期刊文献+
共找到2,176篇文章
< 1 2 109 >
每页显示 20 50 100
Genome-edited rabbits:Unleashing the potential of a promising experimental animal model across diverse diseases 被引量:1
1
作者 Yang Han Jiale Zhou +3 位作者 Renquan Zhang Yuru Liang Liangxue Lai Zhanjun Li 《Zoological Research》 SCIE CSCD 2024年第2期253-262,共10页
Animal models are extensively used in all aspects of biomedical research,with substantial contributions to our understanding of diseases,the development of pharmaceuticals,and the exploration of gene functions.The fie... Animal models are extensively used in all aspects of biomedical research,with substantial contributions to our understanding of diseases,the development of pharmaceuticals,and the exploration of gene functions.The field of genome modification in rabbits has progressed slowly.However,recent advancements,particularly in CRISPR/Cas9-related technologies,have catalyzed the successful development of various genome-edited rabbit models to mimic diverse diseases,including cardiovascular disorders,immunodeficiencies,agingrelated ailments,neurological diseases,and ophthalmic pathologies.These models hold great promise in advancing biomedical research due to their closer physiological and biochemical resemblance to humans compared to mice.This review aims to summarize the novel gene-editing approaches currently available for rabbits and present the applications and prospects of such models in biomedicine,underscoring their impact and future potential in translational medicine. 展开更多
关键词 Genome editing Animal model RABBIT CRISPR/Cas9 Genetic diseases
下载PDF
Enhancing cotton resilience to challenging climates through genetic modifications 被引量:1
2
作者 AHMED Ali Ijaz KHAN Azeem Iqbal +4 位作者 NEGM Mohamed A.M. IQBAL Rida AZHAR Muhammad Tehseen KHAN Sultan Habibullah RANA Iqrar Ahmad 《Journal of Cotton Research》 CAS 2024年第2期196-206,共11页
Cotton is one of the most important fiber crops that plays a vital role in the textile industry.Its production has been unstable over the years due to climate change induced biotic stresses such as insects,diseases,an... Cotton is one of the most important fiber crops that plays a vital role in the textile industry.Its production has been unstable over the years due to climate change induced biotic stresses such as insects,diseases,and weeds,as well as abiotic stresses including drought,salinity,heat,and cold.Traditional breeding methods have been used to breed climate resilient cotton,but it requires a considerable amount of time to enhance crop tolerance to insect pests and changing climatic conditions.A promising strategy for improving tolerance against these stresses is genetic engineering.This review article discusses the role of genetic engineering in cotton improvement.The essential concepts and techniques include genome editing via clustered regularly interspaced short palindromic repeats(CRISPR)/CRISPR-associated protein 9(CRISPR-Cas9),overexpression of target genes,downregulation using RNA interference(RNAi),and virus-induced gene silencing(VIGS).Notably,the Agrobacterium-mediated transformation has made significant contributions to using these techniques for obtaining stable transgenic plants. 展开更多
关键词 COTTON Genome editing DROUGHT SALINITY Heat
下载PDF
引导编辑技术的研究进展及应用 被引量:1
3
作者 邱梅玉 张雪梅 +1 位作者 张宁 刘明军 《畜牧兽医学报》 CAS CSCD 北大核心 2024年第4期1345-1355,共11页
以CRISPR/Cas9为基础的引导编辑系统是新开发出的一种基因编辑技术,可以精确实现12种碱基的互换、插入和缺失,并且不需要产生双链断裂和引入外源供体DNA。本文从基因编辑的发展、引导编辑系统的原理、特点、优化、脱靶效应、在动植物和... 以CRISPR/Cas9为基础的引导编辑系统是新开发出的一种基因编辑技术,可以精确实现12种碱基的互换、插入和缺失,并且不需要产生双链断裂和引入外源供体DNA。本文从基因编辑的发展、引导编辑系统的原理、特点、优化、脱靶效应、在动植物和基因治疗研究中的应用、引导编辑系统的设计等几方面进行综述,为促进相关领域的科研工作者了解引导编辑系统及进一步利用引导编辑系统在动植物科学基础研究和育种方面的应用提供指导。 展开更多
关键词 CRISPR/Cas9 引导编辑(prime editing PE) pegRNA 应用研究
下载PDF
A review of the literature on the use of CRISPR/Cas9 gene therapy to treat hepatocellular carcinoma 被引量:1
4
作者 ELHAM AMJAD RAFAELE PEZZANI BABAK SOKOUTI 《Oncology Research》 SCIE 2024年第3期439-461,共23页
Noncoding RNAs instruct the Cas9 nuclease to site speifillyl cleave DNA in the CRISPR/Cas9 system.Despite the high incidence of hepatocellular carcinoma(HCC),the patient's outcome is poor.As a result of the emerge... Noncoding RNAs instruct the Cas9 nuclease to site speifillyl cleave DNA in the CRISPR/Cas9 system.Despite the high incidence of hepatocellular carcinoma(HCC),the patient's outcome is poor.As a result of the emergence of therapeutic resistance in HCC patients,dlinicians have faced difficulties in treating such tumor.In addition,CRISPR/Cas9 screens were used to identify genes that improve the dlinical response of HCC patients.It is the objective of this article to summarize the current understanding of the use of the CRISPR/Cas9 system for the treatment of cancer,with a particular emphasis on HCC as part of the current state of knowledge.Thus,in order to locate recent developments in oncology research,we examined both the Scopus database and the PubMed database.The ability to selectively interfere with gene expression in combinatorial CRISPR/Cas9 screening can lead to the discovery of new effective HCC treatment regimens by combining clinically approved drugs.Drug resistance can be overcome with the help of the CRISPR/Cas9 system.HCC signature genes and resistance to treatment have been uncovered by genome-scale CRISPR activation screening although this method is not without limitations.It has been extensively examined whether CRISPR can be used as a tool for disease research and gene therapy.CRISPR and its applications to tumor research,particularly in HCC,are examined in this study through a review of the literature. 展开更多
关键词 CRISPR/Cas9 system Gene therapy TUMOR Hepatocellular carcinoma Liver cancer Gene editing
下载PDF
Development and Therapeutic Applications of Precise Gene Editing Technology
5
作者 ZHANG Yi-Meng YANG Xiao +1 位作者 WANG Jian LI Zhen-Hua 《生物化学与生物物理进展》 SCIE CAS CSCD 北大核心 2024年第10期2637-2647,共11页
The advent of gene editing represents one of the most transformative breakthroughs in life science,making genome manipulation more accessible than ever before.While traditional CRISPR/Cas-based gene editing,which invo... The advent of gene editing represents one of the most transformative breakthroughs in life science,making genome manipulation more accessible than ever before.While traditional CRISPR/Cas-based gene editing,which involves double-strand DNA breaks(DSBs),excels at gene disruption,it is less effective for accurate gene modification.The limitation arises because DSBs are primarily repaired via non-homologous end joining(NHEJ),which tends to introduce indels at the break site.While homology directed repair(HDR)can achieve precise editing when a donor DNA template is provided,the reliance on DSBs often results in unintended genome damage.HDR is restricted to specific cell cycle phases,limiting its application.Currently,gene editing has evolved to unprecedented levels of precision without relying on DSB and HDR.The development of innovative systems,such as base editing,prime editing,and CRISPR-associated transposases(CASTs),now allow for precise editing ranging from single nucleotides to large DNA fragments.Base editors(BEs)enable the direct conversion of one nucleotide to another,and prime editors(PEs)further expand gene editing capabilities by allowing for the insertion,deletion,or alteration of small DNA fragments.The CAST system,a recent innovation,allows for the precise insertion of large DNA fragments at specific genomic locations.In recent years,the optimization of these precise gene editing tools has led to significant improvements in editing efficiency,specificity,and versatility,with advancements such as the creation of base editors for nucleotide transversions,enhanced prime editing systems for more efficient and precise modifications,and refined CAST systems for targeted large DNA insertions,expanding the range of applications for these tools.Concurrently,these advances are complemented by significant improvements in in vivo delivery methods,which have paved the way for therapeutic application of precise gene editing tools.Effective delivery systems are critical for the success of gene therapies,and recent developments in both viral and non-viral vectors have improved the efficiency and safety of gene editing.For instance,adeno-associated viruses(AAVs)are widely used due to their high transfection efficiency and low immunogenicity,though challenges such as limited cargo capacity and potential for immune responses remain.Non-viral delivery systems,including lipid nanoparticles(LNPs),offer an alternative with lower immunogenicity and higher payload capacity,although their transfection efficiency can be lower.The therapeutic potential of these precise gene editing technologies is vast,particularly in treating genetic disorders.Preclinical studies have demonstrated the effectiveness of base editing in correcting genetic mutations responsible for diseases such as cardiomyopathy,liver disease,and hereditary hearing loss.These technologies promise to treat symptoms and potentially cure the underlying genetic causes of these conditions.Meanwhile,challenges remain,such as optimizing the safety and specificity of gene editing tools,improving delivery systems,and overcoming off-target effects,all of which are critical for their successful application in clinical settings.In summary,the continuous evolution of precise gene editing technologies,combined with advancements in delivery systems,is driving the field toward new therapeutic applications that can potentially transform the treatment of genetic disorders by targeting their root causes. 展开更多
关键词 precise gene editing CRISPR/Cas system base editing prime editing gene therapy
下载PDF
Generation of Eco-Friendly and Disease-Resistant Channel Catfish(Ictalurus punctatus)Harboring the Alligator Cathelicidin Gene via CRISPR/Cas9 Engineering
6
作者 Jinhai Wang Baofeng Su +13 位作者 De Xing Timothy J.Bruce Shangjia Li Logan Bern Mei Shang Andrew Johnson Rhoda Mae C.Simora Michael Coogan Darshika U.Hettiarachchi Wenwen Wang Tasnuba Hasin Jacob Al-Armanazi Cuiyu Lu Rex A.Dunham 《Engineering》 SCIE EI CAS CSCD 2024年第8期273-286,共14页
As a precise and versatile tool for genome manipulation,the clustered regularly interspaced short palindromic repeats(CRISPR)/CRISPR-associated protein 9(Cas9)platform holds promise for modifying fish traits of intere... As a precise and versatile tool for genome manipulation,the clustered regularly interspaced short palindromic repeats(CRISPR)/CRISPR-associated protein 9(Cas9)platform holds promise for modifying fish traits of interest.With the aim of reducing transgene introgression and controlling reproduction,upscaled disease resistance and reproductive intervention in catfish species have been studied to lower the potential environmental risks of the introgression of escapees as transgenic animals.Taking advantage of the CRISPR/Cas9-mediated system,we succeeded in integrating the cathelicidin gene(As-Cath)from an alligator(Alligator sinensis)into the target luteinizing hormone(lh)locus of channel catfish(Ictalurus punctatus)using two delivery systems assisted by double-stranded DNA(dsDNA)and single-stranded oligodeoxynucleotides(ssODNs),respectively.In this study,high knock in(KI)efficiency(22.38%,64/286)but low ontarget events was achieved using the ssODN strategy,whereas adopting a dsDNA as the donor template led to an efficient on-target KI(10.80%,23/213).The on-target KI of As-Cath was instrumental in establishing the lh knockout(LH^(–)_As-Cath^(+))catfish line,which displayed heightened disease resistance and reduced fecundity compared with the wild-type(WT)sibling fish.Furthermore,administration of human chorionic gonadotropin(HCG)and luteinizing hormone-releasing hormone analogue(LHRHa)can restore the reproduction of the transgenic fish line.Overall,we replaced the lh gene with an alligator cathelicidin transgene and then administered hormone therapy to move towards complete reproductive control of diseaseresistant transgenic catfish in an environmentally responsible manner.This strategy not only effectively improves consumer-valued traits but also guards against unwanted introgression,providing a breakthrough in aquaculture genetics to confine fish reproduction and prevent the establishment of transgenic or domestic genotypes in the natural environment. 展开更多
关键词 Genome editing ssODN DSDNA Antimicrobial peptide Reproductive confinement Aquaculture
下载PDF
Germline Gene-Editing Creates Enhanced Livestock-Technical and Especially Ethical Issues Challenge Its Use in Humans
7
作者 Jennifer Welsh 《Engineering》 SCIE EI CAS CSCD 2024年第2期3-5,共3页
Using clustered regularly interspaced short palindromic repeats(CRISPR)-based molecular tools,scientists are engineering-as they are also doing with plants.-animals with advantageous traits,like disease resistance and... Using clustered regularly interspaced short palindromic repeats(CRISPR)-based molecular tools,scientists are engineering-as they are also doing with plants.-animals with advantageous traits,like disease resistance and improved food yield.While these innovative techniques could one day be applied in humans,technical hurdles and ethical concerns likely place this possibility far in the future,The enhancements rely on germline gene editing,which alters the genes in a way that passes the changes on to offspring.Ger m-line gene editing differs from the somatic cell gene editing used in the highly promising new treatment recently approved for the human disease sickle cell anemia. 展开更多
关键词 LIKELY CREATE EDITING
下载PDF
Elite,transformable haploid inducers in maize
8
作者 Brent Delzer Dawei Liang +22 位作者 David Szwerdszarf Isadora Rodriguez Gonzalo Mardones Sivamani Elumalai Francine Johnson Samson Nalapalli Rachel Egger Erin Burch Kerry Meier Juan Wei Xiujuan Zhang Huaping Gui Huaibing Jin Huan Guo Kun Yu Yubo Liu Becky Breitinger Ana Poets Jason Nichols Wan Shi David Skibbe Qiudeng Que Timothy Kelliher 《The Crop Journal》 SCIE CSCD 2024年第1期314-319,共6页
The introduction of alleles into commercial crop breeding pipelines is both time consuming and costly.Two technologies that are disrupting traditional breeding processes are doubled haploid(DH)breeding and genome edit... The introduction of alleles into commercial crop breeding pipelines is both time consuming and costly.Two technologies that are disrupting traditional breeding processes are doubled haploid(DH)breeding and genome editing(GE).Recently,these techniques were combined into a GE trait delivery system called HI-Edit(Haploid Inducer-Edit).In HI-Edit,the pollen of a haploid inducer line is reprogrammed to deliver GE traits to any variety,obviating recurrent selection.For HI-Edit to operate at scale,an efficient transformable HI line is needed,but most maize varieties are recalcitrant to transformation,and haploid inducers are especially difficult to transform given their aberrant reproductive behaviors.Leveraging marker assisted selection and a three-tiered testing scheme,we report the development of new Iodent and Stiff Stalk maize germplasm that are transformable,have high haploid induction rates,and exhibit a robust,genetically-dominant anthocyanin native trait that may be used for rapid haploid identification.We show that transformation of these elite‘‘HI-Edit”lines is enhanced using the BABYBOOM and WUSCHEL morphogenetic factors.Finally,we evaluate the HI-Edit performance of one of the lines against both Stiff Stalk and non-Stiff Stalk testers.The strategy and results of this study should facilitate the development of commercially scalable HI-Edit systems in diverse crops. 展开更多
关键词 Zea mays L Doubled haploids TRANSFORMATION Genome editing QTL
下载PDF
Development of an Agrobacterium-mediated CRISPR/Cas9 gene editing system in jute(Corchorus capsularis)
9
作者 Shaolian Jiang Qin Li +9 位作者 Xiangxue Meng Mengxin Huang Jiayu Yao Chuanyu Wang Pingping Fang Aifen Tao Jiantang Xu Jianmin Qi Shuangxia Jin Liwu Zhang 《The Crop Journal》 SCIE CSCD 2024年第4期1266-1270,共5页
Jute(Corchorus capsularis L.)is the second most important natural plant fiber source after cotton.However,developing an efficient gene editing system for jute remains a challenge.In this study,the transgenic hairy roo... Jute(Corchorus capsularis L.)is the second most important natural plant fiber source after cotton.However,developing an efficient gene editing system for jute remains a challenge.In this study,the transgenic hairy root system mediated by Agrobacterium rhizogenes strain K599 was developed for Meifeng 4,an elite jute variety widely cultivated in China.The transgenic hairy root system for jute was verified by subcellular localization and bimolecular fluorescence complementation(BiFC)assays.The CHLOROPLASTOS ALTERADOS 1(CcCLA1)gene,which is involved in the development of chloroplasts,was targeted for editing at two sites in Meifeng 4.Based on this hairy root transformation,the gRNA scaffold was placed under the control of cotton ubiquitin GhU6.7 and-GhU6.9 promoters,respectively,to assess the efficiency of gene editing.Results indicated the 50.0%(GhU6.7)and 38.5%(GhU6.9)editing events in the target 2 alleles(gRNA2),but no mutation was detected in the target 1 allele(gRNA1)in transgenic-positive hairy roots.CcCLA1 gene editing at gRNA2 under the control of GhU6.7 in Meifeng 4 was also carried out by Agrobacterium tumefaciens-mediated transformation.Two CcCLA1 mutants were albinic,with a gene editing efficiency of 5.3%.These findings confirm that the CRISPR/Cas9 system,incorporating promoter GhU6.7,can be used as a gene editing tool for jute. 展开更多
关键词 JUTE Agrobacterium-mediated transformation Genome editing Hairy root system
下载PDF
Enemies atpeace:Recentprogressin Agrobacterium-mediated cereal transformation
10
作者 Shaoshuai Liu Ke Wang +5 位作者 Shuaifeng Geng Moammar Hossain Xingguo Ye Aili Li Long Mao Karl-Heinz Kogel 《The Crop Journal》 SCIE CSCD 2024年第2期321-329,共9页
Agrobacterium tumefaciens mediated plant transformation is a versatile tool for plant genetic engineering following its discovery nearly half a century ago.Numerous modifications were made in its application to increa... Agrobacterium tumefaciens mediated plant transformation is a versatile tool for plant genetic engineering following its discovery nearly half a century ago.Numerous modifications were made in its application to increase efficiency,especially in the recalcitrant major cereals plants.Recent breakthroughs in transformation efficiency continue its role as a mainstream technique in CRISPR/Cas-based genome editing and gene stacking.These modifications led to higher transformation frequency and lower but more stable transgene copies with the capability to revolutionize modern agriculture.In this review,we provide a brief overview of the history of Agrobacterium-mediated plant transformation and focus on the most recent progress to improve the system in both the Agrobacterium and the host recipient.A promising future for transformation in biotechnology and agriculture is predicted. 展开更多
关键词 Agrobacterium tumefaciens Cereal species Genome editing Genetic engineering Plant breeding
下载PDF
Brief Introduction to “Journal of Jilin University(Science Edition)”
11
《吉林大学学报(理学版)》 CAS 北大核心 2024年第5期F0003-F0003,共1页
“Journal of Jilin University(Science Edition)” is a comprehensive academic journal in the fields of science sponsored by Jilin University and administrated by the Ministry of Education of the People's Republic o... “Journal of Jilin University(Science Edition)” is a comprehensive academic journal in the fields of science sponsored by Jilin University and administrated by the Ministry of Education of the People's Republic of China.The journal started publication in 1955.The original name at starting publication was “Journal of Natural Science of Northeast People University”,which was changed into “Acta Scientiarum Naturalium Universitatis Jilinensis” in 1958 owing to the name change of the university. 展开更多
关键词 EDITION JOURNAL NORTHEAST
下载PDF
FROM THE EDITOR-IN-CHIEF
12
《China Foundry》 SCIE EI CAS CSCD 2024年第5期I0001-I0001,共1页
Innovative technologies significantly propel the development of casting industry At this memorable moment,we are excited to celebrate the 20th anniversary of CHINA FOUNDRY journal.Since its inception in August 2004,th... Innovative technologies significantly propel the development of casting industry At this memorable moment,we are excited to celebrate the 20th anniversary of CHINA FOUNDRY journal.Since its inception in August 2004,this academic platform dedicated to disseminating Chinese casting technology has traversed two full decades.Over this period,we have received strong support from numerous domestic and international industry experts and scholars. 展开更多
关键词 JOURNAL EDIT INDUSTRY
下载PDF
Brief Introduction to“Journal of Jilin University(Science Edition)”
13
《吉林大学学报(理学版)》 CAS 北大核心 2024年第3期F0003-F0003,共1页
“Journal of Jilin University(Science Edition)”is a comprehensive academic journal in the fields of science sponsored by Jilin University and administrated by the Ministry of Education of the People's Republic of... “Journal of Jilin University(Science Edition)”is a comprehensive academic journal in the fields of science sponsored by Jilin University and administrated by the Ministry of Education of the People's Republic of China.The journal started publication in 1955.The original name at starting publication was“Journal of Natural Science of Northeast People University”. 展开更多
关键词 EDITION journal NORTHEAST
下载PDF
Brief Introduction to “Journal of Jilin University (Science Edition)”
14
《吉林大学学报(理学版)》 CAS 北大核心 2024年第1期F0003-F0003,共1页
“Journal of Jilin University(Science Edition)” is a comprehensive academic journal in the fields of science sponsored by Jilin University and administrated by the Ministry of Education of the People’s Republic of C... “Journal of Jilin University(Science Edition)” is a comprehensive academic journal in the fields of science sponsored by Jilin University and administrated by the Ministry of Education of the People’s Republic of China.The journal started publication in 1955.The original name at starting publication was “Journal of Natural Science of Northeast People University”. 展开更多
关键词 EDITION JOURNAL NORTHEAST
下载PDF
Brief Introduction to “Journal of Jilin University(Science Edition)”
15
《吉林大学学报(理学版)》 CAS 北大核心 2024年第2期F0003-F0003,共1页
“Journal of Jilin University(Science Edition)” is a comprehensive academic journal in the fields of science sponsored by Jilin University and administrated by the Ministry of Education of the People’s Republic of C... “Journal of Jilin University(Science Edition)” is a comprehensive academic journal in the fields of science sponsored by Jilin University and administrated by the Ministry of Education of the People’s Republic of China.The journal started publication in 1955.The original name at starting publication was “Journal of Natural Science of Northeast People University”,which was changed into “Acta Scientiarum Naturalium Universitatis Jilinensis” in 1958 owing to the name change of the university. 展开更多
关键词 EDITION JOURNAL NORTHEAST
下载PDF
Development of a single transcript CRISPR/Cas9 toolkit for efficient genome editing in autotetraploid alfalfa
16
作者 Haixia Zhao Siyi Zhao +12 位作者 Yingping Cao Xiping Jiang Lijuan Zhao Zhimeng Li Mengqi Wang Ruijuan Yang Chuanen Zhou Zhaoming Wang Feng Yuan Dongmei Ma Hao Lin Wenwen Liu Chunxiang Fu 《The Crop Journal》 SCIE CSCD 2024年第3期788-795,共8页
Alfalfa(Medicago sativa.L.)is a globally significant autotetraploid legume forage crop.However,despite its importance,establishing efficient gene editing systems for cultivated alfalfa remains a formidable challenge.I... Alfalfa(Medicago sativa.L.)is a globally significant autotetraploid legume forage crop.However,despite its importance,establishing efficient gene editing systems for cultivated alfalfa remains a formidable challenge.In this study,we pioneered the development of a highly effective ultrasonic-assisted leaf disc transformation system for Gongnong 1 alfalfa,a variety widely cultivated in Northeast China.Subsequently,we created a single transcript CRISPR/Cas9(CRISPR_2.0)toolkit,incorporating multiplex gRNAs,designed for gene editing in Gongnong 1.Both Cas9 and gRNA scaffolds were under the control of the Arabidopsis ubiquitin-10 promoter,a widely employed polymeraseⅡconstitutive promoter known for strong transgene expression in dicots.To assess the toolkit’s efficiency,we targeted PALM1,a gene associated with a recognizable multifoliate phenotype.Utilizing the CRISPR_2.0 toolkit,we directed PALM1 editing at two sites in the wild-type Gongnong 1.Results indicated a 35.1%occurrence of editing events all in target 2 alleles,while no mutations were detected at target 1 in the transgenic-positive lines.To explore more efficient sgRNAs,we developed a rapid,reliable screening system based on Agrobacterium rhizogenes-mediated hairy root transformation,incorporating the visible reporter MtLAP1.This screening system demonstrated that most purple visible hairy roots underwent gene editing.Notably,sgRNA3,with an 83.0%editing efficiency,was selected using the visible hairy root system.As anticipated,tetra-allelic homozygous palm1 mutations exhibited a clear multifoliate phenotype.These palm1 lines demonstrated an average crude protein yield increase of 21.5%compared to trifoliolate alfalfa.Our findings highlight the modified CRISPR_2.0 system as a highly efficient and robust gene editing tool for autotetraploid alfalfa. 展开更多
关键词 ALFALFA Gene editing CRISPR_2.0 toolkit Hairy root system Tetra-allelic homozygous mutants
下载PDF
A simple and efficient CRISPR/Cas9 system permits ultra-multiplex genome editing in plants
17
作者 Suting Wu Htin Kyaw +11 位作者 Zhijun Tong Yirong Yang Zhiwei Wang Liying Zhang Lihua Deng Zhiguo Zhang Bingguang Xiao William Paul Quick Tiegang Lu Guoying Xiao Guannan Qin Xue'an Cui 《The Crop Journal》 SCIE CSCD 2024年第2期569-582,共14页
The development and maturation of the CRISPR/Cas genome editing system provides a valuable tool for plant functional genomics and genetic improvement.Currently available genome-editing tools have a limited number of t... The development and maturation of the CRISPR/Cas genome editing system provides a valuable tool for plant functional genomics and genetic improvement.Currently available genome-editing tools have a limited number of targets,restricting their application in genetic research.In this study,we developed a novel CRISPR/Cas9 plant ultra-multiplex genome editing system consisting of two template vectors,eight donor vectors,four destination vectors,and one primer-design software package.By combining the advantages of Golden Gate cloning to assemble multiple repetitive fragments and Gateway recombination to assemble large fragments and by changing the structure of the amplicons used to assemble sg RNA expression cassettes,the plant ultra-multiplex genome editing system can assemble a single binary vector targeting more than 40 genomic loci.A rice knockout vector containing 49 sg RNA expression cassettes was assembled and a high co-editing efficiency was observed.This plant ultra-multiplex genome editing system advances synthetic biology and plant genetic engineering. 展开更多
关键词 CRISPR/Cas9 Multiplex genome editing Assembly system PLANT
下载PDF
Engineering high amylose and resistant starch in maize by CRISPR/Cas9-mediated editing of starch branching enzymes
18
作者 Mingzheng Ma Shanqiu Sun +5 位作者 Jinjie Zhu Xiantao Qi Gaoke Li Jianguang Hu Chuanxiao Xie Changlin Liu 《The Crop Journal》 SCIE CSCD 2024年第4期1252-1258,共7页
To improve the amylose content(AC)and resistant starch content(RSC)of maize kernel starch,we employed the CRISPR/Cas9 system to create mutants of starch branching enzyme I(SBEI)and starch branching enzyme IIb(SBEIIb).... To improve the amylose content(AC)and resistant starch content(RSC)of maize kernel starch,we employed the CRISPR/Cas9 system to create mutants of starch branching enzyme I(SBEI)and starch branching enzyme IIb(SBEIIb).A frameshift mutation in SBEI(E1,a nucleotide insertion in exon 6)led to plants with higher RSC(1.07%),lower hundred-kernel weight(HKW,24.71±0.14 g),and lower plant height(PH,218.50±9.42 cm)compared to the wild type(WT).Like the WT,E1 kernel starch had irregular,polygonal shapes with sharp edges.A frameshift mutation in SBEIIb(E2,a four-nucleotide deletion in exon 8)led to higher AC(53.48%)and higher RSC(26.93%)than that for the WT.E2 kernel starch was significantly different from the WT regarding granule morphology,chain length distribution pattern,X-ray diffraction pattern,and thermal characteristics;the starch granules were more irregular in shape and comprised typical B-type crystals.Mutating SBEI and SBEIIb(E12)had a synergistic effect on RSC,HKW,PH,starch properties,and starch biosynthesis-associated gene expression.SBEIIa,SS1,SSIIa,SSIIIa,and SSIIIb were upregulated in E12 endosperm compared to WT endosperm.This study lays the foundation for rapidly improving the starch properties of elite maize lines. 展开更多
关键词 MAIZE Gene editing Starch branching enzyme I Starch branching enzyme IIb
下载PDF
Targeting miRNA by CRISPR/Cas in cancer:advantages and challenges
19
作者 Bashdar Mahmud Hussen Mohammed Fatih Rasul +10 位作者 Snur Rasool Abdullah Hazha Jamal Hidayat Goran Sedeeq Hama Faraj Fattma Abodi Ali Abbas Salihi Aria Baniahmad Soudeh Ghafouri-Fard Milladur Rahman Mark C.Glassy Wojciech Branicki Mohammad Taheri 《Military Medical Research》 SCIE CAS CSCD 2024年第3期345-373,共29页
Clustered regulatory interspaced short palindromic repeats(CRISPR)has changed biomedical research and provided entirely new models to analyze every aspect of biomedical sciences during the last decade.In the study of ... Clustered regulatory interspaced short palindromic repeats(CRISPR)has changed biomedical research and provided entirely new models to analyze every aspect of biomedical sciences during the last decade.In the study of cancer,the CRISPR/CRISPR-associated protein(Cas)system opens new avenues into issues that were once unknown in our knowledge of the non-coding genome,tumor heterogeneity,and precision medicines.CRISPR/Cas-based geneediting technology now allows for the precise and permanent targeting of mutations and provides an opportunity to target small non-coding RNAs such as microRNAs(miRNAs).However,the development of effective and safe cancer gene editing therapy is highly dependent on proper design to be innocuous to normal cells and prevent introducing other abnormalities.This study aims to highlight the cutting-edge approaches in cancer-gene editing therapy based on the CRISPR/Cas technology to target miRNAs in cancer therapy.Furthermore,we highlight the potential challenges in CRISPR/Cas-mediated miRNA gene editing and offer advanced strategies to overcome them. 展开更多
关键词 CRISPR CRISPR/Cas9 CRISPR/Cas12 Gene editing MIRNAS Cancer therapy
下载PDF
The concept of gene therapy for glaucoma:the dream that has not come true yet
20
作者 Robert Sulak Xiaonan Liu Adrian Smedowski 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第1期92-99,共8页
Gene therapies,despite of being a relatively new therapeutic approach,have a potential to become an important alternative to current treatment strategies in glaucoma.Since glaucoma is not considered a single gene dise... Gene therapies,despite of being a relatively new therapeutic approach,have a potential to become an important alternative to current treatment strategies in glaucoma.Since glaucoma is not considered a single gene disease,the identified goals of gene therapy would be rather to provide neuroprotection of retinal ganglion cells,especially,in intraocular-pressure-independent manner.The most commonly reported type of vector for gene delivery in glaucoma studies is adeno-associated virus serotype 2 that has a high tro pism to retinal ganglion cells,res ulting in long-term expression and low immunogenic profile.The gene thera py studies recruit inducible and genetic animal models of optic neuropathy,like DBA/2J mice model of high-tension glaucoma and the optic nerve crush-model.Reported gene therapy-based neuroprotection of retinal ganglion cells is targeting specific genes translating to growth factors(i.e.,brain derived neurotrophic factor,and its receptor TrkB),regulation of apoptosis and neurodegeneration(i.e.,Bcl-xl,Xiap,FAS system,nicotinamide mononucleotide adenylyl transferase 2,Digit3 and Sarm1),immunomodulation(i.e.,Crry,C3 complement),modulation of neuroinflammation(i.e.,e rythropoietin),reduction of excitotoxicity(i.e.,Com KIlα)and transcription regulation(i.e.,Max,Nrf2).On the other hand,some of gene therapy studies focus on lowering intra ocular pressure,by impacting genes involved in both,decreasing aqueous humor production(i.e.,aquaporin 1),and increasing outflow facility(i.e.,COX2,prostaglandin F2a receptor,RhoA/RhoA kinase signaling pathway,MMP1,Myocilin).The goal of this review is to summarize the current stateof-art and the direction of development of gene therapy strategies for glaucomatous neuropathy. 展开更多
关键词 adeno-associated virus gene editing gene therapy GLAUCOMA IOP lowering IOP-independent mechanisms NEUROPROTECTION optic nerve optic neuropathy retinal ganglion cells
下载PDF
上一页 1 2 109 下一页 到第
使用帮助 返回顶部