Carboxyl ester lipase(CEL),a pivotal enzyme involved in lipid metabolism,is recurrently mutated in obese mice.Here,we aimed to elucidate the functional significance,molecular mechanism,and therapeutic potential of CEL...Carboxyl ester lipase(CEL),a pivotal enzyme involved in lipid metabolism,is recurrently mutated in obese mice.Here,we aimed to elucidate the functional significance,molecular mechanism,and therapeutic potential of CEL in metabolic dysfunction-associated steatohepatitis(MASH).Hepatocyte-specific carboxyl ester lipase gene(Cel)knockout(Cel^(DHEP))and wildtype(WT)littermates were fed with cholinedeficient high-fat diet(CD-HFD)for 16 weeks,or methionine-and choline-deficient diet(MCD)for three weeks to induce MASH.Liquid chromatography–mass spectrometry and co-immunoprecipitation were employed to identify the downstream targets of CEL.CD-HFD/MCD-fed WT mice received intravenous injections of CEL-adeno-associated viral,serotype 8(AAV8)to induce specific overexpression of CEL in the liver.We observed a decrease in CEL protein levels in MASH induced by CD-HFD or MCD in mice.Cel^(DHEP) mice fed with CD-HFD or MCD exhibited pronounced hepatic steatosis,inflammation,lipid peroxidation,and liver injury compared to WT littermates,accompanied by increased hepatic nuclear factor kappa-light-chain-enhancer of activated B cell(NF-jB)activation.Consistently,Cel knockdown in mouse primary hepatocytes and AML12 cells aggravated lipid accumulation and inflammation,whereas CEL overexpression exerted the opposite effect.Mechanistically,CEL directly bound to fatty acid synthase(FASN),resulting in reduced FASN SUMOylation,which in turn promoted FASN degradation through the proteasome pathway.Furthermore,inhibition of FASN ameliorated hepatocyte lipid accumulation and inflammation induced by Cel knockdown in vivo and in vitro.Hepatocyte-specific CEL overexpression using AAV8-Cel significantly mitigated steatohepatitis in mice fed with CD-HFD or MCD.CEL protects against steatohepatitis development by directly interacting with FASN and suppressing its expression for de novo lipogenesis.CEL overexpression confers a therapeutic benefit in steatohepatitis.展开更多
Objective To explore the effects of zinc-0t2-glycoprotein (ZAG) on body weight and body fat in high-fat-diet (HF1))-induced obesity in mice and the possible mechanism. Methods Thirty-six male mice were fed with ...Objective To explore the effects of zinc-0t2-glycoprotein (ZAG) on body weight and body fat in high-fat-diet (HF1))-induced obesity in mice and the possible mechanism. Methods Thirty-six male mice were fed with standard food (SF) (n=9) and HFD (n=27), respectively. Five weeks later, 9 mice fed with HFD were subjected to ZAG expression plasmid DNA transfection by liposome transfection method, and another 9 mice to negative control plasmid transfection. Two weeks later, serum ZAG level in the mice was assayed by Western blot, and the effects of ZAG over-expression on body weight, body fat, serum biochemical indexes, and adipose tissue of obese mice were evaluated. The mRNA expressions of fatty acid synthase (FAS) and hormone sensitive lipase (HSL) in liver tissue were deterlnined by reverse transcription-polymerase chain reaction. Results Serum ZAG level significantly lowered in simple HFD-fed mice in comparison to SF-fed mice (0.51±0.10 AU vs. 0.75±0.07 AU, P〈0.01). Further statistical analysis demonstrated that ZAG level was negatively correlated with body weight (r =-0.56, P〈0.001), epididymal fat mass (r=-0.67, P〈O. 001), percentage of epididymal fat (r= 0.65, P〈0.001), and increased weight (r= 0.57, P〈0.001) in simple SF- and HFD fed mice. ZAG over-expression in obese mice reduced body weight and the percentage of epididyreal fat. Furthermore, FAS mRNA expression decreased (P〈0.01) and HSL mRNA expression increased (P〈0.001) in the liver in ZAG over-expressing mice. Conclusions ZAG is closely related to obesity. Serum ZAG level is inversely correlated with body weight and percentage of body fat. The action of ZAG is associated with reduced FAS expression and increased HSL expression in the liver of obese mice.展开更多
Objective:Our aim was to test the hypothesis that fatty acid synthase(FASN)expression contributes to radioresistance of nasopharyngeal carcinoma(NPC)cells and that inhibiting FASN enhances radiosensitivity.Methods:Tar...Objective:Our aim was to test the hypothesis that fatty acid synthase(FASN)expression contributes to radioresistance of nasopharyngeal carcinoma(NPC)cells and that inhibiting FASN enhances radiosensitivity.Methods:Targeting FASN using epigallocatechin gallate(EGCG)or RNA interference in NPC cell lines that overexpress endogenous FASN was performed to determine their effects on cellular response to radiationin vitro using MTT and colony formation assays,andin vivo using xenograft animal models.Western blot,immunohistochemistry,real-time PCR arrays,and real-time RT-PCR were used to determine the relationship between FASN and frizzled class receptor 10(FZD10)expression.FZD10 knockdown and overexpression were used to determine its role in mediating FASN function in cellular response to radiation.Immunohistochemical staining was used to determine FASN and FZD10 expressions in human NPC tissues,followed by analysis of their association with the overall survival of patients.Results:FASN knockdown or inhibition significantly enhanced radiosensitivity of NPC cells,bothin vitro andin vivo.There was a positive association between FASN and FZD10 expression in NPC cell lines grown as monolayers or xenografts,as well as human tissues.FASN knockdown reduced FZD10 expression,and rescue of FZD10 expression abolished FASN knockdown-induced enhancement of radiosensitivity.FASN and FZD10 were both negatively associated with overall survival of NPC patients.Conclusions:FASN contributes to radioresistance,possiblyvia FZD10 in NPC cells.Both FZD10 and FASN expressions were associated with poor outcomes of NPC patients.EGCG may sensitize radioresistance by inhibiting FASN and may possibly be developed as a radiosensitizer for better treatment of NPCs.展开更多
Objective: To determine fatty acid synthase (FAS) expression in human multiple myeloma and verify its potential as a therapeutic target in multiple myeloma. Methods: FAS expression was determined by immunohistoche...Objective: To determine fatty acid synthase (FAS) expression in human multiple myeloma and verify its potential as a therapeutic target in multiple myeloma. Methods: FAS expression was determined by immunohistochemistry, reverse-transcription polymerase chain reaction (RT-PCR) and immunoblot analysis in bone marrow samples obtained from 27 patients with multiple myeloma (MM patients) and peripheral blood mononuclear cells (PBMCs) obtained from 12 healthy donors In parallel, additional analyses were performed on 2 human multiple myeloma cell lines, U266 and RPM18226. U266 cells were treated with cerulenin at various concentrations (5 to 320 μg/ml) for 24 h, and metabolic activity was measured by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays. Apoptosis was evaluated by dual Annexin V/Pl (propidium iodide) labeling and flow cytometry (FCM) in U266 cells treated with 20 μg/ml cerulenin for 12 h or 24 h. Results: By immunohistochemistry, we found that 19 of 27 bone marrow samples obtained from MM patients expressed significantly high levels of FAS. Similarly, by RT-PCR, 22 of 27 bone marrow samples obtained from MM patients, U266 and RPM18226 showed FAS expression, whereas PBMC samples from 12 healthy donors did not express detectable level of FAS. FAS protein expression was confirmed by immunoblot analysis in 16 of 27 bone marrow samples obtained from MM patients, U266 and RPM18226 cell lines, and no FAS protein expression was detected in PBMC samples from 12 healthy donors. U266 cells were highly sensitive to cerulenin treatment, with a dosage-related effect on metabolic activity, as a measure for cell proliferation. U266 cells treated with 20 μg/ml cerulenin for 12 and 24 h also showed early sign of apoptosis with 56.9% and 69.3% Annexin V^+/Pl cells, and late apoptotic and necrotic cells with 3.2% and 17.6% Annexin V^+/Pl^+ cells. Conclusion: Increased FAS expression existed in multiple myeloma samples and human myeloma cell lines. Cerulenin greatly inhibited metabolic activity/cell proliferation of U266 cells and induced apoptosis, suggesting that FAS is an effective target for pharmacological therapy in human multiple myeloma.展开更多
Fatty acid synthase (FAS) attracts more and more attention recently as a potential target for metabolic syndrome,such as cancer, obesity, diabetes and cerebrovascular disease. FAS inhibitors are widely existed in pl...Fatty acid synthase (FAS) attracts more and more attention recently as a potential target for metabolic syndrome,such as cancer, obesity, diabetes and cerebrovascular disease. FAS inhibitors are widely existed in plants, consisting of diversiform compounds. These inhibitors exist not only in herbs also in many plant foods, such as teas, allium vegetables and some fruits. These effective components include gallated catechins, theaflavins,flavonoids, condensed and hydrolysable tannins, thioethers,pentacyclic triterpenes, stilbene derivatives, etc, and they target at the different domains of FAS, showing different inhibitory mechanisms. Interestingly, these FAS inhibitor-contained herbs and plant foods and their effective components are commonly related to the prevention of metabolic syndromes including fatreducing and depression of cancer. From biochemical angle,FAS can control the balance between energy provision and fat production. Some studies have shown that the effects of those effective components in plants on metabolic syndromes are mediated by inhibiting FAS. This suggests that FAS plays a critical role in the regulation of energy metabolism, and the FAS inhibitors from plants have significant potential application value in the treatment and prevention of metabolic syndromes.展开更多
Background: The liver is the corner stone in lipid metabolism, free fatty acid uptake, synthesizing, storing and exporting lipids;non-alcoholic fatty liver disease (NAFLD) develops if there is any interruption or dera...Background: The liver is the corner stone in lipid metabolism, free fatty acid uptake, synthesizing, storing and exporting lipids;non-alcoholic fatty liver disease (NAFLD) develops if there is any interruption or derangements in lipid metabolim. Fatty acid synthase (FAS) is the major enzyme in lipogenesis, and its circulating level is a bi-omarker of metabolically demanding human diseases. Aim of the Work: To evaluate the level of circulating FAS in NAFLD patients and to correlate it to serum lipid pa-rameters. Materials and Methods: The study included forty NAFLD patients and forty age and sex-matched healthy subjects as controls. Results: FAS levels were signifi-cantly higher in NAFLD patients compared to their level in the controls (P < 0.05). Ad-ditionally, a positive correlation was found between the levels of FAS and BMI (r = 0.57), and between FAS levels and triglycerides and low density lipoprotein cholesterol levels in NAFLD patients (r = 0.79 & 0.53, respectively). Conclusion: Elevated levels of circulating FAS can be considered as a biomarker of fatty liver disease.展开更多
Fatty acid synthase(FASN)is an essential molecule in lipid metabolic pathways,which are crucial for cancer-related studies.Recent studies have focused on a comprehensive understanding of the novel and important regula...Fatty acid synthase(FASN)is an essential molecule in lipid metabolic pathways,which are crucial for cancer-related studies.Recent studies have focused on a comprehensive understanding of the novel and important regulatory effects of FASN on malignant biological behavior and immune-cell infiltration,which are closely related to tumor occurrence and development,immune escape,and immune response.FASN-targeting antitumor treatment strategies are being developed.Therefore,in this review,we focused on the effects of FASN on tumor and immune-cell infiltration and reviewed the progress of related antitumor therapy development.展开更多
Fatty acid synthase (FAS) is a multifunctional enzyme that plays an important role in the formation of fatty acids. The fatty acids take part in many processes, such as cell signaling and energy metabolism, and in ins...Fatty acid synthase (FAS) is a multifunctional enzyme that plays an important role in the formation of fatty acids. The fatty acids take part in many processes, such as cell signaling and energy metabolism, and in insects they are important in both cuticular hydrocarbon (CHC) formation and reproduction. Here we characterized the sequence structure and function of an FAS from the small brown planthopper (SBPH), Laodelphax striatellus. The full-length open reading frame (ORF) sequence of LsFAS1 was 7122 bp, encoding a predicted protein of 2373 amino acid residues. There were 7 functional domains in the LsFAS1 protein sequence. Gene expression screening by real-time quantitative polymerase chain reaction (RT-qPCR) showed that LsFAS1 was expressed in all developmental stages. Relative expression was highest at the 4th-instar and female adult stages. Among different tissues, the expression level of LsFAS1 in the ovary was the highest. Phylogenetic analysis showed that LsFAS1 clustered in a clade with 2 FASs from Nilaparvata lugens. Furthermore, these 3 FASs are related to cockroach BgFAS and locust LmFAS. After RNA interference-mediated knock-down, most treated insects died at eclosion. In addition, the lifespan of dsFAS1-treated female adults was shorter than that of the dsGFP-injected control, and offspring production decreased. Also, the expression of vitellogenin (Vg) and vitellogenin receptor (VgR) genes decreased. Virgin females dissected at days 2 and 4 post-eclosion showed many matured oocytes in planthoppers treated with dsGFP but not with dsFAS1. These data highlight the importance of LsFAS1 in SBPH, including a role in reproduction.展开更多
OBJECTIVE: To study the mechanism of Dangfei Liganning capsule(当飞利肝宁胶囊) in the treatment of rats with metabolic associated fatty liver disease(MAFLD). METHODS: Totally 48 specific pathogen free SpragueDawley ma...OBJECTIVE: To study the mechanism of Dangfei Liganning capsule(当飞利肝宁胶囊) in the treatment of rats with metabolic associated fatty liver disease(MAFLD). METHODS: Totally 48 specific pathogen free SpragueDawley male rats were randomly divided into normal Group, model group, Dangfei Liganning high, moderate, and low-dose groups and Essentiale group which were fed with high fat diet for 8 weeks, and gavage and molding were carried out simultaneously. Dangfei Liganning high, middle and low-dose group were given 0.27, 0.135 and 0.0675 g·kg-1·d-1 respectively by gavage, Essentiale group was given 0.123 g·kg-1·d-1 by gavage, the same amount of distilled water was given by gavage in the normal group and the model group. The rats were weighed at the 0th week, 2nd week, 4th week, 6th week and 8th weekend respectively. The rats were sacrificed at the end of the 8th week. Serum levels of alanine aminotransferase(ALT), alanine aminotransferase(AST),triglyceride(TG), total cholesterol(CHO), high-density lipoprotein cholesterol(HDL-C), low-density lipoprotein (LDL-C), total protein(TP), albumin(Alb), globulin(GLB), total bilirubin(TBIL), direct bilirubin(DBIL), tumor necrosis factor-α(TNF-α) and interleukin-6(IL-6) were measured. The levels of liver tumor necrosis factor-α(TNF-α), interleukin-6(IL-6) and liver pathology [hematoxylin and eosin(HE) staining, oil red O staining] were detected. The expression levels of liver X receptor α(LXRα), steroid regulatory element binding protein-1(SREBP-1) and fatty acid synthase(FAS) were detected by immunohistochemistry, Western blot and reverse transcription-polymerase chain reaction reverse transcription-polymerase chain reaction. RESULTS: From the beginning to the 8th week, the growth rate of body weight in the Dangfei Liganning highdose group was slower than all other groups. There was no significant difference in ALB level in all groups(P > 0.05). Compared with the model group, the levels of ALT, AST, LDL-C, TG, CHO, TP, GLB, TBIL, DBIL, IL-6, TNF-α were significantly decreased and HDL-C were significantly increased in Dangfei Liganning high-dose group(P < 0.01, < 0.05). HE and oil red O staining showed that the fatty lesions in rat liver were alleviated, while the expressions of LXRα, SREBP-1, FAS m RNA and protein were significantly decreased(P < 0.01). CONCLUSIONS: Dangfei Liganning capsule can slow down the increase of body weight of MAFLD rats, reduce the levels of transaminase, Lipid and inflammatory factors in MAFLD rats, promote the synthesis of liver protein and bile metabolism, and improve the liver fatty lesion of MAFLD rats, among which the Dangfei Liganning highdose group is more effective. The mechanism of action may be through blocking LXR-SREBP-1-FAS signal pathway.展开更多
SARS-CoV-2 is an emerging viral pathogen and a major global public health challenge since December of 2019, with limited effective treatments throughout the pandemic.As part of the innate immune response to viral infe...SARS-CoV-2 is an emerging viral pathogen and a major global public health challenge since December of 2019, with limited effective treatments throughout the pandemic.As part of the innate immune response to viral infection, type Ⅰ interferons(IFN-Ⅰ) trigger a signaling cascade that culminates in the activation of hundreds of genes, known as interferon stimulated genes(ISGs), that collectively foster an antiviral state.We report here the identification of a group of type Ⅰ interferon suppressed genes,including fatty acid synthase(FASN), which are involved in lipid metabolism.Overexpression of FASN or the addition of its downstream product, palmitate, increased viral infection while knockout or knockdown of FASN reduced infection.More importantly, pharmacological inhibitors of FASN effectively blocked infections with a broad range of viruses, including SARS-CoV-2 and its variants of concern.Thus, our studies not only suggest that downregulation of metabolic genes may present an antiviral strategy by type Ⅰ interferon, but they also introduce the potential for FASN inhibitors to have a therapeutic application in combating emerging infectious diseases such as COVID-19.展开更多
Background Estrogen deficiency contributes to postmenopausal osteoporosis. Periosteum might be a potential target of estrogen, but the underlying mechanism at gene level is far from being elucidated. The objective of ...Background Estrogen deficiency contributes to postmenopausal osteoporosis. Periosteum might be a potential target of estrogen, but the underlying mechanism at gene level is far from being elucidated. The objective of this study was to investigate the correlation between estrogen and fatty acid synthase (FAS) expression in periosteum. Methods Human periosteum cells were cultured in vitro. Expressed genes in the substrated cDNA library were verified using semi-quantitative PCR and real-time PCR. The expression of FAS in periosteum of ovarectomized (OVX) SD rats was investigated. Results FAS gene was most significantly expressed in the subtracted cDNA library of periosteal cells screened by semi-quantitative PCR. Low FAS expression was verified by real-time PCR in the estrogen exposed human periosteum rather than in the control. The estradiol levels were (20.81±12.62) pg/ml, (19.64±4.35) pg/ml and (13.47±1.84) pg/ml in the sham group, the control, and the OVX group, respectively. The estradiol levels in the OVX group was significantly lower (P=-0.0386). The FAS gene expression in periosteum in the OVX group, sham group, and control group was 3.09±1.97, 1.33±0.47 and 1.51±1.32, respectively. The gene expression in the OVX group was significantly higher (P=0.0372). Conclusion Estrogen modulates FAS gene expression in in vitro human perisoteum as well as in in vivo rat periosteum.展开更多
Dietary macronutrients and micronutrients play important roles in human health.On the other hand,the excessive energy derived from food is stored in the form of triacylglycerol.A variety of dietary and hormonal factor...Dietary macronutrients and micronutrients play important roles in human health.On the other hand,the excessive energy derived from food is stored in the form of triacylglycerol.A variety of dietary and hormonal factors affect this process through the regulation of the activities and expression levels of those key player enzymes involved in fatty acid biosynthesis such as acetyl-CoA carboxylase,fatty acid synthase,fatty acid elongases,and desaturases.As a micronutrient,vitamin A is essential for the health of humans.Recently,vitamin A has been shown to play a role in the regulation of glucose and lipid metabolism.This review summarizes recent research progresses about the roles of vitamin A in fatty acid synthesis.It focuses on the effects of vitamin A on the activities and expression levels of mRNA and proteins of key enzymes for fatty acid synthesis in vitro and in vivo.It appears that vitamin A status and its signaling pathway regulate the expression levels of enzymes involved in fatty acid synthesis.Future research directions are also discussed.展开更多
Twenty-four male Kazak sheep and 30 Xinjiang fine wool sheep at different ages were selected to investigate the development-dependent expression levels of fatty acid synthase (FAS) gene and hormone-sensitive lipase ...Twenty-four male Kazak sheep and 30 Xinjiang fine wool sheep at different ages were selected to investigate the development-dependent expression levels of fatty acid synthase (FAS) gene and hormone-sensitive lipase (HSL) gene in muscle and their effects on the contents of intramuscular fat (IMF). Longissimus dorsal muscle was sampled to measure IMF and total RNA was extracted to determine FAS and HSL mRNA expression levels by real-time PCR. The results showed that: l) The IMF content increased continuously with growth and showed significant differences (P 〈 0.05) between different age groups in male Kazak sheep, but in Xinjiang fine wool sheep there was no such difference observed. Furthermore, the IMF contents in Kazak were much higher (P 〈 0.01) than that of the other breed from day 30 to 90. 2) FAS mRNA expression level was the highest (P 〈 0.05) on day 0 in Kazak sheep and then declined with growth, in the other breed the gene showed a d‘ecline-rise-decline-rise' expression manner as the animals grew. HSL mRNA expression level had a similar model in two breeds, in Kazak sheep it was the highest on day 0 (P 〈 0.05) and in Xinjiang fine wool sheep on day 30 (P 〈 0.01), then both decreased after this term. 3) In male Kazak sheep, FAS and HSL mRNA expression level were both negatively related to IMF content (r= -0.485 (P = 0.02), r= -0.423 (P = 0.05)), and the ratio of FAS/HSL expression exhibited significantly negatively related IMF contents. In male Xinjiang sheep, there were no obvious relationship between FAS and HSL expression and IMF content (P 〉 0.05).展开更多
There is growing evidence that metabolic alterations play an important role in cancer development and progression.The metabolism of cancer cells is reprogrammed in order to support their rapid proliferation.Elevated f...There is growing evidence that metabolic alterations play an important role in cancer development and progression.The metabolism of cancer cells is reprogrammed in order to support their rapid proliferation.Elevated fatty acid synthesis is one of the most important aberrations of cancer cell metabolism.An enhancement of fatty acids synthesis is required both for carcinogenesis and cancer cell survival,as inhibition of key lipogenic enzymes slows down the growth of tumor cells and impairs their survival.Based on the data that serum fatty acid synthase(FASN),also known as oncoantigen 519,is elevated in patients with certain types of cancer,its serum level was proposed as a marker of neoplasia.This review aims to demonstrate the changes in lipid metabolism and other metabolic processes associated with lipid metabolism in pancreatic ductal adenocarcinoma(PDAC),the most common pancreatic neoplasm,characterized by high mortality.We also addressed the influence of some oncogenic factors and tumor suppressors on pancreatic cancer cell metabolism.Additionally the review discusses the potential role of elevated lipid synthesis in diagnosis and treatment of pancreatic cancer.In particular,FASN is a viable candidate for indicator of pathologic state,marker of neoplasia,as well as,pharmacological treatment target in pancreatic cancer.Recent research showed that,in addition to lipogenesis,certain cancer cells can use fatty acids from circulation,derived from diet(chylomicrons),synthesized in liver,or released from adipose tissue for their growth.Thus,the interactions between de novo lipogenesis and uptake of fatty acids from circulation by PDAC cells require further investigation.展开更多
AIM: To evaluate the effect of resveratrol, alone and in combination with fenofibrate, on fructose-induced metabolic genes abnormalities in rats.METHODS: Giving a fructose-enriched diet (FED) to rats for 12 wk was use...AIM: To evaluate the effect of resveratrol, alone and in combination with fenofibrate, on fructose-induced metabolic genes abnormalities in rats.METHODS: Giving a fructose-enriched diet (FED) to rats for 12 wk was used as a model for inducing hepatic dyslipidemia and insulin resistance. Adult male albino rats (150-200 g) were divided into a control group and a FED group which was subdivided into 4 groups, a control FED, fenofibrate (FENO) (100 mg/kg), resveratrol (RES) (70 mg/kg) and combined treatment (FENO + RES) (half the doses). All treatments were given orally from the 9<sup>th</sup> week till the end of experimental period. Body weight, oral glucose tolerance test (OGTT), liver index, glucose, insulin, insulin resistance (HOMA), serum and liver triglycerides (TGs), oxidative stress (liver MDA, GSH and SOD), serum AST, ALT, AST/ALT ratio and tumor necrosis factor-α (TNF-α) were measured. Additionally, hepatic gene expression of suppressor of cytokine signaling-3 (SOCS-3), sterol regulatory element binding protein-1c (SREBP-1c), fatty acid synthase (FAS), malonyl CoA decarboxylase (MCD), transforming growth factor-β1 (TGF-β1) and adipose tissue genes expression of leptin and adiponectin were investigated. Liver sections were taken for histopathological examination and steatosis area were determined.RESULTS: Rats fed FED showed damaged liver, impairment of glucose tolerance, insulin resistance, oxidative stress and dyslipidemia. As for gene expression, there was a change in favor of dyslipidemia and nonalcoholic steatohepatitis (NASH) development. All treatment regimens showed some benefit in reversing the described deviations. Fructose caused deterioration in hepatic gene expression of SOCS-3, SREBP-1c, FAS, MDA and TGF-β1 and in adipose tissue gene expression of leptin and adiponectin. Fructose showed also an increase in body weight, insulin resistance (OGTT, HOMA), serum and liver TGs, hepatic MDA, serum AST, AST/ALT ratio and TNF-α compared to control. All treatments improved SOCS-3, FAS, MCD, TGF-β1 and leptin genes expression while only RES and FENO + RES groups showed an improvement in SREBP-1c expression. Adiponectin gene expression was improved only by RES. A decrease in body weight, HOMA, liver TGs, AST/ALT ratio and TNF-α were observed in all treatment groups. Liver index was increased in FENO and FENO + RES groups. Serum TGs was improved only by FENO treatment. Liver MDA was improved by RES and FENO + RES treatments. FENO + RES group showed an increase in liver GSH content.CONCLUSION: When resveratrol was given with half the dose of fenofibrate it improved NASH-related fructose-induced disturbances in gene expression similar to a full dose of fenofibrate.展开更多
Water retention is critical for physiological homeostasis and survival in terrestrial insects. While deposition of hydrocarbons on insect cuticles as a key measure for water conservation has been extensively investiga...Water retention is critical for physiological homeostasis and survival in terrestrial insects. While deposition of hydrocarbons on insect cuticles as a key measure for water conservation has been extensively investigated, we know little about other mechanisms for preventing water loss in insects. Here, we report two fatty acid synthetic genes that are independent of hydrocarbon production but crucial for water retention in the German cockroach Blattella germanica (L.). First, an integument enriched fatty acid elongase gene (BgElo1) was identified as a critical gene for desiccation resistance in B. germanica;however, knockdown of BgElo1 surprisingly failed to cause a decline in cuticular lipids. In addition, RNA interference (RNAi)-knockdown of an upstream fatty acid synthase gene (BgFas3) showed a similar phenotype, and transmission electron microscopy analysis revealed that BgFas3- or BgElo1-RNAi did not affect cuticle architecture. Bodyweight loss test showed that repression of BgFas3 and BgElo1 significantly increased the weight loss rate, but the difference disappeared when the respiration was closed by freeze killing the cockroaches. A water immersion test was performed, and we found that BgFas3- and BgElo1-RNAi made it difficult for cockroaches to recover from drowning, which was supported by the upregulation of hypoxia-related genes after a 10-h recovery from drowning. Moreover, a dyeing assay with water-soluble Eosin Y showed that this was caused by the entry of water into the respiratory system. Our research suggests that BgFas3 and BgElo1 are required for both inward and outward waterproofing of the respiratory system. This study benefits the understanding of water retention mechanisms in insects.展开更多
The effects and the mechanism of insulin treatment on intracellular lipid metabolism in liver of diabetic rats were evaluated. Type 2 diabetic rats were induced by injecting the streptozotocin (25 mg/kg) and fat ric...The effects and the mechanism of insulin treatment on intracellular lipid metabolism in liver of diabetic rats were evaluated. Type 2 diabetic rats were induced by injecting the streptozotocin (25 mg/kg) and fat rich food. According to the results of oral glucose tolerance test (OGTT) and glucose-induced insulin secretion test (IRT), the rats were divided into two groups: untreated group (UT) and insulin-treated group (IT). Normal rats (NC) served as controls. The treatment with either Humulin N (4-6 U/kg every day), or saline lasted for 4 weeks. Body weight, OGTT, IRT, blood lipids, intracellular lipids in liver, hepatic fatty acid oxidation and the activity of fatty acid synthase (FAS) were detected. The change of liver histology was observed. The insulin sensitivity index (ISI) was applied to assess the status of insulin resistance. The results showed that as compared with NC group, the plasma and hepatic intracellular Triglyceride (TG), total cholesterol (TC) and free fatty acids (FFAs) were increased significantly in UT group (P〈0.05), and lipid droplets could be seen dispersedly in the liver specimens, the hepatic fatty acid oxidation was increased markedly (P〈0.05), while the fatty acid synthase activity decreased (P〈0.05). Insulin treatment resulted in a further accumulation of lipids in liver by 55.7 %, 19.87 % and 22.2 % increase in TG, TC, FFAs respectively. The size of hepatocytes was enlarged and the cells were filled with fat drops. Plasma lipids showed little decrease and still significantly higher than those in NC group after the insulin treatment. Meanwhile, insulin treatment was companied by 20 % decrease in the rate of fatty acid oxidation and 31 % increase in hepatic FAS activity compared to, UT group. It was concluded that treatment with insulin on type 2 diabetic rat increases hepatic intracellular lipid accumulation by inhibiting hepatic fatty acid oxidation and activating FAS.展开更多
Goat milk is widely recognized for its nutritional value.Fatty acid synthase(FAS)is the crucial enzyme of fatty acid de novo synthesis.It plays an important role in the formation of goat milk fat.In this paper,we firs...Goat milk is widely recognized for its nutritional value.Fatty acid synthase(FAS)is the crucial enzyme of fatty acid de novo synthesis.It plays an important role in the formation of goat milk fat.In this paper,we first introduced the molecular regulation process of goat milk fat metabolism based on the structure research of FAS.Secondly,we reviewed some key factors in FAS transcription and post-transcriptional regulation of the goat mammary gland and preliminarily constructed the expression network of the goat mammary gland FAS gene.The purpose of this paper is to systematically introduce the role of FAS in goat milk fat metabolism and to provide a reference for future studies on the mechanism of goat milk fat metabolism.展开更多
A new series compounds, α-methylene-β-carboxy-γ-thiobutyrolactones, have been prepared and their biological evaluation in vitro and in vivo have been described. The structures of these compounds were confirmed by ^...A new series compounds, α-methylene-β-carboxy-γ-thiobutyrolactones, have been prepared and their biological evaluation in vitro and in vivo have been described. The structures of these compounds were confirmed by ^1H NMR and FAB-MS spectra.展开更多
Lipogenesis is often highly upregulated in breast cancer brain metastases to adapt to intracranial low lipid microenvironments.Lipase inhibitors hold therapeutic potential but their intra-tumoral distribution is often...Lipogenesis is often highly upregulated in breast cancer brain metastases to adapt to intracranial low lipid microenvironments.Lipase inhibitors hold therapeutic potential but their intra-tumoral distribution is often blocked by the blood-tumor barrier(BTB).BTB activates its Wnt signaling to maintain barrier properties,e.g.,Mfsd2a-mediated BTB low transcytosis.Here,we reported VCAM-1-targeting nano-wogonin(W@V-NPs)as an adjuvant of nano-orlistat(O@V-NPs)to intensify drug delivery and inhibit lipogenesis of brain metastases.W@V-NPs were proven to be able to inactivate BTB Wnt signaling,downregulate BTB Mfsd2a,accelerate BTB vesicular transport,and enhance tumor accumulation of O@V-NPs.With the ability to specifically kill cancer cells in a lipid-deprived environment with IC_(50) at 48 ng/mL,W@V-NPs plus O@V-NPs inhibited the progression of brain metastases with prolonged survival of model mice.The combination did not induce brain edema,cognitive impairment,and systemic toxicity in healthy mice.Targeting Wnt signaling could safely modulate the BTB to improve drug delivery and metabolic therapy against brain metastases.展开更多
基金supported by the National Natural Science Foundation of China(82222901,82103355,and 82272619)the Innovation and Technology Fund—Guangdong–Hong Kong Technology Cooperation Funding Scheme(GHP/086/21GD)+4 种基金the Research Grants Council(RGC)Theme-based Research Scheme(T12-703/19-R)the Research Grants Council-General Research Fund(14117422 and 14117123)the Health and Medical Research Fund,Hong Kong(08191336 and 07210097)the CUHK Research Startup Fund(FPU/2023/149)the Natural Science Foundation of Fujian Province(2020J01122587).
文摘Carboxyl ester lipase(CEL),a pivotal enzyme involved in lipid metabolism,is recurrently mutated in obese mice.Here,we aimed to elucidate the functional significance,molecular mechanism,and therapeutic potential of CEL in metabolic dysfunction-associated steatohepatitis(MASH).Hepatocyte-specific carboxyl ester lipase gene(Cel)knockout(Cel^(DHEP))and wildtype(WT)littermates were fed with cholinedeficient high-fat diet(CD-HFD)for 16 weeks,or methionine-and choline-deficient diet(MCD)for three weeks to induce MASH.Liquid chromatography–mass spectrometry and co-immunoprecipitation were employed to identify the downstream targets of CEL.CD-HFD/MCD-fed WT mice received intravenous injections of CEL-adeno-associated viral,serotype 8(AAV8)to induce specific overexpression of CEL in the liver.We observed a decrease in CEL protein levels in MASH induced by CD-HFD or MCD in mice.Cel^(DHEP) mice fed with CD-HFD or MCD exhibited pronounced hepatic steatosis,inflammation,lipid peroxidation,and liver injury compared to WT littermates,accompanied by increased hepatic nuclear factor kappa-light-chain-enhancer of activated B cell(NF-jB)activation.Consistently,Cel knockdown in mouse primary hepatocytes and AML12 cells aggravated lipid accumulation and inflammation,whereas CEL overexpression exerted the opposite effect.Mechanistically,CEL directly bound to fatty acid synthase(FASN),resulting in reduced FASN SUMOylation,which in turn promoted FASN degradation through the proteasome pathway.Furthermore,inhibition of FASN ameliorated hepatocyte lipid accumulation and inflammation induced by Cel knockdown in vivo and in vitro.Hepatocyte-specific CEL overexpression using AAV8-Cel significantly mitigated steatohepatitis in mice fed with CD-HFD or MCD.CEL protects against steatohepatitis development by directly interacting with FASN and suppressing its expression for de novo lipogenesis.CEL overexpression confers a therapeutic benefit in steatohepatitis.
基金Supported by the National Natural Science Foundation of China (30771026)Beijing Natural Science Foundation (7082079)
文摘Objective To explore the effects of zinc-0t2-glycoprotein (ZAG) on body weight and body fat in high-fat-diet (HF1))-induced obesity in mice and the possible mechanism. Methods Thirty-six male mice were fed with standard food (SF) (n=9) and HFD (n=27), respectively. Five weeks later, 9 mice fed with HFD were subjected to ZAG expression plasmid DNA transfection by liposome transfection method, and another 9 mice to negative control plasmid transfection. Two weeks later, serum ZAG level in the mice was assayed by Western blot, and the effects of ZAG over-expression on body weight, body fat, serum biochemical indexes, and adipose tissue of obese mice were evaluated. The mRNA expressions of fatty acid synthase (FAS) and hormone sensitive lipase (HSL) in liver tissue were deterlnined by reverse transcription-polymerase chain reaction. Results Serum ZAG level significantly lowered in simple HFD-fed mice in comparison to SF-fed mice (0.51±0.10 AU vs. 0.75±0.07 AU, P〈0.01). Further statistical analysis demonstrated that ZAG level was negatively correlated with body weight (r =-0.56, P〈0.001), epididymal fat mass (r=-0.67, P〈O. 001), percentage of epididymal fat (r= 0.65, P〈0.001), and increased weight (r= 0.57, P〈0.001) in simple SF- and HFD fed mice. ZAG over-expression in obese mice reduced body weight and the percentage of epididyreal fat. Furthermore, FAS mRNA expression decreased (P〈0.01) and HSL mRNA expression increased (P〈0.001) in the liver in ZAG over-expressing mice. Conclusions ZAG is closely related to obesity. Serum ZAG level is inversely correlated with body weight and percentage of body fat. The action of ZAG is associated with reduced FAS expression and increased HSL expression in the liver of obese mice.
基金This work was supported by grants from the National Natural Science Foundation of China(Grant Nos.81572588,81872147)Shantou University Medical College Clinical Trial Uplift Program(Grant No.201423)+4 种基金the Medical Scientific Research Foundation of Guangdong Province,China(Grant No.B2018222)the Traditional Chinese Medicine Research Project from Traditional Chinese Medicine Bureau of Guangdong Province(Grant No.20191182)the Youth Research Grant from Shantou University Medical College Cancer Hospital(Grant No.2018A001,2018A008)the key Project of Science and Technology of Shantou[Grant No.(2018)37]and the Natural Science Foundation of Guangdong Province of China(Grant No.2020A1515010094).
文摘Objective:Our aim was to test the hypothesis that fatty acid synthase(FASN)expression contributes to radioresistance of nasopharyngeal carcinoma(NPC)cells and that inhibiting FASN enhances radiosensitivity.Methods:Targeting FASN using epigallocatechin gallate(EGCG)or RNA interference in NPC cell lines that overexpress endogenous FASN was performed to determine their effects on cellular response to radiationin vitro using MTT and colony formation assays,andin vivo using xenograft animal models.Western blot,immunohistochemistry,real-time PCR arrays,and real-time RT-PCR were used to determine the relationship between FASN and frizzled class receptor 10(FZD10)expression.FZD10 knockdown and overexpression were used to determine its role in mediating FASN function in cellular response to radiation.Immunohistochemical staining was used to determine FASN and FZD10 expressions in human NPC tissues,followed by analysis of their association with the overall survival of patients.Results:FASN knockdown or inhibition significantly enhanced radiosensitivity of NPC cells,bothin vitro andin vivo.There was a positive association between FASN and FZD10 expression in NPC cell lines grown as monolayers or xenografts,as well as human tissues.FASN knockdown reduced FZD10 expression,and rescue of FZD10 expression abolished FASN knockdown-induced enhancement of radiosensitivity.FASN and FZD10 were both negatively associated with overall survival of NPC patients.Conclusions:FASN contributes to radioresistance,possiblyvia FZD10 in NPC cells.Both FZD10 and FASN expressions were associated with poor outcomes of NPC patients.EGCG may sensitize radioresistance by inhibiting FASN and may possibly be developed as a radiosensitizer for better treatment of NPCs.
基金Project supported by the Medicine and Health Research Fund of Zhejiang Province(No.2007B091)the Office of Education of Zhejiang Province,China(No.20070104)
文摘Objective: To determine fatty acid synthase (FAS) expression in human multiple myeloma and verify its potential as a therapeutic target in multiple myeloma. Methods: FAS expression was determined by immunohistochemistry, reverse-transcription polymerase chain reaction (RT-PCR) and immunoblot analysis in bone marrow samples obtained from 27 patients with multiple myeloma (MM patients) and peripheral blood mononuclear cells (PBMCs) obtained from 12 healthy donors In parallel, additional analyses were performed on 2 human multiple myeloma cell lines, U266 and RPM18226. U266 cells were treated with cerulenin at various concentrations (5 to 320 μg/ml) for 24 h, and metabolic activity was measured by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays. Apoptosis was evaluated by dual Annexin V/Pl (propidium iodide) labeling and flow cytometry (FCM) in U266 cells treated with 20 μg/ml cerulenin for 12 h or 24 h. Results: By immunohistochemistry, we found that 19 of 27 bone marrow samples obtained from MM patients expressed significantly high levels of FAS. Similarly, by RT-PCR, 22 of 27 bone marrow samples obtained from MM patients, U266 and RPM18226 showed FAS expression, whereas PBMC samples from 12 healthy donors did not express detectable level of FAS. FAS protein expression was confirmed by immunoblot analysis in 16 of 27 bone marrow samples obtained from MM patients, U266 and RPM18226 cell lines, and no FAS protein expression was detected in PBMC samples from 12 healthy donors. U266 cells were highly sensitive to cerulenin treatment, with a dosage-related effect on metabolic activity, as a measure for cell proliferation. U266 cells treated with 20 μg/ml cerulenin for 12 and 24 h also showed early sign of apoptosis with 56.9% and 69.3% Annexin V^+/Pl cells, and late apoptotic and necrotic cells with 3.2% and 17.6% Annexin V^+/Pl^+ cells. Conclusion: Increased FAS expression existed in multiple myeloma samples and human myeloma cell lines. Cerulenin greatly inhibited metabolic activity/cell proliferation of U266 cells and induced apoptosis, suggesting that FAS is an effective target for pharmacological therapy in human multiple myeloma.
文摘Fatty acid synthase (FAS) attracts more and more attention recently as a potential target for metabolic syndrome,such as cancer, obesity, diabetes and cerebrovascular disease. FAS inhibitors are widely existed in plants, consisting of diversiform compounds. These inhibitors exist not only in herbs also in many plant foods, such as teas, allium vegetables and some fruits. These effective components include gallated catechins, theaflavins,flavonoids, condensed and hydrolysable tannins, thioethers,pentacyclic triterpenes, stilbene derivatives, etc, and they target at the different domains of FAS, showing different inhibitory mechanisms. Interestingly, these FAS inhibitor-contained herbs and plant foods and their effective components are commonly related to the prevention of metabolic syndromes including fatreducing and depression of cancer. From biochemical angle,FAS can control the balance between energy provision and fat production. Some studies have shown that the effects of those effective components in plants on metabolic syndromes are mediated by inhibiting FAS. This suggests that FAS plays a critical role in the regulation of energy metabolism, and the FAS inhibitors from plants have significant potential application value in the treatment and prevention of metabolic syndromes.
文摘Background: The liver is the corner stone in lipid metabolism, free fatty acid uptake, synthesizing, storing and exporting lipids;non-alcoholic fatty liver disease (NAFLD) develops if there is any interruption or derangements in lipid metabolim. Fatty acid synthase (FAS) is the major enzyme in lipogenesis, and its circulating level is a bi-omarker of metabolically demanding human diseases. Aim of the Work: To evaluate the level of circulating FAS in NAFLD patients and to correlate it to serum lipid pa-rameters. Materials and Methods: The study included forty NAFLD patients and forty age and sex-matched healthy subjects as controls. Results: FAS levels were signifi-cantly higher in NAFLD patients compared to their level in the controls (P < 0.05). Ad-ditionally, a positive correlation was found between the levels of FAS and BMI (r = 0.57), and between FAS levels and triglycerides and low density lipoprotein cholesterol levels in NAFLD patients (r = 0.79 & 0.53, respectively). Conclusion: Elevated levels of circulating FAS can be considered as a biomarker of fatty liver disease.
基金supported by grants from the Jilin Provincial Science and Technology Department(No.20190303146SF)Jilin Provincial Department of Finance Project(No.JLSWSRCZX2020-0023).
文摘Fatty acid synthase(FASN)is an essential molecule in lipid metabolic pathways,which are crucial for cancer-related studies.Recent studies have focused on a comprehensive understanding of the novel and important regulatory effects of FASN on malignant biological behavior and immune-cell infiltration,which are closely related to tumor occurrence and development,immune escape,and immune response.FASN-targeting antitumor treatment strategies are being developed.Therefore,in this review,we focused on the effects of FASN on tumor and immune-cell infiltration and reviewed the progress of related antitumor therapy development.
基金the Jiangsu Agriculture Science and Technology Innovation Fund(grant no.CX(20)1004)the Earmarked Fund for China Agriculture Research System(grant no.CARS-01).
文摘Fatty acid synthase (FAS) is a multifunctional enzyme that plays an important role in the formation of fatty acids. The fatty acids take part in many processes, such as cell signaling and energy metabolism, and in insects they are important in both cuticular hydrocarbon (CHC) formation and reproduction. Here we characterized the sequence structure and function of an FAS from the small brown planthopper (SBPH), Laodelphax striatellus. The full-length open reading frame (ORF) sequence of LsFAS1 was 7122 bp, encoding a predicted protein of 2373 amino acid residues. There were 7 functional domains in the LsFAS1 protein sequence. Gene expression screening by real-time quantitative polymerase chain reaction (RT-qPCR) showed that LsFAS1 was expressed in all developmental stages. Relative expression was highest at the 4th-instar and female adult stages. Among different tissues, the expression level of LsFAS1 in the ovary was the highest. Phylogenetic analysis showed that LsFAS1 clustered in a clade with 2 FASs from Nilaparvata lugens. Furthermore, these 3 FASs are related to cockroach BgFAS and locust LmFAS. After RNA interference-mediated knock-down, most treated insects died at eclosion. In addition, the lifespan of dsFAS1-treated female adults was shorter than that of the dsGFP-injected control, and offspring production decreased. Also, the expression of vitellogenin (Vg) and vitellogenin receptor (VgR) genes decreased. Virgin females dissected at days 2 and 4 post-eclosion showed many matured oocytes in planthoppers treated with dsGFP but not with dsFAS1. These data highlight the importance of LsFAS1 in SBPH, including a role in reproduction.
基金Supported by Capital Health Development Research Project:Assessment of the Efficacy of BIEJIAJIANWAN Pill in Patients with Chronic Hepatitis B Cirrhosis/Fibrosis (CD2018-2-2173)Beijing Municipal Administration of Hospitals Incubating Program:Clinical Observation on the Treatment of Nonalcoholic Fatty Liver Disease by Invigorating the Spleen,Soothing the Liver,Activating Blood Circulation and Resolving Phlegm (PZ2019011)。
文摘OBJECTIVE: To study the mechanism of Dangfei Liganning capsule(当飞利肝宁胶囊) in the treatment of rats with metabolic associated fatty liver disease(MAFLD). METHODS: Totally 48 specific pathogen free SpragueDawley male rats were randomly divided into normal Group, model group, Dangfei Liganning high, moderate, and low-dose groups and Essentiale group which were fed with high fat diet for 8 weeks, and gavage and molding were carried out simultaneously. Dangfei Liganning high, middle and low-dose group were given 0.27, 0.135 and 0.0675 g·kg-1·d-1 respectively by gavage, Essentiale group was given 0.123 g·kg-1·d-1 by gavage, the same amount of distilled water was given by gavage in the normal group and the model group. The rats were weighed at the 0th week, 2nd week, 4th week, 6th week and 8th weekend respectively. The rats were sacrificed at the end of the 8th week. Serum levels of alanine aminotransferase(ALT), alanine aminotransferase(AST),triglyceride(TG), total cholesterol(CHO), high-density lipoprotein cholesterol(HDL-C), low-density lipoprotein (LDL-C), total protein(TP), albumin(Alb), globulin(GLB), total bilirubin(TBIL), direct bilirubin(DBIL), tumor necrosis factor-α(TNF-α) and interleukin-6(IL-6) were measured. The levels of liver tumor necrosis factor-α(TNF-α), interleukin-6(IL-6) and liver pathology [hematoxylin and eosin(HE) staining, oil red O staining] were detected. The expression levels of liver X receptor α(LXRα), steroid regulatory element binding protein-1(SREBP-1) and fatty acid synthase(FAS) were detected by immunohistochemistry, Western blot and reverse transcription-polymerase chain reaction reverse transcription-polymerase chain reaction. RESULTS: From the beginning to the 8th week, the growth rate of body weight in the Dangfei Liganning highdose group was slower than all other groups. There was no significant difference in ALB level in all groups(P > 0.05). Compared with the model group, the levels of ALT, AST, LDL-C, TG, CHO, TP, GLB, TBIL, DBIL, IL-6, TNF-α were significantly decreased and HDL-C were significantly increased in Dangfei Liganning high-dose group(P < 0.01, < 0.05). HE and oil red O staining showed that the fatty lesions in rat liver were alleviated, while the expressions of LXRα, SREBP-1, FAS m RNA and protein were significantly decreased(P < 0.01). CONCLUSIONS: Dangfei Liganning capsule can slow down the increase of body weight of MAFLD rats, reduce the levels of transaminase, Lipid and inflammatory factors in MAFLD rats, promote the synthesis of liver protein and bile metabolism, and improve the liver fatty lesion of MAFLD rats, among which the Dangfei Liganning highdose group is more effective. The mechanism of action may be through blocking LXR-SREBP-1-FAS signal pathway.
基金supported by the Research Funds from US National Institute of Health funds (AI069120, AI158154, and AI149718)the UCLA AIDS Institute and UCLA David Geffen School of Medicine-Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research Award ProgramTumor Immunology Training Grant (T32CA912036A1, USA)
文摘SARS-CoV-2 is an emerging viral pathogen and a major global public health challenge since December of 2019, with limited effective treatments throughout the pandemic.As part of the innate immune response to viral infection, type Ⅰ interferons(IFN-Ⅰ) trigger a signaling cascade that culminates in the activation of hundreds of genes, known as interferon stimulated genes(ISGs), that collectively foster an antiviral state.We report here the identification of a group of type Ⅰ interferon suppressed genes,including fatty acid synthase(FASN), which are involved in lipid metabolism.Overexpression of FASN or the addition of its downstream product, palmitate, increased viral infection while knockout or knockdown of FASN reduced infection.More importantly, pharmacological inhibitors of FASN effectively blocked infections with a broad range of viruses, including SARS-CoV-2 and its variants of concern.Thus, our studies not only suggest that downregulation of metabolic genes may present an antiviral strategy by type Ⅰ interferon, but they also introduce the potential for FASN inhibitors to have a therapeutic application in combating emerging infectious diseases such as COVID-19.
文摘Background Estrogen deficiency contributes to postmenopausal osteoporosis. Periosteum might be a potential target of estrogen, but the underlying mechanism at gene level is far from being elucidated. The objective of this study was to investigate the correlation between estrogen and fatty acid synthase (FAS) expression in periosteum. Methods Human periosteum cells were cultured in vitro. Expressed genes in the substrated cDNA library were verified using semi-quantitative PCR and real-time PCR. The expression of FAS in periosteum of ovarectomized (OVX) SD rats was investigated. Results FAS gene was most significantly expressed in the subtracted cDNA library of periosteal cells screened by semi-quantitative PCR. Low FAS expression was verified by real-time PCR in the estrogen exposed human periosteum rather than in the control. The estradiol levels were (20.81±12.62) pg/ml, (19.64±4.35) pg/ml and (13.47±1.84) pg/ml in the sham group, the control, and the OVX group, respectively. The estradiol levels in the OVX group was significantly lower (P=-0.0386). The FAS gene expression in periosteum in the OVX group, sham group, and control group was 3.09±1.97, 1.33±0.47 and 1.51±1.32, respectively. The gene expression in the OVX group was significantly higher (P=0.0372). Conclusion Estrogen modulates FAS gene expression in in vitro human perisoteum as well as in in vivo rat periosteum.
基金Supported by the Financial Support of the Overseas Training Program for Outstanding Young and Middle-Aged Teachers in Universities in Jiangsu Province,China(to Yang FC).
文摘Dietary macronutrients and micronutrients play important roles in human health.On the other hand,the excessive energy derived from food is stored in the form of triacylglycerol.A variety of dietary and hormonal factors affect this process through the regulation of the activities and expression levels of those key player enzymes involved in fatty acid biosynthesis such as acetyl-CoA carboxylase,fatty acid synthase,fatty acid elongases,and desaturases.As a micronutrient,vitamin A is essential for the health of humans.Recently,vitamin A has been shown to play a role in the regulation of glucose and lipid metabolism.This review summarizes recent research progresses about the roles of vitamin A in fatty acid synthesis.It focuses on the effects of vitamin A on the activities and expression levels of mRNA and proteins of key enzymes for fatty acid synthesis in vitro and in vivo.It appears that vitamin A status and its signaling pathway regulate the expression levels of enzymes involved in fatty acid synthesis.Future research directions are also discussed.
基金National Natural Sciences Foundation of China (No. 30671503)Youth Science and Technology Innovation Foundation (No. KJ05011)SRT Program (No. 0605A09) of Nanjing Agriculture University.
文摘Twenty-four male Kazak sheep and 30 Xinjiang fine wool sheep at different ages were selected to investigate the development-dependent expression levels of fatty acid synthase (FAS) gene and hormone-sensitive lipase (HSL) gene in muscle and their effects on the contents of intramuscular fat (IMF). Longissimus dorsal muscle was sampled to measure IMF and total RNA was extracted to determine FAS and HSL mRNA expression levels by real-time PCR. The results showed that: l) The IMF content increased continuously with growth and showed significant differences (P 〈 0.05) between different age groups in male Kazak sheep, but in Xinjiang fine wool sheep there was no such difference observed. Furthermore, the IMF contents in Kazak were much higher (P 〈 0.01) than that of the other breed from day 30 to 90. 2) FAS mRNA expression level was the highest (P 〈 0.05) on day 0 in Kazak sheep and then declined with growth, in the other breed the gene showed a d‘ecline-rise-decline-rise' expression manner as the animals grew. HSL mRNA expression level had a similar model in two breeds, in Kazak sheep it was the highest on day 0 (P 〈 0.05) and in Xinjiang fine wool sheep on day 30 (P 〈 0.01), then both decreased after this term. 3) In male Kazak sheep, FAS and HSL mRNA expression level were both negatively related to IMF content (r= -0.485 (P = 0.02), r= -0.423 (P = 0.05)), and the ratio of FAS/HSL expression exhibited significantly negatively related IMF contents. In male Xinjiang sheep, there were no obvious relationship between FAS and HSL expression and IMF content (P 〉 0.05).
基金Supported by Medical University of Gdansk Grants ST-41,ST-40
文摘There is growing evidence that metabolic alterations play an important role in cancer development and progression.The metabolism of cancer cells is reprogrammed in order to support their rapid proliferation.Elevated fatty acid synthesis is one of the most important aberrations of cancer cell metabolism.An enhancement of fatty acids synthesis is required both for carcinogenesis and cancer cell survival,as inhibition of key lipogenic enzymes slows down the growth of tumor cells and impairs their survival.Based on the data that serum fatty acid synthase(FASN),also known as oncoantigen 519,is elevated in patients with certain types of cancer,its serum level was proposed as a marker of neoplasia.This review aims to demonstrate the changes in lipid metabolism and other metabolic processes associated with lipid metabolism in pancreatic ductal adenocarcinoma(PDAC),the most common pancreatic neoplasm,characterized by high mortality.We also addressed the influence of some oncogenic factors and tumor suppressors on pancreatic cancer cell metabolism.Additionally the review discusses the potential role of elevated lipid synthesis in diagnosis and treatment of pancreatic cancer.In particular,FASN is a viable candidate for indicator of pathologic state,marker of neoplasia,as well as,pharmacological treatment target in pancreatic cancer.Recent research showed that,in addition to lipogenesis,certain cancer cells can use fatty acids from circulation,derived from diet(chylomicrons),synthesized in liver,or released from adipose tissue for their growth.Thus,the interactions between de novo lipogenesis and uptake of fatty acids from circulation by PDAC cells require further investigation.
文摘AIM: To evaluate the effect of resveratrol, alone and in combination with fenofibrate, on fructose-induced metabolic genes abnormalities in rats.METHODS: Giving a fructose-enriched diet (FED) to rats for 12 wk was used as a model for inducing hepatic dyslipidemia and insulin resistance. Adult male albino rats (150-200 g) were divided into a control group and a FED group which was subdivided into 4 groups, a control FED, fenofibrate (FENO) (100 mg/kg), resveratrol (RES) (70 mg/kg) and combined treatment (FENO + RES) (half the doses). All treatments were given orally from the 9<sup>th</sup> week till the end of experimental period. Body weight, oral glucose tolerance test (OGTT), liver index, glucose, insulin, insulin resistance (HOMA), serum and liver triglycerides (TGs), oxidative stress (liver MDA, GSH and SOD), serum AST, ALT, AST/ALT ratio and tumor necrosis factor-α (TNF-α) were measured. Additionally, hepatic gene expression of suppressor of cytokine signaling-3 (SOCS-3), sterol regulatory element binding protein-1c (SREBP-1c), fatty acid synthase (FAS), malonyl CoA decarboxylase (MCD), transforming growth factor-β1 (TGF-β1) and adipose tissue genes expression of leptin and adiponectin were investigated. Liver sections were taken for histopathological examination and steatosis area were determined.RESULTS: Rats fed FED showed damaged liver, impairment of glucose tolerance, insulin resistance, oxidative stress and dyslipidemia. As for gene expression, there was a change in favor of dyslipidemia and nonalcoholic steatohepatitis (NASH) development. All treatment regimens showed some benefit in reversing the described deviations. Fructose caused deterioration in hepatic gene expression of SOCS-3, SREBP-1c, FAS, MDA and TGF-β1 and in adipose tissue gene expression of leptin and adiponectin. Fructose showed also an increase in body weight, insulin resistance (OGTT, HOMA), serum and liver TGs, hepatic MDA, serum AST, AST/ALT ratio and TNF-α compared to control. All treatments improved SOCS-3, FAS, MCD, TGF-β1 and leptin genes expression while only RES and FENO + RES groups showed an improvement in SREBP-1c expression. Adiponectin gene expression was improved only by RES. A decrease in body weight, HOMA, liver TGs, AST/ALT ratio and TNF-α were observed in all treatment groups. Liver index was increased in FENO and FENO + RES groups. Serum TGs was improved only by FENO treatment. Liver MDA was improved by RES and FENO + RES treatments. FENO + RES group showed an increase in liver GSH content.CONCLUSION: When resveratrol was given with half the dose of fenofibrate it improved NASH-related fructose-induced disturbances in gene expression similar to a full dose of fenofibrate.
基金This work was supported by the National Natural Science Foundation of China(Grant No.31772533).
文摘Water retention is critical for physiological homeostasis and survival in terrestrial insects. While deposition of hydrocarbons on insect cuticles as a key measure for water conservation has been extensively investigated, we know little about other mechanisms for preventing water loss in insects. Here, we report two fatty acid synthetic genes that are independent of hydrocarbon production but crucial for water retention in the German cockroach Blattella germanica (L.). First, an integument enriched fatty acid elongase gene (BgElo1) was identified as a critical gene for desiccation resistance in B. germanica;however, knockdown of BgElo1 surprisingly failed to cause a decline in cuticular lipids. In addition, RNA interference (RNAi)-knockdown of an upstream fatty acid synthase gene (BgFas3) showed a similar phenotype, and transmission electron microscopy analysis revealed that BgFas3- or BgElo1-RNAi did not affect cuticle architecture. Bodyweight loss test showed that repression of BgFas3 and BgElo1 significantly increased the weight loss rate, but the difference disappeared when the respiration was closed by freeze killing the cockroaches. A water immersion test was performed, and we found that BgFas3- and BgElo1-RNAi made it difficult for cockroaches to recover from drowning, which was supported by the upregulation of hypoxia-related genes after a 10-h recovery from drowning. Moreover, a dyeing assay with water-soluble Eosin Y showed that this was caused by the entry of water into the respiratory system. Our research suggests that BgFas3 and BgElo1 are required for both inward and outward waterproofing of the respiratory system. This study benefits the understanding of water retention mechanisms in insects.
文摘The effects and the mechanism of insulin treatment on intracellular lipid metabolism in liver of diabetic rats were evaluated. Type 2 diabetic rats were induced by injecting the streptozotocin (25 mg/kg) and fat rich food. According to the results of oral glucose tolerance test (OGTT) and glucose-induced insulin secretion test (IRT), the rats were divided into two groups: untreated group (UT) and insulin-treated group (IT). Normal rats (NC) served as controls. The treatment with either Humulin N (4-6 U/kg every day), or saline lasted for 4 weeks. Body weight, OGTT, IRT, blood lipids, intracellular lipids in liver, hepatic fatty acid oxidation and the activity of fatty acid synthase (FAS) were detected. The change of liver histology was observed. The insulin sensitivity index (ISI) was applied to assess the status of insulin resistance. The results showed that as compared with NC group, the plasma and hepatic intracellular Triglyceride (TG), total cholesterol (TC) and free fatty acids (FFAs) were increased significantly in UT group (P〈0.05), and lipid droplets could be seen dispersedly in the liver specimens, the hepatic fatty acid oxidation was increased markedly (P〈0.05), while the fatty acid synthase activity decreased (P〈0.05). Insulin treatment resulted in a further accumulation of lipids in liver by 55.7 %, 19.87 % and 22.2 % increase in TG, TC, FFAs respectively. The size of hepatocytes was enlarged and the cells were filled with fat drops. Plasma lipids showed little decrease and still significantly higher than those in NC group after the insulin treatment. Meanwhile, insulin treatment was companied by 20 % decrease in the rate of fatty acid oxidation and 31 % increase in hepatic FAS activity compared to, UT group. It was concluded that treatment with insulin on type 2 diabetic rat increases hepatic intracellular lipid accumulation by inhibiting hepatic fatty acid oxidation and activating FAS.
基金supported by the National Natural Science Foundation of China(Grant Nos.31802035,31872324 and 31601915)the China Postdoctoral Science Foundation(Grant Nos.2017M621841 and 2019T120472).
文摘Goat milk is widely recognized for its nutritional value.Fatty acid synthase(FAS)is the crucial enzyme of fatty acid de novo synthesis.It plays an important role in the formation of goat milk fat.In this paper,we first introduced the molecular regulation process of goat milk fat metabolism based on the structure research of FAS.Secondly,we reviewed some key factors in FAS transcription and post-transcriptional regulation of the goat mammary gland and preliminarily constructed the expression network of the goat mammary gland FAS gene.The purpose of this paper is to systematically introduce the role of FAS in goat milk fat metabolism and to provide a reference for future studies on the mechanism of goat milk fat metabolism.
基金supported by the National High Technology Research and Development Program of China(863 project:2003AA235010)the National Basic Research Program of China(973 project:2004CB518908).
文摘A new series compounds, α-methylene-β-carboxy-γ-thiobutyrolactones, have been prepared and their biological evaluation in vitro and in vivo have been described. The structures of these compounds were confirmed by ^1H NMR and FAB-MS spectra.
基金supported by the National Natural Science Foundation of China(32171381 and 81973254)the National Innovation of Science and Technology-2030(Program of Brain Science and Brain-Inspired Intelligence Technology)grant(2021ZD0204004,China)+1 种基金Jiangsu Key Laboratory of Neuropsychiatric Diseases Research Major Program(No.ZZ2101,China)the Priority Academic Program Development of the Jiangsu Higher Education Institutes(PAPD),Suzhou International Joint Laboratory for Diagnosis and Treatment of Brain Diseases,and the Suzhou Science and Technology Development Project(No.SJC2022021,China).
文摘Lipogenesis is often highly upregulated in breast cancer brain metastases to adapt to intracranial low lipid microenvironments.Lipase inhibitors hold therapeutic potential but their intra-tumoral distribution is often blocked by the blood-tumor barrier(BTB).BTB activates its Wnt signaling to maintain barrier properties,e.g.,Mfsd2a-mediated BTB low transcytosis.Here,we reported VCAM-1-targeting nano-wogonin(W@V-NPs)as an adjuvant of nano-orlistat(O@V-NPs)to intensify drug delivery and inhibit lipogenesis of brain metastases.W@V-NPs were proven to be able to inactivate BTB Wnt signaling,downregulate BTB Mfsd2a,accelerate BTB vesicular transport,and enhance tumor accumulation of O@V-NPs.With the ability to specifically kill cancer cells in a lipid-deprived environment with IC_(50) at 48 ng/mL,W@V-NPs plus O@V-NPs inhibited the progression of brain metastases with prolonged survival of model mice.The combination did not induce brain edema,cognitive impairment,and systemic toxicity in healthy mice.Targeting Wnt signaling could safely modulate the BTB to improve drug delivery and metabolic therapy against brain metastases.