A resistivity distribution with a space of 3mm between test points was measured on a slice-of-silicon monocrystal (diameter 75mm) using an inclined four-point probe. This paper has determined the number of resistivi...A resistivity distribution with a space of 3mm between test points was measured on a slice-of-silicon monocrystal (diameter 75mm) using an inclined four-point probe. This paper has determined the number of resistivity divisions and their separations by statistical methods and introduced fuzzy mathematics to place the data into different fuzzy sets, after choosing the exponent function as a membership function for fuzzy sets and suitable values of thresholds. One fuzzy set corresponds to one resistivity isocontour. Then,the resistivity isocontours can be drawn with a definite separation and fi- nally shown in a map with MATLAB. The deviation of resistivity data on an isocontour is small and there are few residual test points without connections. So, the connection of the isocontours are high-quality and useful in application for instructing practical production.展开更多
文摘A resistivity distribution with a space of 3mm between test points was measured on a slice-of-silicon monocrystal (diameter 75mm) using an inclined four-point probe. This paper has determined the number of resistivity divisions and their separations by statistical methods and introduced fuzzy mathematics to place the data into different fuzzy sets, after choosing the exponent function as a membership function for fuzzy sets and suitable values of thresholds. One fuzzy set corresponds to one resistivity isocontour. Then,the resistivity isocontours can be drawn with a definite separation and fi- nally shown in a map with MATLAB. The deviation of resistivity data on an isocontour is small and there are few residual test points without connections. So, the connection of the isocontours are high-quality and useful in application for instructing practical production.