In the early Proterozoic the Li'eryu Formation and Dashiqiao Formation of eastern Liaoning province, China, there are distributed Mg-rich carbonate rock formations, in which large to superlarge deposits of boron, ...In the early Proterozoic the Li'eryu Formation and Dashiqiao Formation of eastern Liaoning province, China, there are distributed Mg-rich carbonate rock formations, in which large to superlarge deposits of boron, magnesite, talc, Xiuyan jade etc. occur. The formation of these magnesian nonmetallic deposits was related to early Proterozoic evaporates; then these deposits underwent reworking of regional metamorphism and hydrothermal metasomatism during the Lüliang orogeny and tectono-magmatism during the Indosinian-Yanshanian. Among other things, the Mg-rich carbonates formations, minerogenetic structures and ore-forming fluids played a controlling role in the formation of the mineral deposits. Therefore, it can be concluded that the mineral deposits are products of combined processes of the coupling of ore source field, fluid field, thermal field (energy field) and stress field under certain time-space conditions in the early Proterozoic and the late-stage superimposed reworking of tectono-magmatism.展开更多
According to the kinds of feldspar and rock associations in the Ai-rich gneisses, the low-pressure metamorphic crust of the Early Proterozoic granulite facies in central Inner Mongolia can be divided into southern and...According to the kinds of feldspar and rock associations in the Ai-rich gneisses, the low-pressure metamorphic crust of the Early Proterozoic granulite facies in central Inner Mongolia can be divided into southern and northern belts which are composed of six rock associations. They represent the relevant rock sequences of the layered metamorphic rock series formed under specific metamorphic temperature and pressure conditions as well as tectonic environments. Mineral inclusions and reaction texture have recorded that the medium-temperature high-pressure mineral assemblages are replaced by the high-temperature low-pressure mineral assemblages, thus, giving rise to: garnet+quartz→ hypersthene+plagioclase; kyanite→sillimanite and garnet+kyanite/sillimanite+quartz→cordierite. The deformation fabrics of the rocks, the change of mineral assemblages and the PTt path of metamorphism indicate that the contempranceous high-temperature normal-slip ductile shearing is the main cause of the formation of the low-pressure metamorphic crust of granulite facies. In the orogenic event, the co-action of thrusting and extension resulted in the change of a medium-temperature high-pressure metamorphic environment into the high-temperature low-pressure metamorphic conditions.展开更多
The Early Paleoproterozoic Monchegorsk Complex is exposed over an area of 550 km;and comprises two layered mafite–ultramafite intrusions:the Monchepluton of ultramafic and mafic rocks and the predominantly gabbroid
The authors have detailedly and systematically studied the carbon isotopic composition of Early Proterozoic carbonate rocks. Samples which are all dolomicrite were taken from the Jianancun, Daguandong and Huaiyincun F...The authors have detailedly and systematically studied the carbon isotopic composition of Early Proterozoic carbonate rocks. Samples which are all dolomicrite were taken from the Jianancun, Daguandong and Huaiyincun Formations of the Hutuo Group in Wutai County Shanxi Province, North China. A total of 209 samples were analysed for their carbon isotope compositions, and the mean sampling interval was 6.9 m. Carbon isotope analysis clearly shows δ13C shifts at the boundary between the Jian'ancun Formation and Daguandong Formation and near the boundary between the Daguandong Formation and Huaiyincun Formation. Like carbon isotope shifts at the Cretaceous-Tertiary, Permian-Triassic and Precambrian-Cambrian boundaries, the discovery of δ13C shifts in the Early Proterozoic has important significance in further studies on Early Proterozoic biotic evolution, regional and global stratigraphic correlation, and carbon geochemical cycles.展开更多
基金supported by the Foundation for Development of Geological Science and Technology of the former Ministry of Geology and Mineral Resources of China grant HY979830
文摘In the early Proterozoic the Li'eryu Formation and Dashiqiao Formation of eastern Liaoning province, China, there are distributed Mg-rich carbonate rock formations, in which large to superlarge deposits of boron, magnesite, talc, Xiuyan jade etc. occur. The formation of these magnesian nonmetallic deposits was related to early Proterozoic evaporates; then these deposits underwent reworking of regional metamorphism and hydrothermal metasomatism during the Lüliang orogeny and tectono-magmatism during the Indosinian-Yanshanian. Among other things, the Mg-rich carbonates formations, minerogenetic structures and ore-forming fluids played a controlling role in the formation of the mineral deposits. Therefore, it can be concluded that the mineral deposits are products of combined processes of the coupling of ore source field, fluid field, thermal field (energy field) and stress field under certain time-space conditions in the early Proterozoic and the late-stage superimposed reworking of tectono-magmatism.
基金This research was supported by the National Natural Science Foundation of China
文摘According to the kinds of feldspar and rock associations in the Ai-rich gneisses, the low-pressure metamorphic crust of the Early Proterozoic granulite facies in central Inner Mongolia can be divided into southern and northern belts which are composed of six rock associations. They represent the relevant rock sequences of the layered metamorphic rock series formed under specific metamorphic temperature and pressure conditions as well as tectonic environments. Mineral inclusions and reaction texture have recorded that the medium-temperature high-pressure mineral assemblages are replaced by the high-temperature low-pressure mineral assemblages, thus, giving rise to: garnet+quartz→ hypersthene+plagioclase; kyanite→sillimanite and garnet+kyanite/sillimanite+quartz→cordierite. The deformation fabrics of the rocks, the change of mineral assemblages and the PTt path of metamorphism indicate that the contempranceous high-temperature normal-slip ductile shearing is the main cause of the formation of the low-pressure metamorphic crust of granulite facies. In the orogenic event, the co-action of thrusting and extension resulted in the change of a medium-temperature high-pressure metamorphic environment into the high-temperature low-pressure metamorphic conditions.
文摘The Early Paleoproterozoic Monchegorsk Complex is exposed over an area of 550 km;and comprises two layered mafite–ultramafite intrusions:the Monchepluton of ultramafic and mafic rocks and the predominantly gabbroid
基金This study was supported by China National Natural Science Foundation Grant 49000035the Zhongguancun Associated Centre of Analysis, Beijing
文摘The authors have detailedly and systematically studied the carbon isotopic composition of Early Proterozoic carbonate rocks. Samples which are all dolomicrite were taken from the Jianancun, Daguandong and Huaiyincun Formations of the Hutuo Group in Wutai County Shanxi Province, North China. A total of 209 samples were analysed for their carbon isotope compositions, and the mean sampling interval was 6.9 m. Carbon isotope analysis clearly shows δ13C shifts at the boundary between the Jian'ancun Formation and Daguandong Formation and near the boundary between the Daguandong Formation and Huaiyincun Formation. Like carbon isotope shifts at the Cretaceous-Tertiary, Permian-Triassic and Precambrian-Cambrian boundaries, the discovery of δ13C shifts in the Early Proterozoic has important significance in further studies on Early Proterozoic biotic evolution, regional and global stratigraphic correlation, and carbon geochemical cycles.