Carbon-doped copper ferrite(C–CuFe_(2)O_(4))was synthesized by a simple two-step hydrothermal method,which showed enhanced tetracycline hydrochloride(TCH)removal efficiency as compared to the pure CuFe_(2)O_(4) in Fe...Carbon-doped copper ferrite(C–CuFe_(2)O_(4))was synthesized by a simple two-step hydrothermal method,which showed enhanced tetracycline hydrochloride(TCH)removal efficiency as compared to the pure CuFe_(2)O_(4) in Fenton-like reaction.A removal efficiency of 94%was achieved with 0.2 g L^(-1) catalyst and 20 mmol L^(-1) H_(2)O_(2) within 90 min.We demonstrated that 5%C–CuFe_(2)O_(4) catalyst in the presence of H_(2)O_(2) was significantly efficient for TCH degradation under the near-neutral pH(5–9)without buffer.Multiple techniques,including SEM,TEM,XRD,FTIR,Raman,XPS M€ossbauer and so on,were conducted to investigate the structures,morphologies and electronic properties of as-prepared samples.The introduction of carbon can effectively accelerate electron transfer by cooperating with Cu and Fe to activate H_(2)O_(2) to generate·OH and·O_(2)^(-).Particularly,theoretical calculations display that the p,p,d orbital hybridization of C,O,Cu and Fe can form C–O–Cu and C–O–Fe bonds,and the electrons on carbon can transfer to metal Cu and Fe along the C–O–Fe and C–O–Cu channels,thus forming electron-rich reactive centers around Fe and Cu.This work provides lightful reference for the modification of spinel ferrites in Fenton-like application.展开更多
The use of Fenton's reagent (Fe^2+/H2O2) and Fenton-like reagents containing transition metals of Cu(Ⅱ), Zn(Ⅱ), Co(Ⅱ), and Mn(Ⅱ) for an alum sludge conditioning to improve its dewaterability was invest...The use of Fenton's reagent (Fe^2+/H2O2) and Fenton-like reagents containing transition metals of Cu(Ⅱ), Zn(Ⅱ), Co(Ⅱ), and Mn(Ⅱ) for an alum sludge conditioning to improve its dewaterability was investigated. The results obtained were compared with those obtained from conditioning the same alum sludge using cationic and anionic polymers. Experimental results show that Fenton's reagent was the best among the Fenton and Fenton-like reagents for the alum sludge conditioning. A considerable effectiveness of capillary suction time (CST) reduction efficiency of 47% can be achieved under test conditions of Fe^2+/H2O2 = 20/125 mg/g DS (dry solid) and pH 6.0. The observation of floc-like particles after Fenton's reagent conditioning of alum sludge suggested that the mechanism of Fenton's reagent conditioning was different from that of polymer conditioning. In spite of the lower efficiency in the CST reduction of Fenton's reagent in alum sludge conditioning compared to that of polymer conditioning, Fenton's reagent offers a more environmentally safe option. Tiffs study provided an example of proactive treatment engineering, which is aimed at seeking a safe alternative to the use of polymers in sludge conditioning towards achieving a more sustainable sludge management strategy.展开更多
To overcome the ever-growing organic pollutions in the water system,abundant efforts have been dedicated to fabricating efficient Fenton-like carbon catalysts.However,the rational design of carbon catalysts with high ...To overcome the ever-growing organic pollutions in the water system,abundant efforts have been dedicated to fabricating efficient Fenton-like carbon catalysts.However,the rational design of carbon catalysts with high intrinsic activity remains a long-term goal.Herein,we report a new N-molecule-assisted self-catalytic carbonization process in augmenting the intrinsic Fenton-like activity of metal-organic-framework-derived carbon hybrids.During carbonization,the N-molecules provide alkane/ammonia gases and the formed iron nanocrystals act as the in situ catalysts,which result in the elaborated formation of carbon nanotubes(in situ chemical vapor deposition from alkane/iron catalysts)and micro-/meso-porous structures(ammonia gas etching).The obtained catalysts exhibited with abundant Fe/Fe-Nx/pyridinic-N active species,micro-/meso-porous structures,and conductive carbon nanotubes.Consequently,the catalysts exhibit high efficiency toward the degradation of different organic pollutions,such as bisphenol A,methylene blue,and tetracycline.This study not only creates a new pathway for achieving highly active Fenton-like carbon catalysts but also takes a step toward the customized production of advanced carbon hybrids for diverse energy and environmental applications.展开更多
Pure metal-doped(Cu,Zn)Fe2O4 was synthesized from Zn-containing electric arc furnace dust(EAFD)by solid-state reaction using copper salt as additive.The effects of pretreated EAFD-to-Cu2(OH)2CO3·6H2O mass ratio,c...Pure metal-doped(Cu,Zn)Fe2O4 was synthesized from Zn-containing electric arc furnace dust(EAFD)by solid-state reaction using copper salt as additive.The effects of pretreated EAFD-to-Cu2(OH)2CO3·6H2O mass ratio,calcination time,and calcination temperature on the structure and catalytic ability were systematically studied.Under the optimum conditions,the decolorization efficiency and total organic carbon(TOC)removal efficiency of the as-prepared ferrite for treating a Rhodamine B solution were approximately 90.0%and 45.0%,respectively,and the decolorization efficiency remained 83.0%after five recycles,suggesting that the as-prepared(Cu,Zn)Fe2O4 was an efficient heterogeneous Fenton-like catalyst with high stability.The high catalytic activity mainly depended on the synergistic effect of iron and copper ions occupying octahedral positions.More importantly,the toxicity characteristic leaching procedure(TCLP)analysis illustrated that the toxic Zncontaining EAFD was transformed into harmless(Cu,Zn)Fe2O4 and that the concentrations of toxic ions in the degraded solution were all lower than the national emission standard(GB/31574-2015),further confirming that the as obtained sample is an environment-friendly heterogeneous Fenton-like catalyst.展开更多
The sluggish kinetics of Fe(Ⅱ)recovery in Fenton/Fenton-like reactions significantly limits the oxidation efficiency.In this study,we for the first time use boron carbide(BC)as a green and stable promotor to enhance ...The sluggish kinetics of Fe(Ⅱ)recovery in Fenton/Fenton-like reactions significantly limits the oxidation efficiency.In this study,we for the first time use boron carbide(BC)as a green and stable promotor to enhance the reaction of Fe(Ⅲ)/H_(2)O_(2) for degradation of diverse organic pollutants.Electron paramagnetic resonance analysis and chemical quenching/capturing experiments demonstrate that hydroxyl radicals(·OH)are the primary reactive species in the BC/Fe(Ⅲ)/H_(2)O_(2) system.In situ electrochemical analysis indicates that BC remarkably boosts the Fe(Ⅲ)/Fe(Ⅱ)redox cycles,where the adsorbed Fe(Ⅲ)cations were transformed to more active Fe(Ⅲ)species with a higher oxidative potential to react with H_(2)O_(2) to produce Fe(Ⅱ).Thus,the recovery of Fe(Ⅱ)from Fe(Ⅲ)is facilitated over BC surface,which enhancesOH generation via Fenton reactions.Moreover,BC exhibits outstanding reusability and stability in successive cycles and avoids the secondary pollution caused by conventional organic and metalliferous promotors.Therefore,metal-free BC boosting Fe(Ⅲ)/H_(2)O_(2) oxidation of organics provides a green and advanced strategy for water decontamination.展开更多
Heterogeneous Fenton-like process using fly ash as a catalyst was studied to degrade n-butyl xanthate form aqueous solution. The different reaction parameters on the degradation efficiency of the process were investig...Heterogeneous Fenton-like process using fly ash as a catalyst was studied to degrade n-butyl xanthate form aqueous solution. The different reaction parameters on the degradation efficiency of the process were investigated. The fly ash/H2O2 catalyst possesses a high oxidation activity for n-butyl xanthate degradation in aqueous solution. It is found that both the dosage of catalyst and initial solution pH significantly affect the n-butyl xanthate conversion efficient. The results indicate that by using 1.176 mmol/L H2O2 and 1.0 g/L fly ash catalyst with mass fraction of 4.14% Fe(III) oxide at pH 3.0, almost 96.90% n-butyl xanthate conversion and over 96.66% COD removal can be achieved within 120 min with heterogeneous catalysis by fly ash. CS2 as an intermediate of n-butyl xanthate oxidation. Finally, it is demonstrated that the fly ash/H2O2 catalytic oxidation process can be an efficient method for the treatment of n-butyl xanthate containing wastewater.展开更多
In this study,a novel magnetically separable adsorbent,molecular imprinting magnetic γ-Fe_2O_3/crosslinked chitosan composites(MIPs),were prepared by a microemulsion process.Adsorption and Fenton-like oxidative degra...In this study,a novel magnetically separable adsorbent,molecular imprinting magnetic γ-Fe_2O_3/crosslinked chitosan composites(MIPs),were prepared by a microemulsion process.Adsorption and Fenton-like oxidative degradation of a model pharmaceutical pollutant norfloxacin(NOR) by using MIPs were investigated.Various characterization methods were used to study the properties of MIPs,and it is suggested that the hydroxyl groups are the main adsorption sites for NOR.MIPs present better selective adsorption for NOR than its reference antibiotic sulfadiazine.The NOR adsorption data can be well fitted by Langmuir isotherm model and pseudosecond-order kinetic model.The optimum pH range for NOR adsorption is 7-10.In addition,the MIP-catalyzed Fenton-like system(MIPs/H_2O_2) exhibits remarkably faster removal rate for NOR than the case of γ-Fe_2O_3/H_2O_2.The result indicates that MIPs will be a good functional material in decontamination of pharmaceutical wastewaters since MIPs can be magnetically recycled after the treatment.展开更多
During the oxidative degradation of nonbiodegradable Malachite green (MG) by means of H2O2 /FeIIIR (iron supported on ion-exchage resin) in a dynamic column,the binding energy of the Fe(2p3/2) region for XPS spectra w...During the oxidative degradation of nonbiodegradable Malachite green (MG) by means of H2O2 /FeIIIR (iron supported on ion-exchage resin) in a dynamic column,the binding energy of the Fe(2p3/2) region for XPS spectra was found to be different between the top layer and the bottom layer in this column. Based on the data from XPS spectra and DMPO-OH·signal by EPR spectra,it is shown that the formation of ferryl (IV) is the key step for the oxidation of MG. The ferryl (IV) species can oxidize MG,and its redox potential is about 0. 739 - 0. 803 V measured by cyclic voltammograms (CV) . The catalytic capability of ferryl (IV) species was also evaluated,and it is found that it can promote the decomposition of H2O2 more efficiently than ferric iron. The removal rate of MG mainly depends on the adsorption of catalyst. Both ferryl (IV) and HO·radicals are the reactive species in the system. The oxidation of HO·is only a small part of the overall removal rate. Based on the obtained results,a possible mechanism for a resin-supported Fenton-like oxidation reaction is proposed.展开更多
Between the two major arsenic-containing salts in natural water, arsenite(As(Ⅲ)) is far more harmful to human and the environment than arsenate(As(V)) due to its high toxicity and transportability. Therefore, preoxid...Between the two major arsenic-containing salts in natural water, arsenite(As(Ⅲ)) is far more harmful to human and the environment than arsenate(As(V)) due to its high toxicity and transportability. Therefore, preoxidation of As(Ⅲ) to As(V) is considered to be an effective means to reduce the toxicity of arsenic and to promote the removal efficiency of arsenic. Due to their high catalytic activity and arsenic affinity, iron-based functional materials can quickly oxidize As(Ⅲ) to As(V) in heterogeneous Fenton-like systems, and then remove As(V) from water through adsorption and surface coprecipitation. In this review, the effects of different iron-based functional materials such as zero-valent iron and iron(hydroxy) oxides on arsenic removal are compared, and the catalytic oxidation mechanism of As(Ⅲ) in heterogeneous Fenton process is further clarified. Finally, the main challenges and opportunities faced by iron-based As(Ⅲ) oxidation functional materials are prospected.展开更多
Magnetically modified Fe-Al pillared bentonite(Fe3O4/ Fe-Al-Bent) was prepared via chemical co-precipitation method and characterized by powder X-ray diffraction(XRD), Brunauer-EmmettTeller(BET), Fourier transfo...Magnetically modified Fe-Al pillared bentonite(Fe3O4/ Fe-Al-Bent) was prepared via chemical co-precipitation method and characterized by powder X-ray diffraction(XRD), Brunauer-EmmettTeller(BET), Fourier transform infrared spectroscopy(FTIR) and scanning electron microscopy(SEM). A series of experiments were carried out to investigate the degradation of Orange II by the obtained heterogeneous catalysts in the presence of H2O2. The experimental result indicated that the synthetic materials had a high catalytic activity and good reusability.展开更多
Oxidation by Fenton like reactions (Fe3+/H2O2) is economically process for destructive hazardous pollutants in waste water. The effects of different parameters such as, amaranth red dye, ferric chloride, hydrogen pero...Oxidation by Fenton like reactions (Fe3+/H2O2) is economically process for destructive hazardous pollutants in waste water. The effects of different parameters such as, amaranth red dye, ferric chloride, hydrogen peroxide concentrations, pH value of solution, temperature and the presence of inorganic ions (carbonate, nitrate, chloride) on oxidative decolorization of amaranth were investigated. Amaranth degradation by (Fe3+/H2O2) reagent was found to follow first order kinetic model. Under optimum condition, pH = 2.6 and [FeCl3] = 3.75 × 10-4 mol·dm-3, the amaranth in aqueous solution with an initial concentration of 5 × 10-5 mol·dm-3 was degraded by 95% within 6 minutes. Increasing temperature in the range of 298 - 308 K increases the rate of dye degradation. Thermodynamic constants, ΔH*, ΔS* and ΔG* were evaluated. The results implied that the oxidation process was favorable and endothermic.展开更多
Azo dyes discharged in the environment are persistent organic pollutants (POPs), which are very difficult to remove. We developed a microwave-assisted Fenton-like process to degrade methyl orange (MO), an azo dye,...Azo dyes discharged in the environment are persistent organic pollutants (POPs), which are very difficult to remove. We developed a microwave-assisted Fenton-like process to degrade methyl orange (MO), an azo dye, with hydrogen peroxide (H2O2) catalyzed by chromium compounds coexisting with MO in the solution. Comparison between the Cr(Ⅲ)-H2O2 and Cr(Ⅵ)-H2O2 systems shows" that Cr(Ⅵ) has a stronger and more stable catalytical activity than Cr(Ⅲ), and Cr(Ⅲ) is more susceptible to a change in the acidity or alkalinity of the reaction system. With a Cr(Ⅵ) concentration of 10 mmol L^-1 or a Cr(Ⅲ) concentration of 12 mmol L^-1 in the solution under the microwave irradiation of a power larger than 300 W for 3 min, 10 mmol L^-1 H2O2 can degrade more than 95% of 1 000 mg L^-1 methyl orange; when the microwave power is increased to 700 W, the same amount of H2O2 can degrade all methyl orange in the solution with the same amount of Cr(Ⅵ ) catalyst. Ultraviolet-visible spectrography indicates the cleavage of the azo bond in methyl orange after treatment, suggesting the potential o of this Fenton-like process to degrade azo dye POPs. Reusing waste chromium compounds coexisting with dyestuff in wastewater to catalyze the degradation of azo dyes could be a cost-effective technique for azo dyes and chromate manufacturers and/or users to treat their wastewater and prevent POPs from endangering the environment. This is of particula importance to controlling the water quality of the Three Gorges Reservoir.展开更多
The present work evaluates the feasibility of using the raw material collected from discarded zinc-carbon batteries as heterogeneous catalyst to degrade the dye Indigo Carmine in an aqueous solution. Besides the evide...The present work evaluates the feasibility of using the raw material collected from discarded zinc-carbon batteries as heterogeneous catalyst to degrade the dye Indigo Carmine in an aqueous solution. Besides the evident environmental application, this work also presents an economic alternative for the production of new catalysts used to remediate polluted waters. For this, discarded carbon-zinc batteries were gathered, disassembled and their anodic paste collected. After acidic treatment and calcination at 500°C, characterization measurements, i.e. flame atomic absorption spectroscopy (FAAS), nitrogen sorption, X-ray diffraction (XRD) and scanning electron microscopy (SEM), revealed that the so-obtained material consisted mainly of ZnMn2O4. This material acts as a heterogeneous catalyst in a Fenton-like process that degrades the dye Indigo Carmine in water. That is probably due to the presence of Mn(III) (manganese in the +3 oxidation state) in this material that triggers the decomposition of hydrogen peroxide (H2O2) to yield hydroxyl radicals (HO·). Moreover, direct infusion electrospray ionization coupled to high resolution mass spectrometry (ESI-HRMS) was employed to characterize the main by-products resulting from such degradation process. These initial results thus indicate that raw materials from waste batteries can therefore be potentially employed as efficient Fenton-like catalysts to degrade organic pollutants in an aqueous solution.展开更多
Fabrication of single atom catalysts(SACs)by a green and gentle method is important for their practical Fenton-like use.In this work,a high effective iron-based catalyst was prepared from the iron-rich Enteromorpha fo...Fabrication of single atom catalysts(SACs)by a green and gentle method is important for their practical Fenton-like use.In this work,a high effective iron-based catalyst was prepared from the iron-rich Enteromorpha for NPX degradation via peroxymonosulfate(PMS).Both Fe-SACs and iron-clusters was fabricated from the intrinsic iron element in Enteromorpha after the urea saturation.The Fe-SACs/clusters can achieve 100%of NPX oxidation within 20 min with the k_(obs)of 0.282 min^(-1).Quenching tests indicated that the radical pathways were not dominated in the catalytic systems,and strong electron transfer process can be induced in the Fe-SACs/clusters+PMS system by using the NPX as electron donor and FeSACs/clusters/PMS^*complexes as electron acceptor.This result was consistent with the phenomenon observed in the galvanic oxidation system.In addition,the Fe-SACs/clusters was deposited onto the ceramic membrane(CM)by the spraying-crosslinking process to form a Fe-SACs/clusters@CM,which showed an effective and continuous NPX degradation in a heterogeneous PMS system.展开更多
As a new water treatment technology,Fenton-like reaction has great potential.In this study,we successfully prepared an excellent Fenton-like catalyst,which is composed of cobalt monoatoms and asymmetric subnanocluster...As a new water treatment technology,Fenton-like reaction has great potential.In this study,we successfully prepared an excellent Fenton-like catalyst,which is composed of cobalt monoatoms and asymmetric subnanoclusters(labeled CoSA/Clu-C_(2)N),and exhibits excellent peroxymonosulfate(PMS)activation reactivity.By directly comparing the catalytic properties of CoSA-C_(2)N and CoSA/Clu-C_(2)N,the synergistic effects of coasymmetric Co subclusters and Co atoms on the activation of PMS and degradation of organic micropollutants were investigated.The results showed that CoSA/Clu-C_(2)N had higher degradation rates of carbamazepine(CBZ),antipyrine(AT)and chlorobenzoic acid(CA)when combined with active oxidant PMS.The cyclic frequency of CBZ was 5.4 min^(-1),which was twice as high as the catalytic constant of CoSA-C_(2)N(2.4 min^(-1)).The results show that CoSA/Clu-C_(2)N cobalt subnanoclusters and cobalt single atom can synergistically improve the catalytic performance of activated PMS oxidation of micropollutants in water.In addition,electron paramagnetic resonance(EPR)technology has proved that the introduction of Co subnano clusters in CoSA/Clu-C_(2)N is conducive to the production of singlet oxygen(1O_(2)),thereby improving the efficiency of pollutant oxidation.This work lays a solid foundation for the future design of advanced multifunctional catalysts by carefully regulating and combining monmetallic atoms and metal subnanoclusters.展开更多
Water pollution caused by organic dyes is a critical environmental issue.Although activated carbon(AC)is commonly used for dye adsorption,its effectiveness is limited by challenges in separation and regeneration.To ad...Water pollution caused by organic dyes is a critical environmental issue.Although activated carbon(AC)is commonly used for dye adsorption,its effectiveness is limited by challenges in separation and regeneration.To address these limitations,a convenient recyclable magnetic activated carbon(MAC)was fabricated via co-precipitation and calcination method,serving as adsorbent and catalyst for methyl orange(MO)removal through a Fenton-like degradation process.Characterization techniques,including XRD,FTIR,SEM and TEM,confirmed that Fe_(3)O_(4) nanoparticles(10–20 nm)were uniformly dispersed on AC surface.The MAC maintaining a high surface area(997 m^(2)/g)and pore volume(0.795 cm^(3)/g)and exhibited superparamagnetic properties with a saturated magnetization of 5.52 emu/g,enabling effective separation from aqueous solutions by magnet.Batch adsorption studies revealed that MO adsorption onto MAC followed pseudo-second-order kinetic and Freundlich isotherm model,with a maximum adsorption capacity of 205 mg/g at 25℃.Thermodynamic analysis showed that the adsorption process was spontaneous and endothermic.Simultaneous degradation of MO and in-situ regeneration of MAC were achieved via Fenton-like reaction using sodium persulfate(PS).Under a PS concentration of 9 mmol/L,the MO removal efficiency near 95%after 60 min,with a total organic carbon(TOC)reduction of 83.1%.The reaction of Fe_(3)O_(4) and oxygen functional groups on AC surface with PS facilitated the generation of SO_(4)^(·-),thereby enhancing catalytic degradation of MO.The degradation efficiency improved as the temperature increased from 25℃ to 45℃.Cycle tests demonstrated that the MO removal efficiency of MAC remained above 90%after 5 cycles of regeneration.Overall,this study highlights the potential of MAC for efficient removal of organic dyes from water through the coupling of adsorption and Fenton-like degradation,providing a promising solution for addressing water pollution challenges.展开更多
基金supported by the Program for the National Natural Science Foundation of China(52070077,51879101,51779090)the National Program for Support of Top-Notch Young Professionals of China(2014)+1 种基金the Program for Changjiang Scholars and Innovative Research Team in University(IRT-13R17)Natural Science Foundation of Hunan Province(2022JJ20013,2021JJ40098).
文摘Carbon-doped copper ferrite(C–CuFe_(2)O_(4))was synthesized by a simple two-step hydrothermal method,which showed enhanced tetracycline hydrochloride(TCH)removal efficiency as compared to the pure CuFe_(2)O_(4) in Fenton-like reaction.A removal efficiency of 94%was achieved with 0.2 g L^(-1) catalyst and 20 mmol L^(-1) H_(2)O_(2) within 90 min.We demonstrated that 5%C–CuFe_(2)O_(4) catalyst in the presence of H_(2)O_(2) was significantly efficient for TCH degradation under the near-neutral pH(5–9)without buffer.Multiple techniques,including SEM,TEM,XRD,FTIR,Raman,XPS M€ossbauer and so on,were conducted to investigate the structures,morphologies and electronic properties of as-prepared samples.The introduction of carbon can effectively accelerate electron transfer by cooperating with Cu and Fe to activate H_(2)O_(2) to generate·OH and·O_(2)^(-).Particularly,theoretical calculations display that the p,p,d orbital hybridization of C,O,Cu and Fe can form C–O–Cu and C–O–Fe bonds,and the electrons on carbon can transfer to metal Cu and Fe along the C–O–Fe and C–O–Cu channels,thus forming electron-rich reactive centers around Fe and Cu.This work provides lightful reference for the modification of spinel ferrites in Fenton-like application.
基金The first author would like to appreciate Ministry of Higher Education, Missions Department, Egypt for the fi- nancial support granted through Channel Scheme Mission.
文摘The use of Fenton's reagent (Fe^2+/H2O2) and Fenton-like reagents containing transition metals of Cu(Ⅱ), Zn(Ⅱ), Co(Ⅱ), and Mn(Ⅱ) for an alum sludge conditioning to improve its dewaterability was investigated. The results obtained were compared with those obtained from conditioning the same alum sludge using cationic and anionic polymers. Experimental results show that Fenton's reagent was the best among the Fenton and Fenton-like reagents for the alum sludge conditioning. A considerable effectiveness of capillary suction time (CST) reduction efficiency of 47% can be achieved under test conditions of Fe^2+/H2O2 = 20/125 mg/g DS (dry solid) and pH 6.0. The observation of floc-like particles after Fenton's reagent conditioning of alum sludge suggested that the mechanism of Fenton's reagent conditioning was different from that of polymer conditioning. In spite of the lower efficiency in the CST reduction of Fenton's reagent in alum sludge conditioning compared to that of polymer conditioning, Fenton's reagent offers a more environmentally safe option. Tiffs study provided an example of proactive treatment engineering, which is aimed at seeking a safe alternative to the use of polymers in sludge conditioning towards achieving a more sustainable sludge management strategy.
基金supported by the National Key R&D Program of China(2019YFA0110600 and 2019YFA0110601)National Natural Science Foundation of China(Nos.51603134,51903178,51803134,and 51703141)+1 种基金Sichuan Province’s Science and Technology Planning Project(No.2016GZ0350)the Postgraduate Course Construction Project of Sichuan University(No.2017KCSJ036)and for their financial support.
文摘To overcome the ever-growing organic pollutions in the water system,abundant efforts have been dedicated to fabricating efficient Fenton-like carbon catalysts.However,the rational design of carbon catalysts with high intrinsic activity remains a long-term goal.Herein,we report a new N-molecule-assisted self-catalytic carbonization process in augmenting the intrinsic Fenton-like activity of metal-organic-framework-derived carbon hybrids.During carbonization,the N-molecules provide alkane/ammonia gases and the formed iron nanocrystals act as the in situ catalysts,which result in the elaborated formation of carbon nanotubes(in situ chemical vapor deposition from alkane/iron catalysts)and micro-/meso-porous structures(ammonia gas etching).The obtained catalysts exhibited with abundant Fe/Fe-Nx/pyridinic-N active species,micro-/meso-porous structures,and conductive carbon nanotubes.Consequently,the catalysts exhibit high efficiency toward the degradation of different organic pollutions,such as bisphenol A,methylene blue,and tetracycline.This study not only creates a new pathway for achieving highly active Fenton-like carbon catalysts but also takes a step toward the customized production of advanced carbon hybrids for diverse energy and environmental applications.
基金financially supported by the National Natural Science Foundation of China(No.U1810205)the National Basic Research Program of China(No.2014CB 643401)Shanxi Collaborative Innovation Center of High Value-added Utilization of Coal-related Wastes。
文摘Pure metal-doped(Cu,Zn)Fe2O4 was synthesized from Zn-containing electric arc furnace dust(EAFD)by solid-state reaction using copper salt as additive.The effects of pretreated EAFD-to-Cu2(OH)2CO3·6H2O mass ratio,calcination time,and calcination temperature on the structure and catalytic ability were systematically studied.Under the optimum conditions,the decolorization efficiency and total organic carbon(TOC)removal efficiency of the as-prepared ferrite for treating a Rhodamine B solution were approximately 90.0%and 45.0%,respectively,and the decolorization efficiency remained 83.0%after five recycles,suggesting that the as-prepared(Cu,Zn)Fe2O4 was an efficient heterogeneous Fenton-like catalyst with high stability.The high catalytic activity mainly depended on the synergistic effect of iron and copper ions occupying octahedral positions.More importantly,the toxicity characteristic leaching procedure(TCLP)analysis illustrated that the toxic Zncontaining EAFD was transformed into harmless(Cu,Zn)Fe2O4 and that the concentrations of toxic ions in the degraded solution were all lower than the national emission standard(GB/31574-2015),further confirming that the as obtained sample is an environment-friendly heterogeneous Fenton-like catalyst.
基金support to visit The University of Adelaide from the China Scholarship Council(No.201906240037).
文摘The sluggish kinetics of Fe(Ⅱ)recovery in Fenton/Fenton-like reactions significantly limits the oxidation efficiency.In this study,we for the first time use boron carbide(BC)as a green and stable promotor to enhance the reaction of Fe(Ⅲ)/H_(2)O_(2) for degradation of diverse organic pollutants.Electron paramagnetic resonance analysis and chemical quenching/capturing experiments demonstrate that hydroxyl radicals(·OH)are the primary reactive species in the BC/Fe(Ⅲ)/H_(2)O_(2) system.In situ electrochemical analysis indicates that BC remarkably boosts the Fe(Ⅲ)/Fe(Ⅱ)redox cycles,where the adsorbed Fe(Ⅲ)cations were transformed to more active Fe(Ⅲ)species with a higher oxidative potential to react with H_(2)O_(2) to produce Fe(Ⅱ).Thus,the recovery of Fe(Ⅱ)from Fe(Ⅲ)is facilitated over BC surface,which enhancesOH generation via Fenton reactions.Moreover,BC exhibits outstanding reusability and stability in successive cycles and avoids the secondary pollution caused by conventional organic and metalliferous promotors.Therefore,metal-free BC boosting Fe(Ⅲ)/H_(2)O_(2) oxidation of organics provides a green and advanced strategy for water decontamination.
基金Project(CZQ13002)supported by the Special Fund for Basic Scientific Research of Central Universities,China
文摘Heterogeneous Fenton-like process using fly ash as a catalyst was studied to degrade n-butyl xanthate form aqueous solution. The different reaction parameters on the degradation efficiency of the process were investigated. The fly ash/H2O2 catalyst possesses a high oxidation activity for n-butyl xanthate degradation in aqueous solution. It is found that both the dosage of catalyst and initial solution pH significantly affect the n-butyl xanthate conversion efficient. The results indicate that by using 1.176 mmol/L H2O2 and 1.0 g/L fly ash catalyst with mass fraction of 4.14% Fe(III) oxide at pH 3.0, almost 96.90% n-butyl xanthate conversion and over 96.66% COD removal can be achieved within 120 min with heterogeneous catalysis by fly ash. CS2 as an intermediate of n-butyl xanthate oxidation. Finally, it is demonstrated that the fly ash/H2O2 catalytic oxidation process can be an efficient method for the treatment of n-butyl xanthate containing wastewater.
基金Supported by the National Natural Science Foundation of China(21407052)Key Project in the National Science&Technology Pillar Program during the Twelfth Five-year Plan Period(2012BAC02B04)+2 种基金Research Fund for the Doctoral Program of Higher Education of China(201201420087)SRF from ROCS and SEMthe Fundamental Research Funds for the Central Universities(2014QN144)
文摘In this study,a novel magnetically separable adsorbent,molecular imprinting magnetic γ-Fe_2O_3/crosslinked chitosan composites(MIPs),were prepared by a microemulsion process.Adsorption and Fenton-like oxidative degradation of a model pharmaceutical pollutant norfloxacin(NOR) by using MIPs were investigated.Various characterization methods were used to study the properties of MIPs,and it is suggested that the hydroxyl groups are the main adsorption sites for NOR.MIPs present better selective adsorption for NOR than its reference antibiotic sulfadiazine.The NOR adsorption data can be well fitted by Langmuir isotherm model and pseudosecond-order kinetic model.The optimum pH range for NOR adsorption is 7-10.In addition,the MIP-catalyzed Fenton-like system(MIPs/H_2O_2) exhibits remarkably faster removal rate for NOR than the case of γ-Fe_2O_3/H_2O_2.The result indicates that MIPs will be a good functional material in decontamination of pharmaceutical wastewaters since MIPs can be magnetically recycled after the treatment.
基金Sponsored by the National High Technology Research and Development Program of China(863 Program) (Grant No.2006AA06Z306)the Natural Science Foundation of China under the Scheme of Innovation Group Fund
文摘During the oxidative degradation of nonbiodegradable Malachite green (MG) by means of H2O2 /FeIIIR (iron supported on ion-exchage resin) in a dynamic column,the binding energy of the Fe(2p3/2) region for XPS spectra was found to be different between the top layer and the bottom layer in this column. Based on the data from XPS spectra and DMPO-OH·signal by EPR spectra,it is shown that the formation of ferryl (IV) is the key step for the oxidation of MG. The ferryl (IV) species can oxidize MG,and its redox potential is about 0. 739 - 0. 803 V measured by cyclic voltammograms (CV) . The catalytic capability of ferryl (IV) species was also evaluated,and it is found that it can promote the decomposition of H2O2 more efficiently than ferric iron. The removal rate of MG mainly depends on the adsorption of catalyst. Both ferryl (IV) and HO·radicals are the reactive species in the system. The oxidation of HO·is only a small part of the overall removal rate. Based on the obtained results,a possible mechanism for a resin-supported Fenton-like oxidation reaction is proposed.
基金financially supported by the National Science Fund for Excellent Young Scholars of China (No. 52022111)the Distinguished Young Scholars of China (No. 51825403)the National Natural Science Foundation of China (Nos. 51634010, 51974379)。
文摘Between the two major arsenic-containing salts in natural water, arsenite(As(Ⅲ)) is far more harmful to human and the environment than arsenate(As(V)) due to its high toxicity and transportability. Therefore, preoxidation of As(Ⅲ) to As(V) is considered to be an effective means to reduce the toxicity of arsenic and to promote the removal efficiency of arsenic. Due to their high catalytic activity and arsenic affinity, iron-based functional materials can quickly oxidize As(Ⅲ) to As(V) in heterogeneous Fenton-like systems, and then remove As(V) from water through adsorption and surface coprecipitation. In this review, the effects of different iron-based functional materials such as zero-valent iron and iron(hydroxy) oxides on arsenic removal are compared, and the catalytic oxidation mechanism of As(Ⅲ) in heterogeneous Fenton process is further clarified. Finally, the main challenges and opportunities faced by iron-based As(Ⅲ) oxidation functional materials are prospected.
基金Funded by the Specialized Research Fund for the Doctoral Program of Higher Education of China(20114219110002)the Natural Science Foundation of Hubei Province(Nos.2014CFB810&2014CFB812)
文摘Magnetically modified Fe-Al pillared bentonite(Fe3O4/ Fe-Al-Bent) was prepared via chemical co-precipitation method and characterized by powder X-ray diffraction(XRD), Brunauer-EmmettTeller(BET), Fourier transform infrared spectroscopy(FTIR) and scanning electron microscopy(SEM). A series of experiments were carried out to investigate the degradation of Orange II by the obtained heterogeneous catalysts in the presence of H2O2. The experimental result indicated that the synthetic materials had a high catalytic activity and good reusability.
文摘Oxidation by Fenton like reactions (Fe3+/H2O2) is economically process for destructive hazardous pollutants in waste water. The effects of different parameters such as, amaranth red dye, ferric chloride, hydrogen peroxide concentrations, pH value of solution, temperature and the presence of inorganic ions (carbonate, nitrate, chloride) on oxidative decolorization of amaranth were investigated. Amaranth degradation by (Fe3+/H2O2) reagent was found to follow first order kinetic model. Under optimum condition, pH = 2.6 and [FeCl3] = 3.75 × 10-4 mol·dm-3, the amaranth in aqueous solution with an initial concentration of 5 × 10-5 mol·dm-3 was degraded by 95% within 6 minutes. Increasing temperature in the range of 298 - 308 K increases the rate of dye degradation. Thermodynamic constants, ΔH*, ΔS* and ΔG* were evaluated. The results implied that the oxidation process was favorable and endothermic.
基金the Natural Science Foundation of Chongqing (CSTC2007BB6155)the Key Lab Visiting Scholar Foundation of Chongqing University (KLVF-2006-5)
文摘Azo dyes discharged in the environment are persistent organic pollutants (POPs), which are very difficult to remove. We developed a microwave-assisted Fenton-like process to degrade methyl orange (MO), an azo dye, with hydrogen peroxide (H2O2) catalyzed by chromium compounds coexisting with MO in the solution. Comparison between the Cr(Ⅲ)-H2O2 and Cr(Ⅵ)-H2O2 systems shows" that Cr(Ⅵ) has a stronger and more stable catalytical activity than Cr(Ⅲ), and Cr(Ⅲ) is more susceptible to a change in the acidity or alkalinity of the reaction system. With a Cr(Ⅵ) concentration of 10 mmol L^-1 or a Cr(Ⅲ) concentration of 12 mmol L^-1 in the solution under the microwave irradiation of a power larger than 300 W for 3 min, 10 mmol L^-1 H2O2 can degrade more than 95% of 1 000 mg L^-1 methyl orange; when the microwave power is increased to 700 W, the same amount of H2O2 can degrade all methyl orange in the solution with the same amount of Cr(Ⅵ ) catalyst. Ultraviolet-visible spectrography indicates the cleavage of the azo bond in methyl orange after treatment, suggesting the potential o of this Fenton-like process to degrade azo dye POPs. Reusing waste chromium compounds coexisting with dyestuff in wastewater to catalyze the degradation of azo dyes could be a cost-effective technique for azo dyes and chromate manufacturers and/or users to treat their wastewater and prevent POPs from endangering the environment. This is of particula importance to controlling the water quality of the Three Gorges Reservoir.
文摘The present work evaluates the feasibility of using the raw material collected from discarded zinc-carbon batteries as heterogeneous catalyst to degrade the dye Indigo Carmine in an aqueous solution. Besides the evident environmental application, this work also presents an economic alternative for the production of new catalysts used to remediate polluted waters. For this, discarded carbon-zinc batteries were gathered, disassembled and their anodic paste collected. After acidic treatment and calcination at 500°C, characterization measurements, i.e. flame atomic absorption spectroscopy (FAAS), nitrogen sorption, X-ray diffraction (XRD) and scanning electron microscopy (SEM), revealed that the so-obtained material consisted mainly of ZnMn2O4. This material acts as a heterogeneous catalyst in a Fenton-like process that degrades the dye Indigo Carmine in water. That is probably due to the presence of Mn(III) (manganese in the +3 oxidation state) in this material that triggers the decomposition of hydrogen peroxide (H2O2) to yield hydroxyl radicals (HO·). Moreover, direct infusion electrospray ionization coupled to high resolution mass spectrometry (ESI-HRMS) was employed to characterize the main by-products resulting from such degradation process. These initial results thus indicate that raw materials from waste batteries can therefore be potentially employed as efficient Fenton-like catalysts to degrade organic pollutants in an aqueous solution.
基金supported by National Natural Science Foundation of China(No.52170086)Shandong Provincial Excellent Youth(No.ZR2022YQ47)。
文摘Fabrication of single atom catalysts(SACs)by a green and gentle method is important for their practical Fenton-like use.In this work,a high effective iron-based catalyst was prepared from the iron-rich Enteromorpha for NPX degradation via peroxymonosulfate(PMS).Both Fe-SACs and iron-clusters was fabricated from the intrinsic iron element in Enteromorpha after the urea saturation.The Fe-SACs/clusters can achieve 100%of NPX oxidation within 20 min with the k_(obs)of 0.282 min^(-1).Quenching tests indicated that the radical pathways were not dominated in the catalytic systems,and strong electron transfer process can be induced in the Fe-SACs/clusters+PMS system by using the NPX as electron donor and FeSACs/clusters/PMS^*complexes as electron acceptor.This result was consistent with the phenomenon observed in the galvanic oxidation system.In addition,the Fe-SACs/clusters was deposited onto the ceramic membrane(CM)by the spraying-crosslinking process to form a Fe-SACs/clusters@CM,which showed an effective and continuous NPX degradation in a heterogeneous PMS system.
基金supported by the National Natural Science Foundation of China(No.22375019).
文摘As a new water treatment technology,Fenton-like reaction has great potential.In this study,we successfully prepared an excellent Fenton-like catalyst,which is composed of cobalt monoatoms and asymmetric subnanoclusters(labeled CoSA/Clu-C_(2)N),and exhibits excellent peroxymonosulfate(PMS)activation reactivity.By directly comparing the catalytic properties of CoSA-C_(2)N and CoSA/Clu-C_(2)N,the synergistic effects of coasymmetric Co subclusters and Co atoms on the activation of PMS and degradation of organic micropollutants were investigated.The results showed that CoSA/Clu-C_(2)N had higher degradation rates of carbamazepine(CBZ),antipyrine(AT)and chlorobenzoic acid(CA)when combined with active oxidant PMS.The cyclic frequency of CBZ was 5.4 min^(-1),which was twice as high as the catalytic constant of CoSA-C_(2)N(2.4 min^(-1)).The results show that CoSA/Clu-C_(2)N cobalt subnanoclusters and cobalt single atom can synergistically improve the catalytic performance of activated PMS oxidation of micropollutants in water.In addition,electron paramagnetic resonance(EPR)technology has proved that the introduction of Co subnano clusters in CoSA/Clu-C_(2)N is conducive to the production of singlet oxygen(1O_(2)),thereby improving the efficiency of pollutant oxidation.This work lays a solid foundation for the future design of advanced multifunctional catalysts by carefully regulating and combining monmetallic atoms and metal subnanoclusters.
基金supported by the National Key Research and Development Program of China(grant No.2022YFC3701900)the National Natural Science Foundation of China(grant No.22278423,U21A20316)the Science Foundation of China University of Petroleum,Beijing(grant No.2462021QNXZ007).
文摘Water pollution caused by organic dyes is a critical environmental issue.Although activated carbon(AC)is commonly used for dye adsorption,its effectiveness is limited by challenges in separation and regeneration.To address these limitations,a convenient recyclable magnetic activated carbon(MAC)was fabricated via co-precipitation and calcination method,serving as adsorbent and catalyst for methyl orange(MO)removal through a Fenton-like degradation process.Characterization techniques,including XRD,FTIR,SEM and TEM,confirmed that Fe_(3)O_(4) nanoparticles(10–20 nm)were uniformly dispersed on AC surface.The MAC maintaining a high surface area(997 m^(2)/g)and pore volume(0.795 cm^(3)/g)and exhibited superparamagnetic properties with a saturated magnetization of 5.52 emu/g,enabling effective separation from aqueous solutions by magnet.Batch adsorption studies revealed that MO adsorption onto MAC followed pseudo-second-order kinetic and Freundlich isotherm model,with a maximum adsorption capacity of 205 mg/g at 25℃.Thermodynamic analysis showed that the adsorption process was spontaneous and endothermic.Simultaneous degradation of MO and in-situ regeneration of MAC were achieved via Fenton-like reaction using sodium persulfate(PS).Under a PS concentration of 9 mmol/L,the MO removal efficiency near 95%after 60 min,with a total organic carbon(TOC)reduction of 83.1%.The reaction of Fe_(3)O_(4) and oxygen functional groups on AC surface with PS facilitated the generation of SO_(4)^(·-),thereby enhancing catalytic degradation of MO.The degradation efficiency improved as the temperature increased from 25℃ to 45℃.Cycle tests demonstrated that the MO removal efficiency of MAC remained above 90%after 5 cycles of regeneration.Overall,this study highlights the potential of MAC for efficient removal of organic dyes from water through the coupling of adsorption and Fenton-like degradation,providing a promising solution for addressing water pollution challenges.