BiFeO_(3)(BFO)has received considerable attention as a lead-free ferroelectric film due to its large theoretical remnant polariza-tion.However,BFO suffers from a large leakage current,resulting in poor ferroelectric p...BiFeO_(3)(BFO)has received considerable attention as a lead-free ferroelectric film due to its large theoretical remnant polariza-tion.However,BFO suffers from a large leakage current,resulting in poor ferroelectric properties.Herein,the sol-gel method was used to deposit a series of BFO-based thin films on fluorine-doped tin oxide substrates,and the effects of the substitution of the elements Co,Cu,Mn(B-site)and Sm,Eu,La(A-site)on the crystal structure,ferroelectricity,and leakage current of the BFO-based thin films were invest-igated.Results confirmed that lattice distortion by X-ray diffraction can be attributed to the substitution of individual elements in the BFO-based films.Sm and Eu substitutions contribute to the lattice distortion in a pseudo-cubic structure,while La is biased toward pseudo-tet-ragonal.Piezoelectric force microscopy confirmed that reversible switching of ferroelectric domains by nearly 180°can be realized through the prepared films.The ferroelectric hysteresis loops showed that the order for the polarization contribution is as follows:Cu>Co>Mn(B-site),Sm>La>Eu(A-site).The current density voltage curves indicated that the order for leakage contribution is as follows:Mn<Cu<Co(B-site),La<Eu<Sm(A-site).Scanning electron microscopy showed that the introduction of Cu elements facilitates the formation of dense grains,and the grain size distribution statistics proved that La element promotes the reduction of grain size,leading to the increase of grain boundaries and the reduction of leakage.Finally,a Bi_(0.985)Sm_(0.045)La_(0.03)Fe_(0.96)Co_(0.02)Cu_(0.02)O_(3)(SmLa-CoCu)thin film with a qualitative leap in the remnant polarization from 25.5(Bi_(0.985)Sm_(0.075)FeO_(3))to 98.8µC/cm^(2)(SmLa-CoCu)was prepared through the syner-gistic action of Sm,La,Co,and Cu elements.The leakage current is also drastically reduced from 160 to 8.4 mA/cm^(2)at a field strength of 150 kV/cm.Thus,based on the increasing entropy strategy of chemical engineering,this study focuses on enhancing ferroelectricity and decreasing leakage current,providing a promising path for the advancement of ferroelectric devices.展开更多
Hafnia-based ferroelectric materials, like Hf_(0.5)Zr_(0.5)O_(2)(HZO), have received tremendous attention owing to their potentials for building ultra-thin ferroelectric devices. The orthorhombic(O)-phase of HZO is fe...Hafnia-based ferroelectric materials, like Hf_(0.5)Zr_(0.5)O_(2)(HZO), have received tremendous attention owing to their potentials for building ultra-thin ferroelectric devices. The orthorhombic(O)-phase of HZO is ferroelectric but metastable in its bulk form under ambient conditions, which poses a considerable challenge to maintaining the operation performance of HZO-based ferroelectric devices. Here, we theoretically addressed this issue that provides parameter spaces for stabilizing the O-phase of HZO thin-films under various conditions. Three mechanisms were found to be capable of lowering the relative energy of the O-phase, namely, more significant surface-bulk portion of(111) surfaces, compressive c-axis strain,and positive electric fields. Considering these mechanisms, we plotted two ternary phase diagrams for HZO thin-films where the strain was applied along the in-plane uniaxial and biaxial, respectively. These diagrams indicate the O-phase could be stabilized by solely shrinking the film-thickness below 12.26 nm, ascribed to its lower surface energies. All these results shed considerable light on designing more robust and higher-performance ferroelectric devices.展开更多
The inefficient separation of photogenerated carriers has become a serious problem that limits the photoelectrochemical(PEC)performance of semiconductors.Herein,a sol-gel method was used to prepare BiFeO_(3) ferroelec...The inefficient separation of photogenerated carriers has become a serious problem that limits the photoelectrochemical(PEC)performance of semiconductors.Herein,a sol-gel method was used to prepare BiFeO_(3) ferroelectric thin films with FTO and FTO/Au as substrates,respectively.The polarization electric field of the ferroelectric can more effectively separate the carriers generated in the photoelectrode.Meanwhile,the introduction of an Au buffer layer can reduce the resistance in the process of charge transfer,accelerate the carrier migration,and enhance the efficiency of the charge separation.Under light irradiation,Au/BiFeO_(3) photoelectrode exhibited an extraordinary improvement in PEC water splitting compared with BiFeO_(3).In addition,the ferroelectric polarization electric field causes band bending,which further accelerates the separation of electrons and holes and improves the PEC performance of the photoelectrode.This work promotes the effective application of ferroelectric films in PEC water splitting.展开更多
An improved transverse Ising model is proposed by taking the depolarization field effect into account. Within the framework of mean-held theory we investigate the behavior of the ferroelectric thin film. Our results s...An improved transverse Ising model is proposed by taking the depolarization field effect into account. Within the framework of mean-held theory we investigate the behavior of the ferroelectric thin film. Our results show that the influence of the depolarization field is to flatten the spontaneous polarization profile and make the films more homogeneous, which is consistent with Ginzburg Landau theory. This fact shows that this model can be taken as an effective model to deal with the ferroelectric film and can be further extended to refer to quantum effect. The competition between quantum effect and depolarization field induces some interesting phenomena on ferroelectric thin films.展开更多
Within the framework of modified Ginzburg Landau-Devonshire phenomenological theory, a ferroelectric bilayer film with a transition layer within each constituent film and an interfacial coupling between two materials ...Within the framework of modified Ginzburg Landau-Devonshire phenomenological theory, a ferroelectric bilayer film with a transition layer within each constituent film and an interfacial coupling between two materials has been studied. Properties including the Curie temperature and the spontaneous polarization of a bilayer film composed of two equally thick ferroelectric constituent films are discussed. The results show that the combined effect of the transition layer and the interracial coupling plays an important role in explaining the interesting behaviour of ferroelectric multilayer structures consisting of two ferroelectrie materials.展开更多
Bi3.25La0.75Ti3O12(BLT)thin films were prepared on Pt/Ti/SiO2/Si substrate by the sol-gel method.The effect of annealing on their structures and ferroelectric properties was investigated.The XRD patterns indicate th...Bi3.25La0.75Ti3O12(BLT)thin films were prepared on Pt/Ti/SiO2/Si substrate by the sol-gel method.The effect of annealing on their structures and ferroelectric properties was investigated.The XRD patterns indicate that the BLT films annealed at different temperatures are randomly orientated and the single perovskite phase is obtained at 550℃.The remmant polarization increnses and the coercive field decreases with the annealing temperature increasing.The leakage current density of the BLT films annealed at 700℃ is about 5.8×10^-8A/cm^2 at the electrie field of 250kv/cm.展开更多
Micro-bolometer pixel is an essential element in the infrared focal plane array (IRFPA) of infrared detectors. Its response to infrared radiation is analyzed in this paper. The pixel structure is modeled as a compos...Micro-bolometer pixel is an essential element in the infrared focal plane array (IRFPA) of infrared detectors. Its response to infrared radiation is analyzed in this paper. The pixel structure is modeled as a composite laminate thin plate whose sides are measured with the thickness from 0.1-1 μm. Its middle ply is a ferroelectric thin film. Its top surface is covered with a gold or platinum infrared absorber, while the bottom surface is deposited with platinum or lanthanum-nickel. Meanwhile both surfaces are a pair of electrodes. The top surface receives infrared radiation pulses successively. For the very tiny micro bolometer pixel, it is assumed that the infrared radiation is uniformly distributed on the plate. Furthermore, as the ratio of the side length to the thickness of the plate is dramatically large, it is assumed that heat transfer only takes place across the thickness of the plate. The thermal-electric-mechanical coupling governing equations are solved in a form of Fourier series. Results of the displacement, temperature variation and electric output signals of the micro bolometer pixel structure under infrared radiation are obtained, analyzed and compared with experimental data.展开更多
The effects of internal stresses and depolarization fields on the properties of epitaxial ferroelectric perovskite thin films are discussed by employing the dynamic Ginzbur~Landau equation (DCLE). The numerical solu...The effects of internal stresses and depolarization fields on the properties of epitaxial ferroelectric perovskite thin films are discussed by employing the dynamic Ginzbur~Landau equation (DCLE). The numerical solution for BaTiO3 film shows that internal stress and the depolarization field have the most effects on ferroelectric properties such as polarization, Curie temperature and susceptibility. With the increase of the thickness of the film, the polarization of epitaxia] ferroelectric thin film is enhanced rapidly under high internal compressively stress. With the thickness exceeding the critical thickness for dislocation formation, the polarization increases slowly and even weakens due to relaxed internal stresses and a weak electrical boundary condition. This indicates that the effects of mechanical and electrical boundary conditions both diminish for ferroelectric thick films. Consequently, our thermodynamic method is a full scale model that can predict the properties of ferroelectric perovskite films in a wide range of film thickness.展开更多
Ferroelectric domain switching under low voltage or short pulses is of interest for the development of high-density random access memory (FRAM) devices. Being necessarily very small in size, instability and back swi...Ferroelectric domain switching under low voltage or short pulses is of interest for the development of high-density random access memory (FRAM) devices. Being necessarily very small in size, instability and back switching often occur when the external voltage is removed, which creates serious problems. In this investigation, a general approach to determine the minimum size of ferroelectric domain to avoid back switching was developed, and as an example, a 180° domain in a ferroelectric thin film covered by the upper and lower electrodes was considered in detail. We note that our approach is generally applicable to many other fields, including phase transformation, nucleation and expansion of dislocation loops in thin films, etc.展开更多
Fatigue-free Bi3.2La0.8Ti3O12 ferroelectric thin films were successfully prepared on p-Si (100) substrates using metalorganic solution deposition process. The orientation and formation of 5-layers thin films were st...Fatigue-free Bi3.2La0.8Ti3O12 ferroelectric thin films were successfully prepared on p-Si (100) substrates using metalorganic solution deposition process. The orientation and formation of 5-layers thin films were studied under different processing conditions using XRD. Experimental results indicate that increase in annealing time at 700 ℃ after preannealing for 10 min at 400 ℃ can remarkably increase (200)-orientation of the films derived from the precursor solutions with two contents of citric acid. Meanwhile, high content of citric acid increases the film thickness and is conducive to the α-orientation of the films with the preannealing, and low concentration of the solution is conducive to the c-orientation of the films without the preannealing.展开更多
Ferroelectric materials have many interesting physical properties such as ferroelectricity, pyroelectricity, piezoelectricity, and opto-electricity, and applying ferroelectric materials in the forms of thin and thick ...Ferroelectric materials have many interesting physical properties such as ferroelectricity, pyroelectricity, piezoelectricity, and opto-electricity, and applying ferroelectric materials in the forms of thin and thick films and integrating them on the silicon substrate as electronic and MEMS devices is a very attractive research area and challenging. In this paper, we report our research works on ferroelectric MEMS and ferroelectric films for electronic device applications. Pyroelectric thin film infrared sensors have been made, characterized, and a 32×32 array with its size of 1cm×1cm has been obtained on Si membrane. Ferroelectric thin films in amorphous phase have been applied to make silicon based hydrogen gas sensors with the metal/amorphous ferroelectric film/metal device structure, and its turn-on voltage of about 4.5V at ~1000 ppm in air is about 7 times of the best value reported in the literature. For the application of electron emission flat panel display, ferroelectric BST thin films with excess Ti concentrations have been coated on Si tips, the threshold voltage of those ferroelectric film coated tips has been reduced about one order from ~70 V/μm to 4~10 V/μm for different Ti concentrations, and however, the electron emission current density has been increased at least 3~4 order for those coated tips compared to that of the bare Si tips. To fulfill in the thickness gap between thin film of typical ~1 μm made by PVD/CVD and polished ceramic wafer of ~50 μm from the bulk, piezoelectric films with thickness in a range of 1~30 μm have been successfully deposited on Si substrate at a low temperature of 650oC by a novel hybridized deposition technique, and piezoelectric MEMS ultrasonic arrays have been very recently obtained with the sound pressure level up to ~120 dB. More detailed results will be presented and mechanisms will be discussed.展开更多
Based on the transverse Ising model in the framework of the mean field approximation, this paper discusses a ferroelectric bilayer film with the surface transition layers within each constituent slab and an antiferroe...Based on the transverse Ising model in the framework of the mean field approximation, this paper discusses a ferroelectric bilayer film with the surface transition layers within each constituent slab and an antiferroelectric interracial coupling between two slabs. The hysteresis loop of a bilayer film is investigated. The results show that the surface transition layer in a ferroelectric bilayer film plays a significant role in realizing the multiple-state memory.展开更多
The size effects of the critical behaviors for the systems of interacting spins are discussed extensively inliterature.In this paper,the finite-size dependence of the critical temperature and susceptibility of the fer...The size effects of the critical behaviors for the systems of interacting spins are discussed extensively inliterature.In this paper,the finite-size dependence of the critical temperature and susceptibility of the ferroelectric thinfilm are investigated numerically based on the four-state Potts model with the nearest-neighbor interactions between thedipole moments.The four orientations of the domains exist in the ferroelectric film and the movement of the domainwalls determines the polarization switching process besides the boundary conditions of the film.The critical exponentsare obtained and our investigations show that the boundary conditions play the important roles for the ferroelectricproperties of the thin films and the critical behavior of the thin films strongly depends on the feature of the surface.展开更多
By taking into account structural transition zones near the lateral and thickness direction edges,this paper uses a modified transverse Ising model to study dielectric properties of a finite size ferroelectric thin fi...By taking into account structural transition zones near the lateral and thickness direction edges,this paper uses a modified transverse Ising model to study dielectric properties of a finite size ferroelectric thin film in the framework of the mean-field approximation.The results indicate that the influence of the lateral size on the dielectric susceptibility cannot be neglected and lateral structural transition zones could be a crucial factor that improves the mean susceptibility of the fixed size film.展开更多
BaTiO3 (BTO) ferroelectric thin films are prepared by the sol,el method. The fabrication and the optical properties of an InGaN/GaN multiple quantum well light emitting diode (LED) with amorphous BTO ferroelectric...BaTiO3 (BTO) ferroelectric thin films are prepared by the sol,el method. The fabrication and the optical properties of an InGaN/GaN multiple quantum well light emitting diode (LED) with amorphous BTO ferroelectric thin film are studied. The photolumineseence (PL) of the BTO ferroelectric film is attributed to the structure. The ferroeleetric film which annealed at 673 K for 8 h has the better PL property. The peak width is about 30 nm from 580 nm to 610 nm, towards the yellow region. The mixed electroluminescence (EL) spectrum of InGaN/GaN multiple quantum well LED with 150-nm thick amorphous BTO ferroelectric thin film displays the blue-white light. The Commission Internationale De L'Eclairage (CIE) coordinate of EL is (0.2139, 0.1627). EL wavelength and intensity depends on the composition, microstructure and thickness of the ferroelectric thin film. The transmittance of amorphous BTO thin film is about 93% at a wavelength of 450 nm-470 nm. This means the amorphous ferroelectrie thin films can output more blue-ray and emission lights. In addition, the amorphous ferroelectric thin films can be directly fabricated without a binder and used at higher temperatures (200 ℃-400 ℃). It is very favourable to simplify the preparation process and reduce the heat dissipation requirements of an LED. This provides a new way to study LEDs.展开更多
Many distinguished properties of epitaxial ferroelectric thin films can be tunable through the misfit strain.The strain tunability of ferroelectric and dielectric properties in epitaxial lead titanate ultrathin films ...Many distinguished properties of epitaxial ferroelectric thin films can be tunable through the misfit strain.The strain tunability of ferroelectric and dielectric properties in epitaxial lead titanate ultrathin films is numerically investigated by using a phase field model,in which the surface effect of polarization is taken into account.The response of polarization to the applied electric field in the thickness direction is examined with different misfit strains at room temperature.It is found that a compressive misfit strain increases the coercive field and the remanent polarization while a tensile misfit strain decreases both of them.The nonlinear dielectric constants of the thin films with tensile misfit strains are much larger than those of the thin films without misfit strains,which are attributed to the existence of the a/c/a/c multiple domains in the thin films under tensile misfit strains.展开更多
By modifying the interchange interactions and the transverse fields on the epitaxy surface layer, this paper studies the phase transition properties of an n-layer ferroelectric thin film by the Fermi-type Green's fun...By modifying the interchange interactions and the transverse fields on the epitaxy surface layer, this paper studies the phase transition properties of an n-layer ferroelectric thin film by the Fermi-type Green's function technique based on the transverse Ising model with a four-spin interaction. The special attention is given to the effect of the epitaxy surface layer on the first-order phase transition properties in the parameter space constructed by the ratios of the bulk transverse field and the bulk four-spin interaction to the bulk two-spin interaction with the framework of the higher-order decoupling approximation to the Fermi-type Green's function. The results show that the first-order phase transition properties will be changed significantly due to the modification of interchange interaction and transverse field parameters on the epitaxy surface layer. The dependence of the first-order phase transition properties on the thickness of ferroelectric thin films is also discussed.展开更多
Polycrystalline Bi_4Ti_3O_(12) thin films with various fractions of a-axis, c-axis and random orientations have been grown on Pt(111)/Ti/Si O_2/Si substrates by laser-ablation under different kinetic growth condit...Polycrystalline Bi_4Ti_3O_(12) thin films with various fractions of a-axis, c-axis and random orientations have been grown on Pt(111)/Ti/Si O_2/Si substrates by laser-ablation under different kinetic growth conditions. The relationship between the structure and ferroelectric property of the films was investigated, so as to explore the possibility of enhancing ferroelectric polarization by controlling the preferred orientation. The structural characterization indicated that the large growth rate and high oxygen background pressure were both favorable for the growth of non-c-axis oriented grains in the Bi_4Ti_3O_(12) thin films. The films with high fractions of a-axis and random orientations, i e, f(a-sxis) = 28.3% and f(random) = 69.6%, could be obtained at the deposition temperature of 973 K, oxygen partial pressure of 15 Pa and laser fluence of 4.6 J/cm^2, respectively. It was also noted that the variation of ferroelectric polarization was in accordance with the evolution non-c-axis orientation. A large value of remanent polarization(2 Pr = 35.5 μC/cm^2) was obtained for the Bi_4Ti_3O_(12) thin films with significant non-c-axis orientation, even higher than that of rare-earth-doped Bi_4Ti_3O_(12) films.展开更多
基金supported by the National Natural Science Foundation of China(No.22371013)the National Key Research and Development Program of China(No.2018YFA0703700)+3 种基金the Fundamental Research Funds for the Central Universities,China(Nos.FRF-IDRY-19-007 and FRF-TP-19-055A2Z)the National Program for Support of Top-notch Young Professionals,Chinathe Young Elite Scientists Sponsorship Program by the China Association for Science and Technology(CAST),China(No.2019-2021 QNRC)the“Xiaomi Young Scholar”Funding Project,China.
文摘BiFeO_(3)(BFO)has received considerable attention as a lead-free ferroelectric film due to its large theoretical remnant polariza-tion.However,BFO suffers from a large leakage current,resulting in poor ferroelectric properties.Herein,the sol-gel method was used to deposit a series of BFO-based thin films on fluorine-doped tin oxide substrates,and the effects of the substitution of the elements Co,Cu,Mn(B-site)and Sm,Eu,La(A-site)on the crystal structure,ferroelectricity,and leakage current of the BFO-based thin films were invest-igated.Results confirmed that lattice distortion by X-ray diffraction can be attributed to the substitution of individual elements in the BFO-based films.Sm and Eu substitutions contribute to the lattice distortion in a pseudo-cubic structure,while La is biased toward pseudo-tet-ragonal.Piezoelectric force microscopy confirmed that reversible switching of ferroelectric domains by nearly 180°can be realized through the prepared films.The ferroelectric hysteresis loops showed that the order for the polarization contribution is as follows:Cu>Co>Mn(B-site),Sm>La>Eu(A-site).The current density voltage curves indicated that the order for leakage contribution is as follows:Mn<Cu<Co(B-site),La<Eu<Sm(A-site).Scanning electron microscopy showed that the introduction of Cu elements facilitates the formation of dense grains,and the grain size distribution statistics proved that La element promotes the reduction of grain size,leading to the increase of grain boundaries and the reduction of leakage.Finally,a Bi_(0.985)Sm_(0.045)La_(0.03)Fe_(0.96)Co_(0.02)Cu_(0.02)O_(3)(SmLa-CoCu)thin film with a qualitative leap in the remnant polarization from 25.5(Bi_(0.985)Sm_(0.075)FeO_(3))to 98.8µC/cm^(2)(SmLa-CoCu)was prepared through the syner-gistic action of Sm,La,Co,and Cu elements.The leakage current is also drastically reduced from 160 to 8.4 mA/cm^(2)at a field strength of 150 kV/cm.Thus,based on the increasing entropy strategy of chemical engineering,this study focuses on enhancing ferroelectricity and decreasing leakage current,providing a promising path for the advancement of ferroelectric devices.
基金Project supported by the Fund from the Ministry of Science and Technology(MOST)of China(Grant No.2018YFE0202700)the National Natural Science Foundation of China(Grant Nos.11974422 and 12104504)+2 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB30000000)the Fundamental Research Funds for the Central Universitiesthe Research Funds of Renmin University of China(Grant No.22XNKJ30)。
文摘Hafnia-based ferroelectric materials, like Hf_(0.5)Zr_(0.5)O_(2)(HZO), have received tremendous attention owing to their potentials for building ultra-thin ferroelectric devices. The orthorhombic(O)-phase of HZO is ferroelectric but metastable in its bulk form under ambient conditions, which poses a considerable challenge to maintaining the operation performance of HZO-based ferroelectric devices. Here, we theoretically addressed this issue that provides parameter spaces for stabilizing the O-phase of HZO thin-films under various conditions. Three mechanisms were found to be capable of lowering the relative energy of the O-phase, namely, more significant surface-bulk portion of(111) surfaces, compressive c-axis strain,and positive electric fields. Considering these mechanisms, we plotted two ternary phase diagrams for HZO thin-films where the strain was applied along the in-plane uniaxial and biaxial, respectively. These diagrams indicate the O-phase could be stabilized by solely shrinking the film-thickness below 12.26 nm, ascribed to its lower surface energies. All these results shed considerable light on designing more robust and higher-performance ferroelectric devices.
基金This work was supported by National Natural Science Foundation of China(Grant No.51702130)the Innovation/Entrepreneurship Program of Jiangsu Province and the project of Zhenjiang Key Laboratory of Advanced Sensing Materials and Devices(No.SS2018001)。
文摘The inefficient separation of photogenerated carriers has become a serious problem that limits the photoelectrochemical(PEC)performance of semiconductors.Herein,a sol-gel method was used to prepare BiFeO_(3) ferroelectric thin films with FTO and FTO/Au as substrates,respectively.The polarization electric field of the ferroelectric can more effectively separate the carriers generated in the photoelectrode.Meanwhile,the introduction of an Au buffer layer can reduce the resistance in the process of charge transfer,accelerate the carrier migration,and enhance the efficiency of the charge separation.Under light irradiation,Au/BiFeO_(3) photoelectrode exhibited an extraordinary improvement in PEC water splitting compared with BiFeO_(3).In addition,the ferroelectric polarization electric field causes band bending,which further accelerates the separation of electrons and holes and improves the PEC performance of the photoelectrode.This work promotes the effective application of ferroelectric films in PEC water splitting.
文摘An improved transverse Ising model is proposed by taking the depolarization field effect into account. Within the framework of mean-held theory we investigate the behavior of the ferroelectric thin film. Our results show that the influence of the depolarization field is to flatten the spontaneous polarization profile and make the films more homogeneous, which is consistent with Ginzburg Landau theory. This fact shows that this model can be taken as an effective model to deal with the ferroelectric film and can be further extended to refer to quantum effect. The competition between quantum effect and depolarization field induces some interesting phenomena on ferroelectric thin films.
文摘Within the framework of modified Ginzburg Landau-Devonshire phenomenological theory, a ferroelectric bilayer film with a transition layer within each constituent film and an interfacial coupling between two materials has been studied. Properties including the Curie temperature and the spontaneous polarization of a bilayer film composed of two equally thick ferroelectric constituent films are discussed. The results show that the combined effect of the transition layer and the interracial coupling plays an important role in explaining the interesting behaviour of ferroelectric multilayer structures consisting of two ferroelectrie materials.
文摘Bi3.25La0.75Ti3O12(BLT)thin films were prepared on Pt/Ti/SiO2/Si substrate by the sol-gel method.The effect of annealing on their structures and ferroelectric properties was investigated.The XRD patterns indicate that the BLT films annealed at different temperatures are randomly orientated and the single perovskite phase is obtained at 550℃.The remmant polarization increnses and the coercive field decreases with the annealing temperature increasing.The leakage current density of the BLT films annealed at 700℃ is about 5.8×10^-8A/cm^2 at the electrie field of 250kv/cm.
基金supported by the Ph.D. Programs Foundation of Ministry of Education of China (No.20050247004)
文摘Micro-bolometer pixel is an essential element in the infrared focal plane array (IRFPA) of infrared detectors. Its response to infrared radiation is analyzed in this paper. The pixel structure is modeled as a composite laminate thin plate whose sides are measured with the thickness from 0.1-1 μm. Its middle ply is a ferroelectric thin film. Its top surface is covered with a gold or platinum infrared absorber, while the bottom surface is deposited with platinum or lanthanum-nickel. Meanwhile both surfaces are a pair of electrodes. The top surface receives infrared radiation pulses successively. For the very tiny micro bolometer pixel, it is assumed that the infrared radiation is uniformly distributed on the plate. Furthermore, as the ratio of the side length to the thickness of the plate is dramatically large, it is assumed that heat transfer only takes place across the thickness of the plate. The thermal-electric-mechanical coupling governing equations are solved in a form of Fourier series. Results of the displacement, temperature variation and electric output signals of the micro bolometer pixel structure under infrared radiation are obtained, analyzed and compared with experimental data.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 10802070, 10972188, and 10902055), Natural Science Foundation of Fujian Province of China (Grant No. 2011J01329), and the Fundamental Research Funds for the Central Universities of China (Grant No. 2011121002).
文摘The effects of internal stresses and depolarization fields on the properties of epitaxial ferroelectric perovskite thin films are discussed by employing the dynamic Ginzbur~Landau equation (DCLE). The numerical solution for BaTiO3 film shows that internal stress and the depolarization field have the most effects on ferroelectric properties such as polarization, Curie temperature and susceptibility. With the increase of the thickness of the film, the polarization of epitaxia] ferroelectric thin film is enhanced rapidly under high internal compressively stress. With the thickness exceeding the critical thickness for dislocation formation, the polarization increases slowly and even weakens due to relaxed internal stresses and a weak electrical boundary condition. This indicates that the effects of mechanical and electrical boundary conditions both diminish for ferroelectric thick films. Consequently, our thermodynamic method is a full scale model that can predict the properties of ferroelectric perovskite films in a wide range of film thickness.
基金Project supported by the National Natural Science Foundation of China (Nos.50232030, 10172030 and 10572155)
文摘Ferroelectric domain switching under low voltage or short pulses is of interest for the development of high-density random access memory (FRAM) devices. Being necessarily very small in size, instability and back switching often occur when the external voltage is removed, which creates serious problems. In this investigation, a general approach to determine the minimum size of ferroelectric domain to avoid back switching was developed, and as an example, a 180° domain in a ferroelectric thin film covered by the upper and lower electrodes was considered in detail. We note that our approach is generally applicable to many other fields, including phase transformation, nucleation and expansion of dislocation loops in thin films, etc.
文摘Fatigue-free Bi3.2La0.8Ti3O12 ferroelectric thin films were successfully prepared on p-Si (100) substrates using metalorganic solution deposition process. The orientation and formation of 5-layers thin films were studied under different processing conditions using XRD. Experimental results indicate that increase in annealing time at 700 ℃ after preannealing for 10 min at 400 ℃ can remarkably increase (200)-orientation of the films derived from the precursor solutions with two contents of citric acid. Meanwhile, high content of citric acid increases the film thickness and is conducive to the α-orientation of the films with the preannealing, and low concentration of the solution is conducive to the c-orientation of the films without the preannealing.
文摘Ferroelectric materials have many interesting physical properties such as ferroelectricity, pyroelectricity, piezoelectricity, and opto-electricity, and applying ferroelectric materials in the forms of thin and thick films and integrating them on the silicon substrate as electronic and MEMS devices is a very attractive research area and challenging. In this paper, we report our research works on ferroelectric MEMS and ferroelectric films for electronic device applications. Pyroelectric thin film infrared sensors have been made, characterized, and a 32×32 array with its size of 1cm×1cm has been obtained on Si membrane. Ferroelectric thin films in amorphous phase have been applied to make silicon based hydrogen gas sensors with the metal/amorphous ferroelectric film/metal device structure, and its turn-on voltage of about 4.5V at ~1000 ppm in air is about 7 times of the best value reported in the literature. For the application of electron emission flat panel display, ferroelectric BST thin films with excess Ti concentrations have been coated on Si tips, the threshold voltage of those ferroelectric film coated tips has been reduced about one order from ~70 V/μm to 4~10 V/μm for different Ti concentrations, and however, the electron emission current density has been increased at least 3~4 order for those coated tips compared to that of the bare Si tips. To fulfill in the thickness gap between thin film of typical ~1 μm made by PVD/CVD and polished ceramic wafer of ~50 μm from the bulk, piezoelectric films with thickness in a range of 1~30 μm have been successfully deposited on Si substrate at a low temperature of 650oC by a novel hybridized deposition technique, and piezoelectric MEMS ultrasonic arrays have been very recently obtained with the sound pressure level up to ~120 dB. More detailed results will be presented and mechanisms will be discussed.
文摘Based on the transverse Ising model in the framework of the mean field approximation, this paper discusses a ferroelectric bilayer film with the surface transition layers within each constituent slab and an antiferroelectric interracial coupling between two slabs. The hysteresis loop of a bilayer film is investigated. The results show that the surface transition layer in a ferroelectric bilayer film plays a significant role in realizing the multiple-state memory.
基金the Center for Smart Materials of The Hong Kong Polytechnic University the Earmarked Research Grant(Account No.B-Q 363)allocated by the Hong Kong Research Grants Council
文摘The size effects of the critical behaviors for the systems of interacting spins are discussed extensively inliterature.In this paper,the finite-size dependence of the critical temperature and susceptibility of the ferroelectric thinfilm are investigated numerically based on the four-state Potts model with the nearest-neighbor interactions between thedipole moments.The four orientations of the domains exist in the ferroelectric film and the movement of the domainwalls determines the polarization switching process besides the boundary conditions of the film.The critical exponentsare obtained and our investigations show that the boundary conditions play the important roles for the ferroelectricproperties of the thin films and the critical behavior of the thin films strongly depends on the feature of the surface.
文摘By taking into account structural transition zones near the lateral and thickness direction edges,this paper uses a modified transverse Ising model to study dielectric properties of a finite size ferroelectric thin film in the framework of the mean-field approximation.The results indicate that the influence of the lateral size on the dielectric susceptibility cannot be neglected and lateral structural transition zones could be a crucial factor that improves the mean susceptibility of the fixed size film.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 61076042 and 60607006)the Special Project on Development of National Key Scientific Instruments and Equipment of China (Grant No. 2011YQ16000205)the National High Technology Research and Development Program of China (Grant No. 2011AA03A106)
文摘BaTiO3 (BTO) ferroelectric thin films are prepared by the sol,el method. The fabrication and the optical properties of an InGaN/GaN multiple quantum well light emitting diode (LED) with amorphous BTO ferroelectric thin film are studied. The photolumineseence (PL) of the BTO ferroelectric film is attributed to the structure. The ferroeleetric film which annealed at 673 K for 8 h has the better PL property. The peak width is about 30 nm from 580 nm to 610 nm, towards the yellow region. The mixed electroluminescence (EL) spectrum of InGaN/GaN multiple quantum well LED with 150-nm thick amorphous BTO ferroelectric thin film displays the blue-white light. The Commission Internationale De L'Eclairage (CIE) coordinate of EL is (0.2139, 0.1627). EL wavelength and intensity depends on the composition, microstructure and thickness of the ferroelectric thin film. The transmittance of amorphous BTO thin film is about 93% at a wavelength of 450 nm-470 nm. This means the amorphous ferroelectrie thin films can output more blue-ray and emission lights. In addition, the amorphous ferroelectric thin films can be directly fabricated without a binder and used at higher temperatures (200 ℃-400 ℃). It is very favourable to simplify the preparation process and reduce the heat dissipation requirements of an LED. This provides a new way to study LEDs.
基金the financial support from the National Nature Science Foundation of China (Grants Nos.11002123 and 10832009)Zhejiang Provincial Qianjiang Talent Fund(E9027)Key Innovation Fund(2009R50025)
文摘Many distinguished properties of epitaxial ferroelectric thin films can be tunable through the misfit strain.The strain tunability of ferroelectric and dielectric properties in epitaxial lead titanate ultrathin films is numerically investigated by using a phase field model,in which the surface effect of polarization is taken into account.The response of polarization to the applied electric field in the thickness direction is examined with different misfit strains at room temperature.It is found that a compressive misfit strain increases the coercive field and the remanent polarization while a tensile misfit strain decreases both of them.The nonlinear dielectric constants of the thin films with tensile misfit strains are much larger than those of the thin films without misfit strains,which are attributed to the existence of the a/c/a/c multiple domains in the thin films under tensile misfit strains.
基金Project supported partly by the Foundation for Innovative Research Groups of the National Natural Science Foundation of China(Grant No. 60721001)
文摘By modifying the interchange interactions and the transverse fields on the epitaxy surface layer, this paper studies the phase transition properties of an n-layer ferroelectric thin film by the Fermi-type Green's function technique based on the transverse Ising model with a four-spin interaction. The special attention is given to the effect of the epitaxy surface layer on the first-order phase transition properties in the parameter space constructed by the ratios of the bulk transverse field and the bulk four-spin interaction to the bulk two-spin interaction with the framework of the higher-order decoupling approximation to the Fermi-type Green's function. The results show that the first-order phase transition properties will be changed significantly due to the modification of interchange interaction and transverse field parameters on the epitaxy surface layer. The dependence of the first-order phase transition properties on the thickness of ferroelectric thin films is also discussed.
基金Funded by the International Science and Technology Cooperation Project of Hubei Province(2016AHB008)the Natural Science Foundation of Hubei Province(2015CFB724,2016CFA006)+1 种基金the National Natural Science Foundation of China(51272195,51521001)the National Key Research and Development Program of China(2017YFB0310400)
文摘Polycrystalline Bi_4Ti_3O_(12) thin films with various fractions of a-axis, c-axis and random orientations have been grown on Pt(111)/Ti/Si O_2/Si substrates by laser-ablation under different kinetic growth conditions. The relationship between the structure and ferroelectric property of the films was investigated, so as to explore the possibility of enhancing ferroelectric polarization by controlling the preferred orientation. The structural characterization indicated that the large growth rate and high oxygen background pressure were both favorable for the growth of non-c-axis oriented grains in the Bi_4Ti_3O_(12) thin films. The films with high fractions of a-axis and random orientations, i e, f(a-sxis) = 28.3% and f(random) = 69.6%, could be obtained at the deposition temperature of 973 K, oxygen partial pressure of 15 Pa and laser fluence of 4.6 J/cm^2, respectively. It was also noted that the variation of ferroelectric polarization was in accordance with the evolution non-c-axis orientation. A large value of remanent polarization(2 Pr = 35.5 μC/cm^2) was obtained for the Bi_4Ti_3O_(12) thin films with significant non-c-axis orientation, even higher than that of rare-earth-doped Bi_4Ti_3O_(12) films.