Geometry and vibrational frequencies of the ground state of Si2O2 molecule are studied using density function theory (DFT) at the level of cc-pvtz and 6-311-k+G^**. It is found that the optimizing value by B31yp/...Geometry and vibrational frequencies of the ground state of Si2O2 molecule are studied using density function theory (DFT) at the level of cc-pvtz and 6-311-k+G^**. It is found that the optimizing value by B31yp/cc-pvtz is closer to the experimental data. The excited properties under different external electric fields are also investigated by the time-dependent-DFT method. Transitions from the ground state of Si2O2 molecule to the first singlet state under different external electric fields can take place more easily. The corresponding absorption spectral line is about 360 nm in wavelength and the excitation energy is about 3.4 eV.展开更多
Molecular dynamics simulation was carried out to study the behavior of liquid 1,2-dichloroethane molecules under external electric fields including direct current field, alternating current field and positive-half-per...Molecular dynamics simulation was carried out to study the behavior of liquid 1,2-dichloroethane molecules under external electric fields including direct current field, alternating current field and positive-half-period cosin field. The maximum applied field strength was 10^8 V/m , the maximum frequency of the alternating current field and that of the positive-half-period cosine field was 10^12 Hz . The simulation revealed that the field type and field strength act on the population of the molecular configuration. In the strong direct current field, all trans forms converted completely into gauche forms. Order parameter and the correlation of the system torsion angle were also investigated. The results suggested that these two dynamical parameters depended also on the field type and the field strength. The maximum of order parameter was found to be at 0.6in the strong direct current field.展开更多
We utilize molecular dynamics simulations to investigate the microstructures of ions and polyelectrolytes in aqueous solutions under external electric fields.By focusing on the multi-body interactions between ionic co...We utilize molecular dynamics simulations to investigate the microstructures of ions and polyelectrolytes in aqueous solutions under external electric fields.By focusing on the multi-body interactions between ionic components and H_(2)O molecules,as well as their responses to the external electric fields,we clarify several nontrivial molecular features of the ionic and polyelectrolyte solutions,such as the solvations of cations and anions,clustering of the ions,and dispersions/aggregations of polyelectrolyte chains,as well as the corresponding responses of H_(2)O molecules in these contexts.Our simulations illustrate the variations in structures of ionic solutions caused by reversing the charge sign of the ions,and elucidate the disparity in structures between anionic and cationic polyelectrolyte solutions in the presence of the external electric fields.This work clarifies the mechanism for the alternations in complex multi-body interactions in aqueous solutions caused by the application electric field,which can contribute to the fundamental understanding of the physical and chemical natures of ion-containing and charged polymeric systems.展开更多
Recently,the newly synthesized septuple-atomic layer two-dimensional(2D)material MoSi_(2)N_(4)(MSN)has attracted attention worldwide.Our work delves into the effect of vacancies and external electric fields on the ele...Recently,the newly synthesized septuple-atomic layer two-dimensional(2D)material MoSi_(2)N_(4)(MSN)has attracted attention worldwide.Our work delves into the effect of vacancies and external electric fields on the electronic properties of the MSN/graphene(Gr)heterostructure using first-principles calculation.We find that four types of defective structures,N-in,N-out,Si and Mo vacancy defects of monolayer MSN and MSN/Gr heterostructure are stable in air.Moreover,vacancy defects can effectively modulate the charge transfer at the interface of the MSN/Gr heterostructure as well as the work function of the pristine monolayer MSN and MSN/Gr heterostructure.Finally,the application of an external electric field enables the dynamic switching between n-type and p-type Schottky contacts.Our work may offer the possibility of exceeding the capabilities of conventional Schottky diodes based on MSN/Gr heterostructures.展开更多
Facing the challenges of in-situ utilization of lunar regolith resources,applying an external electric field to manipulate lunar particles has become a promising method for space particle control,which mainly depends ...Facing the challenges of in-situ utilization of lunar regolith resources,applying an external electric field to manipulate lunar particles has become a promising method for space particle control,which mainly depends on the particle charging properties in the applied electric field.Using the surficial lunar regolith samples brought back from the Moon by the Chang’e-5 mission(CE5 LS),this work successively studied their charging properties,particle dynamics,and their collision damages to aerospace materials under the action of an external electric field in high-vacuum conditions.The results indicated that the charging pro-cess and electrostatic projection of lunar regolith particles under high-vacuum conditions were different from those under atmosphere conditions.The particle diameter range of CE5 LS used in the experiment is 27.7-139.0 lm.For electric field strength of 3-12 kV·cm^(-1),the charge obtained by CE5 LS is 4.8×10^(-15)-4.7×10^(-13) C and the charge-to-mass ratio is 1.2×10^(-5)-6.8×10^(-4) C·kg^(-1).The CE5 LS is easier to be negatively charged in an external electric field.Furthermore,significant damages were observed on the target impact surfaces,indicating severe influences of lunar regolith particles on aerospace materials.Our work contributes to a more comprehensive understanding of physical mechanisms controlling the lunar regolith shielding and utilization,and will inspire broad efforts to develop the lunar in-situ engi-neering solutions.展开更多
By using the perturbation method, effective nonlinear direct current (DC) and alternating current (AC) responses of nonlinear composites with spherical coated inclusions randomly embedded in a host medium are stud...By using the perturbation method, effective nonlinear direct current (DC) and alternating current (AC) responses of nonlinear composites with spherical coated inclusions randomly embedded in a host medium are studied under the action of an external electric field Ea = E0 + E1 sinωt + E3 sin 3ωt with different amplitudes and frequencies. The local potentials of composites at all harmonics are given in the inclusion particles and the host regions. All effective nonlinear responses to composites and the relationship between the effective nonlinear responses at all harmonics are also deduced for the spherical coated inclusions in a dilute limit.展开更多
Molecular dynamics simulations of liquid water were performed at 258 K and density of 1.0 g/cm^3 under different strengths of an external electric field, ranging from 0 to 8.0×10^9V/m, to investigate the influenc...Molecular dynamics simulations of liquid water were performed at 258 K and density of 1.0 g/cm^3 under different strengths of an external electric field, ranging from 0 to 8.0×10^9V/m, to investigate the influence of an external field on structural and dynamic properties of water. The flexible simple point charge model is used for water molecules. An enhancement of the water hydrogen bond structure with increasing strength of the electric field has been deduced from the radial distribution functions and the analysis of hydrogen bond structure. With increasing field strength, water system has a more perfect structure, which is shnilar to ice structure. However, the electrofreezing phenomenon of liquid water has not been detected because of a too large self-diffusion coefficient. The self-diffusion coefficient decreases remarkably with increasing strength of electric field, and the self-diffusion coefficient is anisotropic.展开更多
The geometric structures of an Nit radical in different external electric fields are optimized by using the density functional B3P86/cc-PVSZ method, and the bond lengths, dipole moments, vibration frequencies and IR s...The geometric structures of an Nit radical in different external electric fields are optimized by using the density functional B3P86/cc-PVSZ method, and the bond lengths, dipole moments, vibration frequencies and IR spectrum are obtained. The potential energy curves are gained by the CCSD (T) method with the same basis set. These results indicate that the physical property parameters and potential energy curves may change with the external electric field, especially in the reverse direction electric field. The potential energy function of zero field is fitted by the Morse potential, and the fitting parameters are in good accordance with the experimental data. The potential energy functions of different external electric fields are fitted adopting the constructed potential model. The fitted critical dissociation electric parameters are shown to be consistent with the numerical calculation, and the relative errors are only 0.27% and 6.61%, hence the constructed model is reliable and accurate. The present results provide an important reference for further study of the molecular spectrum, dynamics and molecular cooling with Stark effect.展开更多
In the present work,we adopt the ccsd/6-31g(d) method to optimize the ground state structure and calculate the vibrational frequency of the Si2N molecule.The calculated frequencies accord satisfactorily with the exp...In the present work,we adopt the ccsd/6-31g(d) method to optimize the ground state structure and calculate the vibrational frequency of the Si2N molecule.The calculated frequencies accord satisfactorily with the experimental values,which helps confirm the ground state structure of the molecule.In order to find how the external electric field affects the Si2N molecule,we use the density functional method B3P86/6-31g(d) to optimize the ground state structure and the time-dependent density functional theory TDDFT/6-31g(d) to study the absorption spectra,the excitation energies,the oscillator strengths,and the dipole moments of the Si2N molecule under different external electric fields.It is found that the absorption spectra,the excitation energies,the oscillator strengths,and the dipole moments of the Si2N molecule are affected by the external electric field.One of the valuable results is that the absorption spectra of the yellow and the blue-violet light of the Si2N molecule each have a red shift under the electric field.The luminescence mechanism in the visible light region of the Si2N molecule is also investigated and compared with the experimental data.展开更多
Using the density functional B3P86/cc-PV5Z method, the geometric structure of BH molecule under different external electric fields is optimized, and the bond lengths, dipole moments, vibration frequencies, and other p...Using the density functional B3P86/cc-PV5Z method, the geometric structure of BH molecule under different external electric fields is optimized, and the bond lengths, dipole moments, vibration frequencies, and other physical properties parameters are obtained. On the basis of setting appropriate parameters, scanning single point energies are obtained by the same method and the potential energy curves under different external fields are also obtained. These results show that the physical property parameters and potential energy curves may change with external electric field, especially in the case of reverse direction electric field. The potential energy function without external electric field is fitted by Morse potential, and the fitting parameters are obtained which are in good agreement with experimental values. In order to obtain the critical dissociation electric parameter, the dipole approximation is adopted to construct a potential model fitting the corresponding potential energy curve of the external electric field. It is found that the fitted critical dissociation electric parameter is consistent with numerical calculation, so that the constructed model is reliable and accurate. These results will provide important theoretical and experimental reference for further studying the molecular spectrum, dynamics, and molecular cooling with Stark effect.展开更多
oscale devices.In the present work,we investigate the electronic structures of germanane/antimonene vdW heterostructure in response to normal strain and an external electric field by using the first-principles calcula...oscale devices.In the present work,we investigate the electronic structures of germanane/antimonene vdW heterostructure in response to normal strain and an external electric field by using the first-principles calculations based on density functional theory(DFT).The results demonstrate that the germanane/antimonene vdW heterostructure behaves as a metal in a[1,,0.6]V/A range,while it is a direct semiconductor in a[0.5,0.2]V/A range,and it is an indirect semiconduc-tor in a[0.3,1.0]V/A range.Interestingly,the band alignment of germanane/antimonene vdW heterostructure appears astype-II feature both in a[0.5,0.1]range and in a[0.3,1]V/A range,while it shows the type-I character at 0.2 V/A.In ad-dition,we find that the germanane/antimonene vdW heterostructure is an indirect semiconductor both in an in-plane biaxial strain range of[[5%,,3%]and in an in-plane biaxial strain range of[3%,5%],while it exhibits a direct semiconductor character in an in-plane biaxial strain range of[2%,2%].Furthermore,the band alignment of the germanane/antimonene vdW heterostructure changes from type-II to type-I at an in-plane biaxial strain of 3%.The adjustable electronic structure of this germanane/antimonene vdW heterostructure will pave the way for developing the nanoscale devices.展开更多
The behavior of saturated aqueous Na Cl solutions under a constant external electric field(E) was studied by molecular dynamics(MD) simulation. Our dynamic MD simulations indicated that the irreversible nucleation...The behavior of saturated aqueous Na Cl solutions under a constant external electric field(E) was studied by molecular dynamics(MD) simulation. Our dynamic MD simulations indicated that the irreversible nucleation process towards crystallization is accelerated by a moderate E but retarded or even prohibited under a stronger E, which can be understood by the competition between self-diffusion and drift motion. The former increases with E, thereby accelerating the nucleation process, whereas the latter pulls oppositely charged ions apart under a stronger E, thereby decelerating nucleation.Additionally, our steady-state MD simulations indicated that a first-order phase transition occurs in saturated solutions at a certain threshold Ec. The magnitude of Ec increases with concentration because larger clusters form more easily when the solution is more concentrated and require a stronger E to dissociate.展开更多
By jointly solving two-centre material equations with a nonzero external electric field and coupled-wave equations, we have numerically studied the dependence of the non-volatile holographic recording in LiNbO3:Ce:C...By jointly solving two-centre material equations with a nonzero external electric field and coupled-wave equations, we have numerically studied the dependence of the non-volatile holographic recording in LiNbO3:Ce:Cu crystals on the external electric field. The dominative photovoltaic effect of the non-volatile holographic recording in doubly doped LiNbO3 crystals is directly verified. And an external electric field that is applied in the positive direction along the c-axis (or a large one in the negative direction of the c-axis) in the recording phase and another one that is applied in the negative direction of the c-axis in the fixing phase are both proved to benefit strong photorefractive performances. Experimental verifications are given with a small electric field applied externally.展开更多
We study theoretically the influence of spin-orbit coupling induced by in-plane external electric field on the intrinsic spin-Hall effect in a two-dimensional electron gas with Rashba spin-orbit coupling. We show that...We study theoretically the influence of spin-orbit coupling induced by in-plane external electric field on the intrinsic spin-Hall effect in a two-dimensional electron gas with Rashba spin-orbit coupling. We show that, after such an influence is taken into account, the static intrinsic spin-Hall effect can be stabilized in a disordered Rashba twodimensional electron gas, and the static intrinsic spin-Hall conductivity shall exhibit some interesting characteristics as conceived in some original theoretical proposals.展开更多
This paper uses the perturbation method to study effective response of nonlinear cylindrical coated composites. Under the external AC and DC electric field Ea (1 +sin ωt), the local potentials of composites at all...This paper uses the perturbation method to study effective response of nonlinear cylindrical coated composites. Under the external AC and DC electric field Ea (1 +sin ωt), the local potentials of composites at all harmonic frequencies are induced. An effective nonlinear response to composite is given for the cylindrical coated inclusions in the dilute limit.展开更多
The optical absorbance in near UV wavelength region in SnO 2 nanoclusters in an external electric field is determined at room temperature. The absorbance spectra as applied field and the absorbance variations with th...The optical absorbance in near UV wavelength region in SnO 2 nanoclusters in an external electric field is determined at room temperature. The absorbance spectra as applied field and the absorbance variations with the applied field are obtained.The relation between absorbance change and applied field is non-linear, and is saturated at high field region.展开更多
Phosgene is highly toxic, and it plays a role in the depletion of the ozone layer. The ground state geometric structure and spectral characteristic of phosgene in various external electric fields were calculated via t...Phosgene is highly toxic, and it plays a role in the depletion of the ozone layer. The ground state geometric structure and spectral characteristic of phosgene in various external electric fields were calculated via the density-functional theory (DFT) and time-dependent density-functional theory (TDDFT) with the B3LYP/6-31+G(d) basis set. With external electric field, the structure of phosgene changed significantly. With increasing electric field, the bond lengths of 1C-3Cl and 1C-4Cl increased;the total energy and energy gap initially increased and then decreased, whereas the dipole moment initially decreased and then increased. Most of the IR vibrational frequencies were redshifted. The wavelength of the singlet excited state increased, reflecting a red shift, and the oscillator strengths of most transitions belonged to forbidden transitions. These results are of great significance for studying the dissociation of phosgene in external electric field.展开更多
Non-monotonic, asymmetrical electric field dependence of photoluminescence (PL) intensity is observed in a mono- layer sample of tris-(8-hydroxyquinoline) aluminum (A1Q) doped N,N'-bis(3-methylphenyl)-N,N'-...Non-monotonic, asymmetrical electric field dependence of photoluminescence (PL) intensity is observed in a mono- layer sample of tris-(8-hydroxyquinoline) aluminum (A1Q) doped N,N'-bis(3-methylphenyl)-N,N'-bis(phenyl)-benzidine (TPD). A possible model is proposed: the charge separation from the dissociated photoexcited excitons causes energy band bending in the organic films and improves the hole injection from the electrode, which brings about the extra fluorescence. This mechanism is further verified by a series of experiments using a series of samples, variously featuring symmetrical electrodes, block layers, and hosts with lower hole mobilities.展开更多
The external electric field is a special strategy for generating novel structures.In this work,the intermolecular bonding and nonlinear optical properties are affected by applying an applied electric field of 0 to 9.7...The external electric field is a special strategy for generating novel structures.In this work,the intermolecular bonding and nonlinear optical properties are affected by applying an applied electric field of 0 to 9.77 V·nm^(-1)along the bonding direction of dimer of olympicenyl radical(OLY2).The results showed that the distance between molecular layers was lengthened gradually,and the 2e/20c bonds were weakened or even completely broken(the critical electric field is 9.77 V·nm^(-1))with the increase of the external electric field strength.Moreover,the introduction of an external electric field caused significant changes in the electronic properties of the OLY2,which induced charge transfer between inter-layer monomers,and enhanced the interlayer electrostatic interactions.Therefore,the external electric field not only regulates the interlayer interactions of molecules,but also causes the symmetric molecules to produce strong polarity,producing a large NLO response in OLY2.展开更多
This paper shows that a substantial amount of dissipationless spin-Hall current contribution may exist in the extrinsic spin-Hall effect,which originates from the spin-orbit coupling induced by the applied external el...This paper shows that a substantial amount of dissipationless spin-Hall current contribution may exist in the extrinsic spin-Hall effect,which originates from the spin-orbit coupling induced by the applied external electric field itself that drives the extrinsic spin-Hall effect in a nonmagnetic semiconductor (or metal).By assuming that the impurity density is in a moderate range such that the total scattering potential due to all randomly distributed impurities is a smooth function of the space coordinate,it is shown that this dissipationless contribution shall be of the same orders of magnitude as the usual extrinsic contribution from spin-orbit dependent impurity scatterings (or may even be larger than the latter one).The theoretical results obtained are in good agreement with recent relevant experimental results.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant No. 10774039)the Natural Science Foundation of Henan Province,China (Grant No. 092300410249)+1 种基金the Natural Science Foundation of the Education Bureau of Henan Province,China (Grant No. 2010A140008)the Foundation for University Young Core Instructors of Henan Province,China (Grant No. 2009GGJS-044)
文摘Geometry and vibrational frequencies of the ground state of Si2O2 molecule are studied using density function theory (DFT) at the level of cc-pvtz and 6-311-k+G^**. It is found that the optimizing value by B31yp/cc-pvtz is closer to the experimental data. The excited properties under different external electric fields are also investigated by the time-dependent-DFT method. Transitions from the ground state of Si2O2 molecule to the first singlet state under different external electric fields can take place more easily. The corresponding absorption spectral line is about 360 nm in wavelength and the excitation energy is about 3.4 eV.
文摘Molecular dynamics simulation was carried out to study the behavior of liquid 1,2-dichloroethane molecules under external electric fields including direct current field, alternating current field and positive-half-period cosin field. The maximum applied field strength was 10^8 V/m , the maximum frequency of the alternating current field and that of the positive-half-period cosine field was 10^12 Hz . The simulation revealed that the field type and field strength act on the population of the molecular configuration. In the strong direct current field, all trans forms converted completely into gauche forms. Order parameter and the correlation of the system torsion angle were also investigated. The results suggested that these two dynamical parameters depended also on the field type and the field strength. The maximum of order parameter was found to be at 0.6in the strong direct current field.
基金supported by the Major Science and Technology Projects for Independent Innovation of China FAW Group Co., Ltd. (No. 20220301018GX)the National Natural Science Foundation of China (Nos. 9237210012, 22073094 and 21474109)+2 种基金the Science and Technology Development Program of Jilin Province (Nos. 20240602003RC and 20210402059GH)the State Key Laboratory of Molecular Engineering of Polymers (Fudan University) (No. K2023-08)the Program for Young Scholars in Regional Development of CAS
文摘We utilize molecular dynamics simulations to investigate the microstructures of ions and polyelectrolytes in aqueous solutions under external electric fields.By focusing on the multi-body interactions between ionic components and H_(2)O molecules,as well as their responses to the external electric fields,we clarify several nontrivial molecular features of the ionic and polyelectrolyte solutions,such as the solvations of cations and anions,clustering of the ions,and dispersions/aggregations of polyelectrolyte chains,as well as the corresponding responses of H_(2)O molecules in these contexts.Our simulations illustrate the variations in structures of ionic solutions caused by reversing the charge sign of the ions,and elucidate the disparity in structures between anionic and cationic polyelectrolyte solutions in the presence of the external electric fields.This work clarifies the mechanism for the alternations in complex multi-body interactions in aqueous solutions caused by the application electric field,which can contribute to the fundamental understanding of the physical and chemical natures of ion-containing and charged polymeric systems.
基金Project supported by the Industry and Education Combination Innovation Platform of Intelligent Manufacturing and Graduate Joint Training Base at Guizhou University(Grant No.2020-520000-83-01-324061)the National Natural Science Foundation of China(Grant No.61264004)the High-level Creative Talent Training Program in Guizhou Province of China(Grant No.[2015]4015).
文摘Recently,the newly synthesized septuple-atomic layer two-dimensional(2D)material MoSi_(2)N_(4)(MSN)has attracted attention worldwide.Our work delves into the effect of vacancies and external electric fields on the electronic properties of the MSN/graphene(Gr)heterostructure using first-principles calculation.We find that four types of defective structures,N-in,N-out,Si and Mo vacancy defects of monolayer MSN and MSN/Gr heterostructure are stable in air.Moreover,vacancy defects can effectively modulate the charge transfer at the interface of the MSN/Gr heterostructure as well as the work function of the pristine monolayer MSN and MSN/Gr heterostructure.Finally,the application of an external electric field enables the dynamic switching between n-type and p-type Schottky contacts.Our work may offer the possibility of exceeding the capabilities of conventional Schottky diodes based on MSN/Gr heterostructures.
基金the China National Space Administration(sample No.CE5C0400)supported by the National Natural Science Foundation of China(U22B2092 and 51725601)Beijing Nova Program(20230484334),and Lunar Exploration and Space Engineering Center.
文摘Facing the challenges of in-situ utilization of lunar regolith resources,applying an external electric field to manipulate lunar particles has become a promising method for space particle control,which mainly depends on the particle charging properties in the applied electric field.Using the surficial lunar regolith samples brought back from the Moon by the Chang’e-5 mission(CE5 LS),this work successively studied their charging properties,particle dynamics,and their collision damages to aerospace materials under the action of an external electric field in high-vacuum conditions.The results indicated that the charging pro-cess and electrostatic projection of lunar regolith particles under high-vacuum conditions were different from those under atmosphere conditions.The particle diameter range of CE5 LS used in the experiment is 27.7-139.0 lm.For electric field strength of 3-12 kV·cm^(-1),the charge obtained by CE5 LS is 4.8×10^(-15)-4.7×10^(-13) C and the charge-to-mass ratio is 1.2×10^(-5)-6.8×10^(-4) C·kg^(-1).The CE5 LS is easier to be negatively charged in an external electric field.Furthermore,significant damages were observed on the target impact surfaces,indicating severe influences of lunar regolith particles on aerospace materials.Our work contributes to a more comprehensive understanding of physical mechanisms controlling the lunar regolith shielding and utilization,and will inspire broad efforts to develop the lunar in-situ engi-neering solutions.
基金Project supported by the Natural Science Foundation of Inner Mongolia,China (Grant No. 2011MS0113)the Talent Foundation of Inner Mongolia (2010),China
文摘By using the perturbation method, effective nonlinear direct current (DC) and alternating current (AC) responses of nonlinear composites with spherical coated inclusions randomly embedded in a host medium are studied under the action of an external electric field Ea = E0 + E1 sinωt + E3 sin 3ωt with different amplitudes and frequencies. The local potentials of composites at all harmonics are given in the inclusion particles and the host regions. All effective nonlinear responses to composites and the relationship between the effective nonlinear responses at all harmonics are also deduced for the spherical coated inclusions in a dilute limit.
基金Project supported by National Natural Science Foundation of China(Grant No. 20276055)
文摘Molecular dynamics simulations of liquid water were performed at 258 K and density of 1.0 g/cm^3 under different strengths of an external electric field, ranging from 0 to 8.0×10^9V/m, to investigate the influence of an external field on structural and dynamic properties of water. The flexible simple point charge model is used for water molecules. An enhancement of the water hydrogen bond structure with increasing strength of the electric field has been deduced from the radial distribution functions and the analysis of hydrogen bond structure. With increasing field strength, water system has a more perfect structure, which is shnilar to ice structure. However, the electrofreezing phenomenon of liquid water has not been detected because of a too large self-diffusion coefficient. The self-diffusion coefficient decreases remarkably with increasing strength of electric field, and the self-diffusion coefficient is anisotropic.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11147158 and 11264020the Jiangxi Province Natural Science Foundation under Grant No 2010GQW0031the Jiangxi Province Scientific Research Program of the Education Bureau under Grant No GJJ12483
文摘The geometric structures of an Nit radical in different external electric fields are optimized by using the density functional B3P86/cc-PVSZ method, and the bond lengths, dipole moments, vibration frequencies and IR spectrum are obtained. The potential energy curves are gained by the CCSD (T) method with the same basis set. These results indicate that the physical property parameters and potential energy curves may change with the external electric field, especially in the reverse direction electric field. The potential energy function of zero field is fitted by the Morse potential, and the fitting parameters are in good accordance with the experimental data. The potential energy functions of different external electric fields are fitted adopting the constructed potential model. The fitted critical dissociation electric parameters are shown to be consistent with the numerical calculation, and the relative errors are only 0.27% and 6.61%, hence the constructed model is reliable and accurate. The present results provide an important reference for further study of the molecular spectrum, dynamics and molecular cooling with Stark effect.
基金Project supported by the Foundation for University Young Core Instructors of Henan Province,China (Grant No. 2009GGJS044)the Natural Science Foundation of the Education Bureau of Henan Province,China (Grant No. 2010A140008)the Cultivating Fund of Henan Normal University,China (Grant No. 2010PL02)
文摘In the present work,we adopt the ccsd/6-31g(d) method to optimize the ground state structure and calculate the vibrational frequency of the Si2N molecule.The calculated frequencies accord satisfactorily with the experimental values,which helps confirm the ground state structure of the molecule.In order to find how the external electric field affects the Si2N molecule,we use the density functional method B3P86/6-31g(d) to optimize the ground state structure and the time-dependent density functional theory TDDFT/6-31g(d) to study the absorption spectra,the excitation energies,the oscillator strengths,and the dipole moments of the Si2N molecule under different external electric fields.It is found that the absorption spectra,the excitation energies,the oscillator strengths,and the dipole moments of the Si2N molecule are affected by the external electric field.One of the valuable results is that the absorption spectra of the yellow and the blue-violet light of the Si2N molecule each have a red shift under the electric field.The luminescence mechanism in the visible light region of the Si2N molecule is also investigated and compared with the experimental data.
基金Project supported by the National Natural Science Foundation of China(Grand Nos.11147158 and 11264020)the Natural Science Foundation of Jiangxi Province,China(Grand No.2010GQW0031)the Scientific Research Program of the Education Bureau of Jiangxi Province,China(Grand No.GJJ12483)
文摘Using the density functional B3P86/cc-PV5Z method, the geometric structure of BH molecule under different external electric fields is optimized, and the bond lengths, dipole moments, vibration frequencies, and other physical properties parameters are obtained. On the basis of setting appropriate parameters, scanning single point energies are obtained by the same method and the potential energy curves under different external fields are also obtained. These results show that the physical property parameters and potential energy curves may change with external electric field, especially in the case of reverse direction electric field. The potential energy function without external electric field is fitted by Morse potential, and the fitting parameters are obtained which are in good agreement with experimental values. In order to obtain the critical dissociation electric parameter, the dipole approximation is adopted to construct a potential model fitting the corresponding potential energy curve of the external electric field. It is found that the fitted critical dissociation electric parameter is consistent with numerical calculation, so that the constructed model is reliable and accurate. These results will provide important theoretical and experimental reference for further studying the molecular spectrum, dynamics, and molecular cooling with Stark effect.
基金Project supported by the National Natural Science Foundation of China(Grant No.11864011).
文摘oscale devices.In the present work,we investigate the electronic structures of germanane/antimonene vdW heterostructure in response to normal strain and an external electric field by using the first-principles calculations based on density functional theory(DFT).The results demonstrate that the germanane/antimonene vdW heterostructure behaves as a metal in a[1,,0.6]V/A range,while it is a direct semiconductor in a[0.5,0.2]V/A range,and it is an indirect semiconduc-tor in a[0.3,1.0]V/A range.Interestingly,the band alignment of germanane/antimonene vdW heterostructure appears astype-II feature both in a[0.5,0.1]range and in a[0.3,1]V/A range,while it shows the type-I character at 0.2 V/A.In ad-dition,we find that the germanane/antimonene vdW heterostructure is an indirect semiconductor both in an in-plane biaxial strain range of[[5%,,3%]and in an in-plane biaxial strain range of[3%,5%],while it exhibits a direct semiconductor character in an in-plane biaxial strain range of[2%,2%].Furthermore,the band alignment of the germanane/antimonene vdW heterostructure changes from type-II to type-I at an in-plane biaxial strain of 3%.The adjustable electronic structure of this germanane/antimonene vdW heterostructure will pave the way for developing the nanoscale devices.
基金Project supported by the National Basic Research Program of China(Grant No.2013CB932804)the National Natural Science Foundation of China(Grant Nos.91227115+1 种基金11274319and 11421063)
文摘The behavior of saturated aqueous Na Cl solutions under a constant external electric field(E) was studied by molecular dynamics(MD) simulation. Our dynamic MD simulations indicated that the irreversible nucleation process towards crystallization is accelerated by a moderate E but retarded or even prohibited under a stronger E, which can be understood by the competition between self-diffusion and drift motion. The former increases with E, thereby accelerating the nucleation process, whereas the latter pulls oppositely charged ions apart under a stronger E, thereby decelerating nucleation.Additionally, our steady-state MD simulations indicated that a first-order phase transition occurs in saturated solutions at a certain threshold Ec. The magnitude of Ec increases with concentration because larger clusters form more easily when the solution is more concentrated and require a stronger E to dissociate.
基金Project supported by the State Science and Technology Commission of China (Grant No 2002CCA03500) and the National Natural Science Foundation of China (Grant No 60177016).
文摘By jointly solving two-centre material equations with a nonzero external electric field and coupled-wave equations, we have numerically studied the dependence of the non-volatile holographic recording in LiNbO3:Ce:Cu crystals on the external electric field. The dominative photovoltaic effect of the non-volatile holographic recording in doubly doped LiNbO3 crystals is directly verified. And an external electric field that is applied in the positive direction along the c-axis (or a large one in the negative direction of the c-axis) in the recording phase and another one that is applied in the negative direction of the c-axis in the fixing phase are both proved to benefit strong photorefractive performances. Experimental verifications are given with a small electric field applied externally.
基金Project supported by the National Natural Science Foundation of China (Grant No. 10874049)the State Key Program for Basic Research of China (Grant No. 2007CB925204)the Natural Science Foundation of Guangdong Province of China (GrantNo. 07005834)
文摘We study theoretically the influence of spin-orbit coupling induced by in-plane external electric field on the intrinsic spin-Hall effect in a two-dimensional electron gas with Rashba spin-orbit coupling. We show that, after such an influence is taken into account, the static intrinsic spin-Hall effect can be stabilized in a disordered Rashba twodimensional electron gas, and the static intrinsic spin-Hall conductivity shall exhibit some interesting characteristics as conceived in some original theoretical proposals.
文摘This paper uses the perturbation method to study effective response of nonlinear cylindrical coated composites. Under the external AC and DC electric field Ea (1 +sin ωt), the local potentials of composites at all harmonic frequencies are induced. An effective nonlinear response to composite is given for the cylindrical coated inclusions in the dilute limit.
文摘The optical absorbance in near UV wavelength region in SnO 2 nanoclusters in an external electric field is determined at room temperature. The absorbance spectra as applied field and the absorbance variations with the applied field are obtained.The relation between absorbance change and applied field is non-linear, and is saturated at high field region.
基金National Natural Science Foundation of China(Grant Number:21763027)Innovation Team for Monitoring of Emerging Contaminants and Biomarkers(Grant Number:2021D14017)+2 种基金Xinjiang Regional Collaborative Innovation Project(Grant Number:2019E0223)Scientific Research Program of Colleges and Universities in Xinjiang(Grant Number:XJEDU2020Y029)“13th Five-Year”Plan for Key Discipline Physics Bidding Project of Xinjiang Normal University(Grant Number:17SDKD0602).
文摘Phosgene is highly toxic, and it plays a role in the depletion of the ozone layer. The ground state geometric structure and spectral characteristic of phosgene in various external electric fields were calculated via the density-functional theory (DFT) and time-dependent density-functional theory (TDDFT) with the B3LYP/6-31+G(d) basis set. With external electric field, the structure of phosgene changed significantly. With increasing electric field, the bond lengths of 1C-3Cl and 1C-4Cl increased;the total energy and energy gap initially increased and then decreased, whereas the dipole moment initially decreased and then increased. Most of the IR vibrational frequencies were redshifted. The wavelength of the singlet excited state increased, reflecting a red shift, and the oscillator strengths of most transitions belonged to forbidden transitions. These results are of great significance for studying the dissociation of phosgene in external electric field.
基金Project supported by the National Natural Science Foundation of China(Grant No.11134002)the National Science and Technology Major Project of the Ministry of Science and Technology of China(Grant No.2012CB921401)
文摘Non-monotonic, asymmetrical electric field dependence of photoluminescence (PL) intensity is observed in a mono- layer sample of tris-(8-hydroxyquinoline) aluminum (A1Q) doped N,N'-bis(3-methylphenyl)-N,N'-bis(phenyl)-benzidine (TPD). A possible model is proposed: the charge separation from the dissociated photoexcited excitons causes energy band bending in the organic films and improves the hole injection from the electrode, which brings about the extra fluorescence. This mechanism is further verified by a series of experiments using a series of samples, variously featuring symmetrical electrodes, block layers, and hosts with lower hole mobilities.
基金Foundation of Science and Technology Department of Jilin Province(20230101043JC).
文摘The external electric field is a special strategy for generating novel structures.In this work,the intermolecular bonding and nonlinear optical properties are affected by applying an applied electric field of 0 to 9.77 V·nm^(-1)along the bonding direction of dimer of olympicenyl radical(OLY2).The results showed that the distance between molecular layers was lengthened gradually,and the 2e/20c bonds were weakened or even completely broken(the critical electric field is 9.77 V·nm^(-1))with the increase of the external electric field strength.Moreover,the introduction of an external electric field caused significant changes in the electronic properties of the OLY2,which induced charge transfer between inter-layer monomers,and enhanced the interlayer electrostatic interactions.Therefore,the external electric field not only regulates the interlayer interactions of molecules,but also causes the symmetric molecules to produce strong polarity,producing a large NLO response in OLY2.
基金Project supported by the National Natural Science Foundation of China (Grant No 10874049)the State Key Program for Basic Research of China (Grant No 2007CB925204)the Natural Science Foundation of Guangdong Province of China (Grant No07005834)
文摘This paper shows that a substantial amount of dissipationless spin-Hall current contribution may exist in the extrinsic spin-Hall effect,which originates from the spin-orbit coupling induced by the applied external electric field itself that drives the extrinsic spin-Hall effect in a nonmagnetic semiconductor (or metal).By assuming that the impurity density is in a moderate range such that the total scattering potential due to all randomly distributed impurities is a smooth function of the space coordinate,it is shown that this dissipationless contribution shall be of the same orders of magnitude as the usual extrinsic contribution from spin-orbit dependent impurity scatterings (or may even be larger than the latter one).The theoretical results obtained are in good agreement with recent relevant experimental results.