based on the collaborative study of the internal and external humidification ratio of desulfurization efficiency, determine the humidifier ratio within 60% to 75%, that can make the best balance between the respective merits of a simple tower humidifiers tower humidifier way, optimizing the overall desulfurization reaction, effectively reducing the sticky wall, stick in the desulfurization efficiency and reduce the wall to achieve a balance between the balance, without increasing the sorbent and process water, under the premise can promote the desulfurization reaction, improve the desulfurization sorbent utilization and efficiency, help desulfurization reaction system is stable, efficient and economic operation, the gas-liquid-solid three-phase to achieve better synergy.