Blockchain with these characteristics of decentralized structure, transparent and credible, time-series and immutability, has been considering as a promising technology. Consensus algorithm as one of the core techniqu...Blockchain with these characteristics of decentralized structure, transparent and credible, time-series and immutability, has been considering as a promising technology. Consensus algorithm as one of the core techniques of blockchain directly affects the scalability of blockchain systems. Existing probabilistic finality blockchain consensus algorithms such as PoW, PoS, suffer from power consumptions and low efficiency;while absolute finality blockchain consensus algorithms such as PBFT, HoneyBadgerBFT, could not meet the scalability requirement in a largescale network. In this paper, we propose a novel optimized practical Byzantine fault tolerance consensus algorithm based on EigenTrust model, namely T-PBFT, which is a multi-stage consensus algorithm. It evaluates node trust by the transactions between nodes so that the high quality of nodes in the network will be selected to construct a consensus group. To reduce the probability of view change, we propose to replace a single primary node with a primary group. By group signature and mutual supervision, we can enhance the robustness of the primary group further. Finally, we analyze T-PBFT and compare it with the other Byzantine fault tolerant consensus algorithms. Theoretical analysis shows that our T-PBFT can optimize the Byzantine fault-tolerant rate,reduce the probability of view change and communication complexity.展开更多
The defects of an OLED-based display,mainly electrical shorts,cause pixels to stay dark,decrease the brightness of a panel,severely influence the display uniformity,and also consume a considerable amount of power. In ...The defects of an OLED-based display,mainly electrical shorts,cause pixels to stay dark,decrease the brightness of a panel,severely influence the display uniformity,and also consume a considerable amount of power. In this paper, for AM-OLEDs, a novel circuit employing p-type low-temperature poly-Si thin-film transistors is introduced to offer fault-tolerant capabilities for such defects. The results show that this circuit can save significant power and maintain the luminance of the pixel without changing the driving current.展开更多
Fault tolerance in microprocessor systems has become a popular topic of architecture research. Much work has been done at different levels to accomplish reliability against soft errors, and some fault tolerance archit...Fault tolerance in microprocessor systems has become a popular topic of architecture research. Much work has been done at different levels to accomplish reliability against soft errors, and some fault tolerance architectures have been proposed. But little attention is paid to the thread level superscalar fault tolerance. This letter introduces microthread concept into superscalar processor fault tolerance domain, and puts forward a novel fault tolerance architecture, namely, MicroThread Based (MTB) coarse grained transient fault tolerance superscalar processor architecture, then discusses some detailed implementations.展开更多
This paper proposes a policy driven and multi-agent based model to enhance the fault tolerance and recovery capabilities of Web services in distributed environment. The evaluation function of fault specifications and ...This paper proposes a policy driven and multi-agent based model to enhance the fault tolerance and recovery capabilities of Web services in distributed environment. The evaluation function of fault specifications and the corresponding handling mechanisms of the services are both defined in policies, which are expressed in XML. During the implementation of the services,the occurrences of faults are monitored by the service monitor agent through the local knowledge on the faults. Such local knowledge is dynamically generated by the service policy agent through querying and parsing the service policies from the service policies repository. When the fault occurs, the service process agent will focus on the process of fault handling and service recovery, which will be directed with the actions defined in the policies upon the specific conditions. Such a policy driven and multi-agent based fault handling approach can address the issues of flexibility, automation and availability.展开更多
In a smart grid, a huge amount of data is collected for various applications, such as load monitoring and demand response. These data are used for analyzing the power state and formulating the optimal dispatching stra...In a smart grid, a huge amount of data is collected for various applications, such as load monitoring and demand response. These data are used for analyzing the power state and formulating the optimal dispatching strategy. However, these big energy data in terms of volume, velocity and variety raise concern over consumers' privacy. For instance, in order to optimize energy utilization and support demand response, numerous smart meters are installed at a consumer's home to collect energy consumption data at a fine granularity, but these fine-grained data may contain information on the appliances and thus the consumer's behaviors at home. In this paper, we propose a privacy-preserving data aggregation scheme based on secret sharing with fault tolerance in a smart grid, which ensures that the control center obtains the integrated data without compromising privacy. Meanwhile, we also consider fault tolerance and resistance to differential attack during the data aggregation. Finally, we perform a security analysis and performance evaluation of our scheme in comparison with the other similar schemes. The analysis shows that our scheme can meet the security requirement, and it also shows better performance than other popular methods.展开更多
With the rapid development of blockchain technology,more and more people are paying attention to the consensus mechanism of blockchain.Practical Byzantine Fault Tolerance(PBFT),as the first efficient consensus algorit...With the rapid development of blockchain technology,more and more people are paying attention to the consensus mechanism of blockchain.Practical Byzantine Fault Tolerance(PBFT),as the first efficient consensus algorithm solving the Byzantine Generals Problem,plays an important role.But PBFT also has its problems.First,it runs in a completely closed environment,and any node can't join or exit without rebooting the system.Second,the communication complexity in the network is as high as O(n2),which makes the algorithm only applicable to small-scale networks.For these problems,this paper proposes an Optimized consensus algorithm,Excellent Practical Byzantine Fault Tolerance(EPBFT),in which nodes can dynamically participate in the network by combining a view change protocol with a node's add or quit request.Besides,in each round of consensus,the algorithm will randomly select a coordination node.Through the cooperation of the primary and the coordination node,we reduce the network communication complexity to O(n).Besides,we have added a reputation credit mechanism and a wrong node removal protocol to the algorithm for clearing the faulty nodes in time and improving the robustness of the system.Finally,we design experiments to compare the performance of the PBFT and EPBFT algorithms.Through experimental,we found that compared with the PBFT algorithm,the EPBFT algorithm has a lower delay,communication complexity,better scalability,and more practical.展开更多
With the progress of the semiconductor industry, resistive memories, especially the memristor, have drawn increasing attention. The resistive memory based on memrsitor has not been commercialized mainly because of dat...With the progress of the semiconductor industry, resistive memories, especially the memristor, have drawn increasing attention. The resistive memory based on memrsitor has not been commercialized mainly because of data error. Currently, there are more studies focused on fault tolerance of resistive memory. This paper studies the resistive switching mechanism which may have time-varying characteristics. Resistive switching mechanism is analyzed and its respective circuit model is established based on the memristor Spice model.展开更多
As the scale of power networks has expanded,the demand for multi-service transmission has gradually increased.The emergence of WiFi6 has improved the transmission efficiency and resource utilization of wireless networ...As the scale of power networks has expanded,the demand for multi-service transmission has gradually increased.The emergence of WiFi6 has improved the transmission efficiency and resource utilization of wireless networks.However,it still cannot cope with situations such as wireless access point(AP)failure.To solve this problem,this paper combines orthogonal fre-quency division multiple access(OFDMA)technology and dynamic channel optimization technology to design a fault-tolerant WiFi6 dynamic resource optimization method for achieving high quality wireless services in a wirelessly covered network even when an AP fails.First,under the premise of AP layout with strong coverage over the whole area,a faulty AP determination method based on beacon frames(BF)is designed.Then,the maximum signal-to-interference ratio(SINR)is used as the principle to select AP reconnection for the affected users.Finally,this paper designs a dynamic access selection model(DASM)for service frames of power Internet of Things(IoTs)and a schedul-ing access optimization model(SAO-MF)based on multi-frame transmission,which enables access optimization for differentiated services.For the above mechanisms,a heuristic resource allocation algorithm is proposed in SAO-MF.Simulation results show that the method can reduce the delay by 15%and improve the throughput by 55%,ensuring high-quality communication in power wireless networks.展开更多
Failure is a systemic error that affects overall system performance and may eventually crash across the entire configuration.In Real-Time Systems(RTS),deadline is the key to successful completion of the program.If tas...Failure is a systemic error that affects overall system performance and may eventually crash across the entire configuration.In Real-Time Systems(RTS),deadline is the key to successful completion of the program.If tasks effectively meet the deadline,it means the system is working in pristine order.However,missing the deadline means a systemic fault due to which the system can crash(hard RTS)or degrade inclusive performance(soft RTS).To fine-tune the RTS,tolerance is the critical issue and must be handled with extreme care.This article explains the context of fault tolerance with improvised Joint EDF-RMS algorithm in RTS.The backup method has been derived to prevent the system from being recursively migrating the same task.If any task migrates three times,this migrated task will get shifted to the backup queue.This backup queue assigns the task to a backup processor and is destined for final execution.For performance evaluation purposes,a relative graph between fault and failure rates,failure and total processor utilization along with other averages have been evaluated.Furthermore,these archived results are compared with fault-tolerant Earliest Deadline First(EDF)and Rate Monotonic Scheduling(RMS)algorithms independently in relatively similar conditions.These comparisons show better performance against overloading conditions.展开更多
In Mobile Ad Hoc Networks(MANET),Quality of Service(QoS)is an important factor that must be analysed for the showing the better performance.The Node Quality-based Clustering Algorithm using Fuzzy-Fruit Fly Optimiza-ti...In Mobile Ad Hoc Networks(MANET),Quality of Service(QoS)is an important factor that must be analysed for the showing the better performance.The Node Quality-based Clustering Algorithm using Fuzzy-Fruit Fly Optimiza-tion for Cluster Head and Gateway Selection(NQCAFFFOCHGS)has the best network performance because it uses the Improved Weighted Clustering Algo-rithm(IWCA)to cluster the network and the FFO algorithm,which uses fuzzy-based network metrics to select the best CH and entryway.However,the major drawback of the fuzzy system was to appropriately select the membership func-tions.Also,the network metrics related to the path or link connectivity were not considered to effectively choose the CH and gateway.When learning fuzzy sets,this algorithm employs a new Continuous Action-set Learning Automata(CALA)approach that correctly modifies and chooses the fuzzy membership functions.Despite the fact that it extends the network’s lifespan,it does not assist in the detection of defective nodes in the routing route.Because of this,a new Fault Tolerance(NQCAEFFFOCHGS-FT)mechanism based on the Distributed Connectivity Restoration(DCR)mechanism is proposed,which allows the net-work to self-heal as a consequence of the algorithm’s self-healing capacity.Because of the way this method is designed,node failures may be utilised to rebuild the network topology via the use of cascaded node moves.Founded on the fractional network information and topologic overhead related with each node,the DCR is suggested as an alternative to the DCR.When compared to the NQCAFFFOCHGS algorithm,the recreation results display that the proposed NQCAEFFFOCHGS-FT algorithm improves network performance in terms of end-to-end delay,energy consumption,Packet Loss Ratio(PLR),Normalized Routing Overhead(NRO),and Balanced Load Index(BLI).展开更多
Delay Tolerant Network (DTN) is a class of networks that experience frequent and long-duration partitions due to sparse distribution of nodes. It has a broad prospect to new network applications for a better seal...Delay Tolerant Network (DTN) is a class of networks that experience frequent and long-duration partitions due to sparse distribution of nodes. It has a broad prospect to new network applications for a better sealability, fault-tolerant, and high performance. In DTNs, path failure occurs frequently, so message transfer is not reliable. Sometimes it is required to change routing even in a very short period, resulting in transmission delay and reception delay. However, some well-known assumptions of traditional networks are no longer true in DTNs. In this paper, we study the problem of path failures in DTNs. The path failure process in DTNs is described when the path appears completely normal, completely failed and partially failed. Traditional approaches based on using precisely known network dynamics have not accounted for message losses. A new fault tolerant scheme to generate redundancy is to use erasure coding and full replication. This can greatly decrease the path failure rate. At last, a traffic DTN model is analyzed. Results reveal the superiority of our scheme in comparison to other present schemes.展开更多
Smart grid(SG)brings convenience to users while facing great chal-lenges in protecting personal private data.Data aggregation plays a key role in protecting personal privacy by aggregating all personal data into a sin...Smart grid(SG)brings convenience to users while facing great chal-lenges in protecting personal private data.Data aggregation plays a key role in protecting personal privacy by aggregating all personal data into a single value,preventing the leakage of personal data while ensuring its availability.Recently,a flexible subset data aggregation(FSDA)scheme based on the Pail-lier homomorphic encryption was first proposed by Zhang et al.Their scheme can dynamically adjust the size of each subset and obtain the aggregated data in the corresponding subset.In this paper,firstly,an efficient attack with both theorems proving and experimentative verification is launched.We find that in a specific scenario where the encrypted data constructed by a smart meter(SM)exceeds the size of one Paillier ciphertext,the malicious fog node(FN)may use the received ciphertext to obtain the reading of the SM.Secondly,to avoid the possibility of privacy disclosure under certain circumstances,additional hash functions are added to the individual encryption process.In addition,fault tolerance is very important to aggregation schemes in practical scenarios.In most of the current schemes,once some SMs failed,then they will not work.As far as we know,there is no multi-subset aggregation scheme both supports flexible subset data aggregation and fault tolerance.Finally,we construct the first secure flexible subset data aggregation(SFSDA)scheme with fault tolerance by combining the fault tolerance method with the flexible multi-subset aggregation,where FN enables the control server(CS)to finally decrypt the aggregated ciphertext by recovering equivalent ciphertexts when some SMs fail to submit their ciphertexts.Experiments show that our SFSDA scheme keeps the efficiency in implementing a flexible multi-subset aggregation function,and only has a small delay in implementing fault-tolerant data aggregation.展开更多
For achieving Energy-Efficiency in wireless sensor networks(WSNs),different schemes have been proposed which focuses only on reducing the energy consumption.A shortest path determines for the Base Station(BS),but faul...For achieving Energy-Efficiency in wireless sensor networks(WSNs),different schemes have been proposed which focuses only on reducing the energy consumption.A shortest path determines for the Base Station(BS),but fault tolerance and energy balancing gives equal importance for improving the network lifetime.For saving energy in WSNs,clustering is considered as one of the effective methods for Wireless Sensor Networks.Because of the excessive overload,more energy consumed by cluster heads(CHs)in a cluster based WSN to receive and aggregate the information from member sensor nodes and it leads to failure.For increasing the WSNs’lifetime,the CHs selection has played a key role in energy consumption for sensor nodes.An Energy Efficient Unequal Fault Tolerant Clustering Approach(EEUFTC)is proposed for reducing the energy utilization through the intelligent methods like Particle Swarm Optimization(PSO).In this approach,an optimal Master Cluster Head(MCH)-Master data Aggregator(MDA),selection method is proposed which uses the fitness values and they evaluate based on the PSO for two optimal nodes in each cluster to act as Master Data Aggregator(MDA),and Master Cluster Head.The data from the cluster members collected by the chosen MCH exclusively and the MDA is used for collected data reception from MCH transmits to the BS.Thus,the MCH overhead reduces.During the heavy communication of data,overhead controls using the scheduling of Energy-Efficient Time Division Multiple Access(EE-TDMA).To describe the proposed method superiority based on various performance metrics,simulation and results are compared to the existing methods.展开更多
In this paper, the concept of k-submesh and k-submesh connectivity fault tolerance model is proposed. And the fault tolerance of 3-D mesh networks is studied under a more realistic model in which each network node has...In this paper, the concept of k-submesh and k-submesh connectivity fault tolerance model is proposed. And the fault tolerance of 3-D mesh networks is studied under a more realistic model in which each network node has an independent failure probability. It is first observed that if the node failure probability is fixed, then the connectivity probability of 3-D mesh networks can be arbitrarily small when the network size is sufficiently large. Thus, it is practically important for multicomputer system manufacturer to determine the upper bound for node failure probability when the probability of network connectivity and the network size are given. A novel technique is developed to formally derive lower bounds on the connectivity probability for 3-D mesh networks. The study shows that 3-D mesh networks of practical size can tolerate a large number of faulty nodes thus are reliable enough for multicomputer systems. A number of advantages of 3-D mesh networks over other popular network topologies are given. Compared to 2-D mesh networks, 3-D mesh networks are much stronger in tolerating faulty nodes, while for practical network size, the fault tolerance of 3-D mesh networks is comparable with that of hypercube networks but enjoys much lower node degree.展开更多
The in-core self-powered neutron detector(SPND)acts as a key measuring device for the monitoring of parameters and evaluation of the operating conditions of nuclear reactors.Prompt detection and tolerance of faulty SP...The in-core self-powered neutron detector(SPND)acts as a key measuring device for the monitoring of parameters and evaluation of the operating conditions of nuclear reactors.Prompt detection and tolerance of faulty SPNDs are indispensable for reliable reactor management.To completely extract the correlated state information of SPNDs,we constructed a twin model based on a generalized regression neural network(GRNN)that represents the common relationships among overall signals.Faulty SPNDs were determined because of the functional concordance of the twin model and real monitoring sys-tems,which calculated the error probability distribution between the model outputs and real values.Fault detection follows a tolerance phase to reinforce the stability of the twin model in the case of massive failures.A weighted K-nearest neighbor model was employed to reasonably reconstruct the values of the faulty signals and guarantee data purity.The experimental evaluation of the proposed method showed promising results,with excellent output consistency and high detection accuracy for both single-and multiple-point faulty SPNDs.For unexpected excessive failures,the proposed tolerance approach can efficiently repair fault behaviors and enhance the prediction performance of the twin model.展开更多
DC-DC converters are becoming more commonly used in power conversion solutions for energy management purposes,being employed in an ever-increasing range of DC-based applications,such as LED lighting,electric vehicles,...DC-DC converters are becoming more commonly used in power conversion solutions for energy management purposes,being employed in an ever-increasing range of DC-based applications,such as LED lighting,electric vehicles,energy storage solutions,and consumer electronics(laptops,smartphones,etc.).In this context,efficiency and reliability are critical.The research efforts made in improving reliability of DC-DC converters are still quite narrow and scattered.Moreover,DC-DC converters take the shape of an endless number of topologies,with different functionalities and operation principles,thus complicating the task of improving reliability of all forms of DC-DC converters.Consequently,compiling the information about the main failure modes,corresponding fault diagnostic algorithms and fault tolerance strategies developed so far,in a single document,becomes increasingly necessary.Accordingly,this paper presents an up-to-date review of the recent achievements attained regarding the improvement of availability and reliability of DC-DC converters.展开更多
Group communication services (GCSs) are becoming increasingly important as a wide field of promising applications has emerged to serve millions of users distributed across the world.However,it is challenging to make...Group communication services (GCSs) are becoming increasingly important as a wide field of promising applications has emerged to serve millions of users distributed across the world.However,it is challenging to make the service fault tolerance and scalable to fulfill the voluminous demand of users in a distributed network (DN).While many reliable group communication protocols have been dedicated to addressing such a challenge so as to accommodate the changes in the network,they are often costly or require complicated strategies to handle the service interruptions caused by node departures or link failures,which hinders the service practicability.In this paper,we present two schemes to address the challenges.The first one is a location-aware replication scheme called NS,which makes replicas in a dispersed fashion that enables the services on nodes to gain immunity of failures with different patterns (e.g.,network partition and single point failure) while keeping replication overhead low.The second one is a novel failure recovery scheme that exploits the independence between service recovery and structure recovery in time domain to achieve quick failure recovery.Our simulation results indicate that the two proposed schemes outperform the existing schemes and simple alternative schemes in service success rate,recovery latency,and communication cost.展开更多
As semiconductor technology advances, there will be billions of transistors on a single chip. Chip many-core processors are emerging to take advantage of these greater transistor densities to deliver greater performan...As semiconductor technology advances, there will be billions of transistors on a single chip. Chip many-core processors are emerging to take advantage of these greater transistor densities to deliver greater performance. Effective fault tolerance techniques are essential to improve the yield of such complex chips. In this paper, a core-level redundancy scheme called N+M is proposed to improve N-core processors’ yield by providing M spare cores. In such architecture, topology is an important factor because it greatly affects the processors’ performance. The concept of logical topology and a topology reconfiguration problem are introduced, which is able to transparently provide target topology with lowest performance degradation as the presence of faulty cores on-chip. A row rippling and column stealing (RRCS) algorithm is also proposed. Results show that PRCS can give solutions with average 13.8% degradation with negligible computing time.展开更多
Artificial neural networks (ANNs) are powerful compu- tational tools that are designed to replicate the human brain and adopted to solve a variety of problems in many different fields. Fault tolerance (FT), an imp...Artificial neural networks (ANNs) are powerful compu- tational tools that are designed to replicate the human brain and adopted to solve a variety of problems in many different fields. Fault tolerance (FT), an important property of ANNs, ensures their reliability when signifi- cant portions of a network are lost. In this paper, a fault/ noise injection-based (FIB) genetic algorithm (GA) is proposed to construct fault-tolerant ANNs. The FT per- formance of an FIB-GA was compared with that of a common genetic algorithm, the back-propagation algo- rithm, and the modification of weights algorithm. The FIB-GA showed a slower fitting speed when solving the exclusive OR (XOR) problem and the overlapping clas- sification problem, but it significantly reduced the errors in cases of single or multiple faults in ANN weights or nodes. Further analysis revealed that the fit weights showed no correlation with the fitting errors in the ANNs constructed with the FIB-GA, suggesting a relatively even distribution of the various fitting parameters. In contrast, the output weights in the training of ANNs implemented with the use the other three algorithms demonstrated a positive correlation with the errors. Our findings therefore Indicate that a combination of the fault/noise injection-based method and a GA is capable of introducing FT to ANNs and imply that the distributed ANNs demonstrate superior FT performance.展开更多
The evolvable multiprocessor (EvoMP), as a novel multiprocessor system-on-chip (MPSoC) machine with evolvable task decomposition and scheduling, claims a major feature of low-cost and efficient fault tolerance. Non-ce...The evolvable multiprocessor (EvoMP), as a novel multiprocessor system-on-chip (MPSoC) machine with evolvable task decomposition and scheduling, claims a major feature of low-cost and efficient fault tolerance. Non-centralized control and adaptive distribution of the program among the available processors are two major capabilities of this platform, which remarkably help to achieve an efficient fault tolerance scheme. This letter presents the operational as well as architectural details of this fault tolerance scheme. In this method, when a processor becomes faulty, it will be eliminated of contribution in program execution in remaining run-time. This method also utilizes dynamic rescheduling capability of the system to achieve the maximum possible efficiency after processor reduction. The results confirm the efficiency and remarkable advantages of the proposed approach over common redundancy based techniques in similar systems.展开更多
基金supported by Nature Key Research and Development Program of China (2017YFB1400700)the National Natural Science Foundation of China (61602537, U1509214)+1 种基金the Central University of Finance and Economics Funds for the Youth Talent Support Plan (QYP1808)First-Class Discipline Construction in 2019,open fund of Key Laboratory of Grain Information Processing and Control (KFJJ-2018-202)
文摘Blockchain with these characteristics of decentralized structure, transparent and credible, time-series and immutability, has been considering as a promising technology. Consensus algorithm as one of the core techniques of blockchain directly affects the scalability of blockchain systems. Existing probabilistic finality blockchain consensus algorithms such as PoW, PoS, suffer from power consumptions and low efficiency;while absolute finality blockchain consensus algorithms such as PBFT, HoneyBadgerBFT, could not meet the scalability requirement in a largescale network. In this paper, we propose a novel optimized practical Byzantine fault tolerance consensus algorithm based on EigenTrust model, namely T-PBFT, which is a multi-stage consensus algorithm. It evaluates node trust by the transactions between nodes so that the high quality of nodes in the network will be selected to construct a consensus group. To reduce the probability of view change, we propose to replace a single primary node with a primary group. By group signature and mutual supervision, we can enhance the robustness of the primary group further. Finally, we analyze T-PBFT and compare it with the other Byzantine fault tolerant consensus algorithms. Theoretical analysis shows that our T-PBFT can optimize the Byzantine fault-tolerant rate,reduce the probability of view change and communication complexity.
文摘The defects of an OLED-based display,mainly electrical shorts,cause pixels to stay dark,decrease the brightness of a panel,severely influence the display uniformity,and also consume a considerable amount of power. In this paper, for AM-OLEDs, a novel circuit employing p-type low-temperature poly-Si thin-film transistors is introduced to offer fault-tolerant capabilities for such defects. The results show that this circuit can save significant power and maintain the luminance of the pixel without changing the driving current.
文摘Fault tolerance in microprocessor systems has become a popular topic of architecture research. Much work has been done at different levels to accomplish reliability against soft errors, and some fault tolerance architectures have been proposed. But little attention is paid to the thread level superscalar fault tolerance. This letter introduces microthread concept into superscalar processor fault tolerance domain, and puts forward a novel fault tolerance architecture, namely, MicroThread Based (MTB) coarse grained transient fault tolerance superscalar processor architecture, then discusses some detailed implementations.
文摘This paper proposes a policy driven and multi-agent based model to enhance the fault tolerance and recovery capabilities of Web services in distributed environment. The evaluation function of fault specifications and the corresponding handling mechanisms of the services are both defined in policies, which are expressed in XML. During the implementation of the services,the occurrences of faults are monitored by the service monitor agent through the local knowledge on the faults. Such local knowledge is dynamically generated by the service policy agent through querying and parsing the service policies from the service policies repository. When the fault occurs, the service process agent will focus on the process of fault handling and service recovery, which will be directed with the actions defined in the policies upon the specific conditions. Such a policy driven and multi-agent based fault handling approach can address the issues of flexibility, automation and availability.
文摘In a smart grid, a huge amount of data is collected for various applications, such as load monitoring and demand response. These data are used for analyzing the power state and formulating the optimal dispatching strategy. However, these big energy data in terms of volume, velocity and variety raise concern over consumers' privacy. For instance, in order to optimize energy utilization and support demand response, numerous smart meters are installed at a consumer's home to collect energy consumption data at a fine granularity, but these fine-grained data may contain information on the appliances and thus the consumer's behaviors at home. In this paper, we propose a privacy-preserving data aggregation scheme based on secret sharing with fault tolerance in a smart grid, which ensures that the control center obtains the integrated data without compromising privacy. Meanwhile, we also consider fault tolerance and resistance to differential attack during the data aggregation. Finally, we perform a security analysis and performance evaluation of our scheme in comparison with the other similar schemes. The analysis shows that our scheme can meet the security requirement, and it also shows better performance than other popular methods.
基金This research was supported by Key Projects of the Ministry of Science and Technology of the People’s Republic of China(2018AAA0102301)Project of Hunan Provincial Science and Technology Department(2017SK2405)CERNET Innovation Project(NGII20170715),(NGII20180902).
文摘With the rapid development of blockchain technology,more and more people are paying attention to the consensus mechanism of blockchain.Practical Byzantine Fault Tolerance(PBFT),as the first efficient consensus algorithm solving the Byzantine Generals Problem,plays an important role.But PBFT also has its problems.First,it runs in a completely closed environment,and any node can't join or exit without rebooting the system.Second,the communication complexity in the network is as high as O(n2),which makes the algorithm only applicable to small-scale networks.For these problems,this paper proposes an Optimized consensus algorithm,Excellent Practical Byzantine Fault Tolerance(EPBFT),in which nodes can dynamically participate in the network by combining a view change protocol with a node's add or quit request.Besides,in each round of consensus,the algorithm will randomly select a coordination node.Through the cooperation of the primary and the coordination node,we reduce the network communication complexity to O(n).Besides,we have added a reputation credit mechanism and a wrong node removal protocol to the algorithm for clearing the faulty nodes in time and improving the robustness of the system.Finally,we design experiments to compare the performance of the PBFT and EPBFT algorithms.Through experimental,we found that compared with the PBFT algorithm,the EPBFT algorithm has a lower delay,communication complexity,better scalability,and more practical.
基金Project supported by the National Natural Science Foundation of China(Grant No.60921062)
文摘With the progress of the semiconductor industry, resistive memories, especially the memristor, have drawn increasing attention. The resistive memory based on memrsitor has not been commercialized mainly because of data error. Currently, there are more studies focused on fault tolerance of resistive memory. This paper studies the resistive switching mechanism which may have time-varying characteristics. Resistive switching mechanism is analyzed and its respective circuit model is established based on the memristor Spice model.
基金supported by State Grid Jiangsu Electric Power Co.,Ltd.Science and Technology Project“Research on Low-Cost Wireless Coverage and Trusted Access Technologies for Underground Pipe Gallery Digital Network”(J2021081).
文摘As the scale of power networks has expanded,the demand for multi-service transmission has gradually increased.The emergence of WiFi6 has improved the transmission efficiency and resource utilization of wireless networks.However,it still cannot cope with situations such as wireless access point(AP)failure.To solve this problem,this paper combines orthogonal fre-quency division multiple access(OFDMA)technology and dynamic channel optimization technology to design a fault-tolerant WiFi6 dynamic resource optimization method for achieving high quality wireless services in a wirelessly covered network even when an AP fails.First,under the premise of AP layout with strong coverage over the whole area,a faulty AP determination method based on beacon frames(BF)is designed.Then,the maximum signal-to-interference ratio(SINR)is used as the principle to select AP reconnection for the affected users.Finally,this paper designs a dynamic access selection model(DASM)for service frames of power Internet of Things(IoTs)and a schedul-ing access optimization model(SAO-MF)based on multi-frame transmission,which enables access optimization for differentiated services.For the above mechanisms,a heuristic resource allocation algorithm is proposed in SAO-MF.Simulation results show that the method can reduce the delay by 15%and improve the throughput by 55%,ensuring high-quality communication in power wireless networks.
基金Deepak Dahiya would like to thank Deanship of Scientific Research at Majmaah University for supporting this work under Project No.R-2022-56.
文摘Failure is a systemic error that affects overall system performance and may eventually crash across the entire configuration.In Real-Time Systems(RTS),deadline is the key to successful completion of the program.If tasks effectively meet the deadline,it means the system is working in pristine order.However,missing the deadline means a systemic fault due to which the system can crash(hard RTS)or degrade inclusive performance(soft RTS).To fine-tune the RTS,tolerance is the critical issue and must be handled with extreme care.This article explains the context of fault tolerance with improvised Joint EDF-RMS algorithm in RTS.The backup method has been derived to prevent the system from being recursively migrating the same task.If any task migrates three times,this migrated task will get shifted to the backup queue.This backup queue assigns the task to a backup processor and is destined for final execution.For performance evaluation purposes,a relative graph between fault and failure rates,failure and total processor utilization along with other averages have been evaluated.Furthermore,these archived results are compared with fault-tolerant Earliest Deadline First(EDF)and Rate Monotonic Scheduling(RMS)algorithms independently in relatively similar conditions.These comparisons show better performance against overloading conditions.
文摘In Mobile Ad Hoc Networks(MANET),Quality of Service(QoS)is an important factor that must be analysed for the showing the better performance.The Node Quality-based Clustering Algorithm using Fuzzy-Fruit Fly Optimiza-tion for Cluster Head and Gateway Selection(NQCAFFFOCHGS)has the best network performance because it uses the Improved Weighted Clustering Algo-rithm(IWCA)to cluster the network and the FFO algorithm,which uses fuzzy-based network metrics to select the best CH and entryway.However,the major drawback of the fuzzy system was to appropriately select the membership func-tions.Also,the network metrics related to the path or link connectivity were not considered to effectively choose the CH and gateway.When learning fuzzy sets,this algorithm employs a new Continuous Action-set Learning Automata(CALA)approach that correctly modifies and chooses the fuzzy membership functions.Despite the fact that it extends the network’s lifespan,it does not assist in the detection of defective nodes in the routing route.Because of this,a new Fault Tolerance(NQCAEFFFOCHGS-FT)mechanism based on the Distributed Connectivity Restoration(DCR)mechanism is proposed,which allows the net-work to self-heal as a consequence of the algorithm’s self-healing capacity.Because of the way this method is designed,node failures may be utilised to rebuild the network topology via the use of cascaded node moves.Founded on the fractional network information and topologic overhead related with each node,the DCR is suggested as an alternative to the DCR.When compared to the NQCAFFFOCHGS algorithm,the recreation results display that the proposed NQCAEFFFOCHGS-FT algorithm improves network performance in terms of end-to-end delay,energy consumption,Packet Loss Ratio(PLR),Normalized Routing Overhead(NRO),and Balanced Load Index(BLI).
基金National Nature Science Foundation of China (No.60534020)Cultivation Fund of the Key Scientific and Technical Innovation Project from Ministry of Education of China(No.706024)+1 种基金International Science Cooperation Foundation of Shanghai,China(No.061307041)Shanghai Talent Developing Foundation,China(No.010)
文摘Delay Tolerant Network (DTN) is a class of networks that experience frequent and long-duration partitions due to sparse distribution of nodes. It has a broad prospect to new network applications for a better sealability, fault-tolerant, and high performance. In DTNs, path failure occurs frequently, so message transfer is not reliable. Sometimes it is required to change routing even in a very short period, resulting in transmission delay and reception delay. However, some well-known assumptions of traditional networks are no longer true in DTNs. In this paper, we study the problem of path failures in DTNs. The path failure process in DTNs is described when the path appears completely normal, completely failed and partially failed. Traditional approaches based on using precisely known network dynamics have not accounted for message losses. A new fault tolerant scheme to generate redundancy is to use erasure coding and full replication. This can greatly decrease the path failure rate. At last, a traffic DTN model is analyzed. Results reveal the superiority of our scheme in comparison to other present schemes.
基金supported by National Natural Science Foundation of China (Grant Nos.62102452,62172436)Natural Science Foundation of Shaanxi Province (No.2023-JCYB-584)+1 种基金Innovative Research Team in Engineering University of PAP (KYTD201805)Engineering University of PAP’s Funding for Key Researcher (No.KYGG202011).
文摘Smart grid(SG)brings convenience to users while facing great chal-lenges in protecting personal private data.Data aggregation plays a key role in protecting personal privacy by aggregating all personal data into a single value,preventing the leakage of personal data while ensuring its availability.Recently,a flexible subset data aggregation(FSDA)scheme based on the Pail-lier homomorphic encryption was first proposed by Zhang et al.Their scheme can dynamically adjust the size of each subset and obtain the aggregated data in the corresponding subset.In this paper,firstly,an efficient attack with both theorems proving and experimentative verification is launched.We find that in a specific scenario where the encrypted data constructed by a smart meter(SM)exceeds the size of one Paillier ciphertext,the malicious fog node(FN)may use the received ciphertext to obtain the reading of the SM.Secondly,to avoid the possibility of privacy disclosure under certain circumstances,additional hash functions are added to the individual encryption process.In addition,fault tolerance is very important to aggregation schemes in practical scenarios.In most of the current schemes,once some SMs failed,then they will not work.As far as we know,there is no multi-subset aggregation scheme both supports flexible subset data aggregation and fault tolerance.Finally,we construct the first secure flexible subset data aggregation(SFSDA)scheme with fault tolerance by combining the fault tolerance method with the flexible multi-subset aggregation,where FN enables the control server(CS)to finally decrypt the aggregated ciphertext by recovering equivalent ciphertexts when some SMs fail to submit their ciphertexts.Experiments show that our SFSDA scheme keeps the efficiency in implementing a flexible multi-subset aggregation function,and only has a small delay in implementing fault-tolerant data aggregation.
基金The authors would like to thank for the support from Taif University Researchers Supporting Project number(TURSP-2020/239),Taif University,Taif,Saudi Arabia.
文摘For achieving Energy-Efficiency in wireless sensor networks(WSNs),different schemes have been proposed which focuses only on reducing the energy consumption.A shortest path determines for the Base Station(BS),but fault tolerance and energy balancing gives equal importance for improving the network lifetime.For saving energy in WSNs,clustering is considered as one of the effective methods for Wireless Sensor Networks.Because of the excessive overload,more energy consumed by cluster heads(CHs)in a cluster based WSN to receive and aggregate the information from member sensor nodes and it leads to failure.For increasing the WSNs’lifetime,the CHs selection has played a key role in energy consumption for sensor nodes.An Energy Efficient Unequal Fault Tolerant Clustering Approach(EEUFTC)is proposed for reducing the energy utilization through the intelligent methods like Particle Swarm Optimization(PSO).In this approach,an optimal Master Cluster Head(MCH)-Master data Aggregator(MDA),selection method is proposed which uses the fitness values and they evaluate based on the PSO for two optimal nodes in each cluster to act as Master Data Aggregator(MDA),and Master Cluster Head.The data from the cluster members collected by the chosen MCH exclusively and the MDA is used for collected data reception from MCH transmits to the BS.Thus,the MCH overhead reduces.During the heavy communication of data,overhead controls using the scheduling of Energy-Efficient Time Division Multiple Access(EE-TDMA).To describe the proposed method superiority based on various performance metrics,simulation and results are compared to the existing methods.
文摘In this paper, the concept of k-submesh and k-submesh connectivity fault tolerance model is proposed. And the fault tolerance of 3-D mesh networks is studied under a more realistic model in which each network node has an independent failure probability. It is first observed that if the node failure probability is fixed, then the connectivity probability of 3-D mesh networks can be arbitrarily small when the network size is sufficiently large. Thus, it is practically important for multicomputer system manufacturer to determine the upper bound for node failure probability when the probability of network connectivity and the network size are given. A novel technique is developed to formally derive lower bounds on the connectivity probability for 3-D mesh networks. The study shows that 3-D mesh networks of practical size can tolerate a large number of faulty nodes thus are reliable enough for multicomputer systems. A number of advantages of 3-D mesh networks over other popular network topologies are given. Compared to 2-D mesh networks, 3-D mesh networks are much stronger in tolerating faulty nodes, while for practical network size, the fault tolerance of 3-D mesh networks is comparable with that of hypercube networks but enjoys much lower node degree.
基金supported by the Natural Science Foundation of Fujian Province,China(No.2022J01566).
文摘The in-core self-powered neutron detector(SPND)acts as a key measuring device for the monitoring of parameters and evaluation of the operating conditions of nuclear reactors.Prompt detection and tolerance of faulty SPNDs are indispensable for reliable reactor management.To completely extract the correlated state information of SPNDs,we constructed a twin model based on a generalized regression neural network(GRNN)that represents the common relationships among overall signals.Faulty SPNDs were determined because of the functional concordance of the twin model and real monitoring sys-tems,which calculated the error probability distribution between the model outputs and real values.Fault detection follows a tolerance phase to reinforce the stability of the twin model in the case of massive failures.A weighted K-nearest neighbor model was employed to reasonably reconstruct the values of the faulty signals and guarantee data purity.The experimental evaluation of the proposed method showed promising results,with excellent output consistency and high detection accuracy for both single-and multiple-point faulty SPNDs.For unexpected excessive failures,the proposed tolerance approach can efficiently repair fault behaviors and enhance the prediction performance of the twin model.
基金This work was supported by the European Regional Development Fund(ERDF)through the Operational Programme for Competitiveness and Internationalization(COMPETE 2020)under Project POCI-01-0145-FEDER-029494by National Funds through the FCT-Portuguese Foundation for Science and Technology,under Projects PTDC/EEI-EEE/29494/2017,UID/EEA/004131/2013,and SFRH/BD/131002/2017.
文摘DC-DC converters are becoming more commonly used in power conversion solutions for energy management purposes,being employed in an ever-increasing range of DC-based applications,such as LED lighting,electric vehicles,energy storage solutions,and consumer electronics(laptops,smartphones,etc.).In this context,efficiency and reliability are critical.The research efforts made in improving reliability of DC-DC converters are still quite narrow and scattered.Moreover,DC-DC converters take the shape of an endless number of topologies,with different functionalities and operation principles,thus complicating the task of improving reliability of all forms of DC-DC converters.Consequently,compiling the information about the main failure modes,corresponding fault diagnostic algorithms and fault tolerance strategies developed so far,in a single document,becomes increasingly necessary.Accordingly,this paper presents an up-to-date review of the recent achievements attained regarding the improvement of availability and reliability of DC-DC converters.
基金supported by National Science Foundation (NSF) grant from CISE NetSE Program and CyberTrust Cross-Cutting Program of USA,IBM faculty awardIBM SUR grant,grant from Intel Research Council+4 种基金the National Basic Research 973 Program of China under Grant No. 2009CB320805the National Natural Science Foundation of China under Grant No. 61170188the National High Technology Research and Development 863 Program of China under Grant No. 2012AA011803Fundamental Research Funds for the Central Universities of Chinasupported by China Scholarship Council (CSC)
文摘Group communication services (GCSs) are becoming increasingly important as a wide field of promising applications has emerged to serve millions of users distributed across the world.However,it is challenging to make the service fault tolerance and scalable to fulfill the voluminous demand of users in a distributed network (DN).While many reliable group communication protocols have been dedicated to addressing such a challenge so as to accommodate the changes in the network,they are often costly or require complicated strategies to handle the service interruptions caused by node departures or link failures,which hinders the service practicability.In this paper,we present two schemes to address the challenges.The first one is a location-aware replication scheme called NS,which makes replicas in a dispersed fashion that enables the services on nodes to gain immunity of failures with different patterns (e.g.,network partition and single point failure) while keeping replication overhead low.The second one is a novel failure recovery scheme that exploits the independence between service recovery and structure recovery in time domain to achieve quick failure recovery.Our simulation results indicate that the two proposed schemes outperform the existing schemes and simple alternative schemes in service success rate,recovery latency,and communication cost.
基金the National Natural Science Foundation of China (Nos. 60633060, 60606008, and 60576031)the National Key Basic Research and Development (973) Program of China (973)(Nos. 2005CB321604 and 2005CB321605)the fund of Chinese Academy of Sciences (No. 20074010) due to the President Scholarship
文摘As semiconductor technology advances, there will be billions of transistors on a single chip. Chip many-core processors are emerging to take advantage of these greater transistor densities to deliver greater performance. Effective fault tolerance techniques are essential to improve the yield of such complex chips. In this paper, a core-level redundancy scheme called N+M is proposed to improve N-core processors’ yield by providing M spare cores. In such architecture, topology is an important factor because it greatly affects the processors’ performance. The concept of logical topology and a topology reconfiguration problem are introduced, which is able to transparently provide target topology with lowest performance degradation as the presence of faulty cores on-chip. A row rippling and column stealing (RRCS) algorithm is also proposed. Results show that PRCS can give solutions with average 13.8% degradation with negligible computing time.
文摘Artificial neural networks (ANNs) are powerful compu- tational tools that are designed to replicate the human brain and adopted to solve a variety of problems in many different fields. Fault tolerance (FT), an important property of ANNs, ensures their reliability when signifi- cant portions of a network are lost. In this paper, a fault/ noise injection-based (FIB) genetic algorithm (GA) is proposed to construct fault-tolerant ANNs. The FT per- formance of an FIB-GA was compared with that of a common genetic algorithm, the back-propagation algo- rithm, and the modification of weights algorithm. The FIB-GA showed a slower fitting speed when solving the exclusive OR (XOR) problem and the overlapping clas- sification problem, but it significantly reduced the errors in cases of single or multiple faults in ANN weights or nodes. Further analysis revealed that the fit weights showed no correlation with the fitting errors in the ANNs constructed with the FIB-GA, suggesting a relatively even distribution of the various fitting parameters. In contrast, the output weights in the training of ANNs implemented with the use the other three algorithms demonstrated a positive correlation with the errors. Our findings therefore Indicate that a combination of the fault/noise injection-based method and a GA is capable of introducing FT to ANNs and imply that the distributed ANNs demonstrate superior FT performance.
文摘The evolvable multiprocessor (EvoMP), as a novel multiprocessor system-on-chip (MPSoC) machine with evolvable task decomposition and scheduling, claims a major feature of low-cost and efficient fault tolerance. Non-centralized control and adaptive distribution of the program among the available processors are two major capabilities of this platform, which remarkably help to achieve an efficient fault tolerance scheme. This letter presents the operational as well as architectural details of this fault tolerance scheme. In this method, when a processor becomes faulty, it will be eliminated of contribution in program execution in remaining run-time. This method also utilizes dynamic rescheduling capability of the system to achieve the maximum possible efficiency after processor reduction. The results confirm the efficiency and remarkable advantages of the proposed approach over common redundancy based techniques in similar systems.