An optimized method is presented to design the down scalers in a GHz frequency synthesizer. The down scalers are comprised of dual modulus prescaler (DMP) and programmable & pulse swallow divider,different methods ...An optimized method is presented to design the down scalers in a GHz frequency synthesizer. The down scalers are comprised of dual modulus prescaler (DMP) and programmable & pulse swallow divider,different methods of high frequency analog circuit and digital logical synthesis are adopted respectively. Using a DMP high speed, lower jitter and lower power dissipation are obtained,and output frequency of 133.0MHz of the DMP working at divide-by-8 shows an RMS jitter less than 2ps. The flexibility and reusability of the progrs, mmable divider is high;its use could be extended to many complicated frequency synthesizers. By comparison,it is a better design on performance of high-frequency circuit and good design flexibility.展开更多
A complete closed-loop third order s-domain model is analyzed for a frequency synthesizer. Based on the model and root-locus technique, the procedure for parameters design is described, and the relationship between th...A complete closed-loop third order s-domain model is analyzed for a frequency synthesizer. Based on the model and root-locus technique, the procedure for parameters design is described, and the relationship between the process,voltage,and temperature variation of parameters and the loop stability is quantitatively analyzed. A variation margin is proposed for stability compensation. Furthermore,a simple adjustable current cell in the charge pump is proposed for additional stability compensation and a novel VCO with linear gain is adopted to limit the total variation. A fully integrated frequency synthesizer from 1 to 1.05GHz with 250kHz channel resolution is implemented to verify the methods.展开更多
A design and implementation for a 2.4GHz quadrature output frequency synthesizer intended for bluetooth in 0. 35μm CMOS technology are presented. A differentially controlled quadrature voltage-controlled oscillator ...A design and implementation for a 2.4GHz quadrature output frequency synthesizer intended for bluetooth in 0. 35μm CMOS technology are presented. A differentially controlled quadrature voltage-controlled oscillator (QVCO) is employed to generate quadrature (I/Q) signals. A second-order loop filter, with a unit gain transconductance amplifier having the performance of a third-order loop filter,is exploited for low cost. The measured spot phase noise is -106.15dBc/Hz@ 1MHz. Close-in phase noise is less than -70dBc/Hz. The synthesizer consumes 13.5mA under a 3.3V voltage supply. The core size is 1.3mm×0. 8mm.展开更多
A scheme of a frequency-hopping frequency-synthesizer applied to a Bluetooth ratio frequency (RF) front-end is presented,and design of a voltage controlled oscillator (VCO) and dual-modulus prescaler are focused o...A scheme of a frequency-hopping frequency-synthesizer applied to a Bluetooth ratio frequency (RF) front-end is presented,and design of a voltage controlled oscillator (VCO) and dual-modulus prescaler are focused on.It is fabricated in a 0.18 μm mixed-signal CMOS (complementary metal-oxide-semiconductor transistor) process.The power dissipation of VCO is low and a stable performance is gained.The measured phase noise of VCO at 2.4 GHz is less than -114.32 dBc/Hz.The structure of the DMP is optimized and a novel D-latch integrated with "OR" logic gate is used.The measured results show that the chip can work well under a 1.8 V power supply.The power dissipation of the core part in a dual modulus prescaler is only 5.76 mW.An RMS jitter of 2 ps is measured on the output signal at 118.3 MHz.It is less than 0.02% of the clock period.展开更多
This paper describes a wideband low phase noise frequency synthesizer.It operates in the multi-band including digital radio mondiale DRM digital audio broadcasting DAB amplitude modulation AM and frequency modulation ...This paper describes a wideband low phase noise frequency synthesizer.It operates in the multi-band including digital radio mondiale DRM digital audio broadcasting DAB amplitude modulation AM and frequency modulation FM .In order to cover the signals of the overall frequencies a novel frequency planning and a new structure are proposed. A wide-band low-phase-noise low-power voltage-control oscillator VCO and a high speed wide band high frequency division ratio pulse swallow frequency divider with a low power consumption are presented.The monolithic DRM/DAB/AM/FM frequency synthesizer chip is also fabricated in a SMIC's 0.18-μm CMOS process.The die area is 1 425 μm ×795 μm including the test buffer and pads. The measured results show that the VCO operating frequency range is from 2.22 to 3.57 GHz the measured phase noise of the VCO is 120.22 dBc/Hz at 1 MHz offset the pulse swallow frequency divider operation frequency is from 0.9 to 3.4 GHz.The phase noise in the phase-locked loop PLL is-59.52 dBc/Hz at 10 kHz offset and fits for the demand of the DRM/DAB/AM/FM RF front-end. The proposed frequency synthesizer consumes 47 mW including test buffer under a 1.8 V supply.展开更多
The wideband CMOS voltage-controlled oscillator(VCO)with low phase noise and low power consumption is presented for a DRM/DAB(digital radio mondiale and digital audio broadcasting)frequency synthesizer.In order to...The wideband CMOS voltage-controlled oscillator(VCO)with low phase noise and low power consumption is presented for a DRM/DAB(digital radio mondiale and digital audio broadcasting)frequency synthesizer.In order to obtain a wide band and a large tuning range,a parallel switched capacitor bank is added in the LC tank.The proposed VCO is implemented in SMIC 0.18-μm RF CMOS technology and the chip area is 750 μm×560 μm,including the test buffer circuit and the pads.Measured results show that the tuning range is 44.6%;i.e.,the frequency turning range is from 2.27 to 3.57 GHz.The measured phase noise is-122.22 dBc/Hz at a 1 MHz offset from the carrier.The maximum power consumption of the core part is 6.16 mW at a 1.8 V power supply.展开更多
A novel method to partially compensate sigma-delta shaped noise is proposed. By injecting the compensation current into the passive loop filter during the delay time of the phase frequency detector(PFD),a maximum re...A novel method to partially compensate sigma-delta shaped noise is proposed. By injecting the compensation current into the passive loop filter during the delay time of the phase frequency detector(PFD),a maximum reduction of the phase noise by about 16dB can be achieved. Compared to other compensation methods,the technique proposed here is relatively simple and easy to implement. Key building blocks for realizing the noise cancellation,including the delay variable PFD and compensation current source, are specially designed. Both the behavior level and circuit level simulation results are presented.展开更多
A fractional-N frequency synthesizer for 433/868MHz SRD applications is implemented in a 0.3μm CMOS process. A wide-band VCO and an AFC are used to cover the desired bands. A 3bit third order sigma-delta modulator is...A fractional-N frequency synthesizer for 433/868MHz SRD applications is implemented in a 0.3μm CMOS process. A wide-band VCO and an AFC are used to cover the desired bands. A 3bit third order sigma-delta modulator is adopted to reduce the out-band phase noise. The measurements show a VCO tuning range from 1.31 to 1.88GHz with AFC working correctly,an out-band phase noise of -139dBc/Hz at 3MHz offset frequency, and a fractional spur of less than - 60dBc. The chip area is 1.5mm × 1.2mm and the total current dissipation including LO buffers is 19mA from a single 3.0V supply voltage.展开更多
A new coarse tuning loop for a wide-band dual-loop frequency synthesizer is presented. The coarse tuning structure is composed of two digital modules, including a successive approximation register and a frequency comp...A new coarse tuning loop for a wide-band dual-loop frequency synthesizer is presented. The coarse tuning structure is composed of two digital modules, including a successive approximation register and a frequency comparator with a novel structure. The frequency comparator counts the prescaler cycles within a certain reference time and compares the number with preset data to estimate the VCO frequency. The frequency comparison error is analyzed in detail. Within a given coarse tuning time,our proposed structure shows a comparison error 20 times smaller than that of other reported structures. This structure also reuses the programmable divider as a part of the coarse tuning loop so that the circuit is greatly simplified.展开更多
The design procedure of an 1-GHz phase-locked loop (PLL)-based frequency synthesizer used in IEEE 1394b physical (PHY) system is presented in this paper. The PLL's loop dynamics are analyzed in depth and theoreti...The design procedure of an 1-GHz phase-locked loop (PLL)-based frequency synthesizer used in IEEE 1394b physical (PHY) system is presented in this paper. The PLL's loop dynamics are analyzed in depth and theoretical relationships between all loop parameters are clearly described. All the parameters are derived and verified by Verilog-A model, which ensures the accuracy and efficiency of the circuit design and simulation. A 4-stage ring oscillator is employed to generate 1-GHz oscillation frequency and is divided into low frequency clocks by a feedback divider. The architecture is a third-order, type-2 charge pump PLL. The simulated settling time is less than 4μs. The RMS value of period jitter of the PLL's output is 2.1 ps. The PLL core occupies an area of 0.12 mm2, one fourth of which is occupied by the MiM loop capacitors. The total current consumption of the chip is 16.5 mA. The chip has been sent for fabrication in 0.13 μm complementary metal oxide semiconductor (CMOS) technology.展开更多
The technology of DDS-driven PLL is introduced and a new scheme of frequency synthesizer which is suitable for SW SFH/MFSK System is presented in this paper. Based on the special requirement of SW communication, a mod...The technology of DDS-driven PLL is introduced and a new scheme of frequency synthesizer which is suitable for SW SFH/MFSK System is presented in this paper. Based on the special requirement of SW communication, a model of the scheme is given and the results show that the frequency synthesizer has small frequency insteval (≤0.1 Hz), short switch pierod (<200 ms) and high frequency stability as crystal oseillator.展开更多
A fully integrated frequency synthesizer with low jitter and low power consumption in 0.18 μm CMOS (complementary metal-oxide semiconductor) technology is proposed in this paper.The frequency synthesizer uses a novel...A fully integrated frequency synthesizer with low jitter and low power consumption in 0.18 μm CMOS (complementary metal-oxide semiconductor) technology is proposed in this paper.The frequency synthesizer uses a novel single-end gain-boosting charge pump, a differential coupled voltage controlled oscillator (VCO) and a dynamic logic phase/frequency detecor (PFD) to acquire low output jitter.The output frequency range of the frequency synthesizer is up to 1 200 MHz to 1 400 MHz for GPS (global position system) application.The post simulation results show that the phase noise of VCO is only 127.1 dBc/Hz at a 1 MHz offset and the Vp-p jitter of the frequency synthesizer output clock is 13.65 ps.The power consumption of the frequency synthesizer not including the divider is 4.8 mW for 1.8 V supply and it occupies a 0.8 mm×0.7 mm chip area.展开更多
Amplitude quantization is one of the main sources of spurious noise frequencies in Direct Digital Frequency Synthesizers (DDFSs), which affect their application to many wireless telecommu- nication systems. In this pa...Amplitude quantization is one of the main sources of spurious noise frequencies in Direct Digital Frequency Synthesizers (DDFSs), which affect their application to many wireless telecommu- nication systems. In this paper, two different kinds of spurious signals due to amplitude quantization in DDFSs are exactly formulated in the time domain and detailedly compared in the frequency do- main, and the effects of the DDFS parameter variations on the spurious performance are thoroughly studied. Then the spectral properties and power levels of the amplitude-quantization spurs in the absence of phase-accumulator truncation are emphatically analyzed by waveform estimation and computer simulation, and several important conclusions are derived which can provide theoretical support for parameter choice and spurious performance evaluation in the application of DDFSs.展开更多
This paper investigates the design of digital Sigma-Delta Modulator (SDM) for fractional-N frequency synthesizer. Characteristics of SDMs are compared through theory analysis and simulation. The curve of maximum-loop-...This paper investigates the design of digital Sigma-Delta Modulator (SDM) for fractional-N frequency synthesizer. Characteristics of SDMs are compared through theory analysis and simulation. The curve of maximum-loop-bandwidth vs. maximum-phase-noise is suggested to be a new criterion to the performance of SDM,which greatly helps designers to select an appropriate SDM structure to meet their real application requirements and to reduce the cost as low as possible. A low-spur 3-order Mul-tistage Noise Shaping (MASH)-1-1-1 SDM using three 2-bit first-order cascaded modulators is proposed,which balances the requirements of tone-free and maximum operation frequency.展开更多
This paper presents a wide tuning range CMOS frequency synthesizer for a dual-band GPS receiver,which has been fabricated in a standard 0.18μm RF CMOS process. With a high Q on-chip inductor, the wide-band VCO shows ...This paper presents a wide tuning range CMOS frequency synthesizer for a dual-band GPS receiver,which has been fabricated in a standard 0.18μm RF CMOS process. With a high Q on-chip inductor, the wide-band VCO shows a tuning range from 2 to 3.6GHz to cover 2.45 and 3.14GHz in case of process corner or temperature variation,with a current consumption varying accordingly from 0.8 to 0.4mA,from a 1.8V supply voltage. Measurement results show that the whole frequency synthesizer consumes very low power of 5.6mW working at L1 band with in-band phase noise less than - 82dBc/Hz and out-of-band phase noise about - ll2dBc/Hz at 1MHz offset from a 3. 142GHz carrier. The performance of the frequency synthesizer meets the requirements of GPS applications very well.展开更多
This paper presents a fractional-N frequency synthesizer for wireless sensor network(WSN) nodes. The proposed frequency synthesizer adopts a phase locked loop(PLL) based structure, which employs an LC voltagecontr...This paper presents a fractional-N frequency synthesizer for wireless sensor network(WSN) nodes. The proposed frequency synthesizer adopts a phase locked loop(PLL) based structure, which employs an LC voltagecontrolled oscillator(VCO) with small VCO gain(KVCO) and frequency step(fstep) variations, a charge pump(CP)with current changing in proportion with the division ratio and a 20-bit △∑ modulator, etc. To realize constant KVCO and fstep, a novel capacitor sub-bands grouping method is proposed. The VCO sub-groups' sizes are arranged according to the maximal allowed KVCOvariation of the system. Besides, a current mode logic divide-by-2 circuit with inside-loop buffers ensures the synthesizer generates I/Q quadrature signals robustly. This synthesizer is implemented in a 0.13μm CMOS process. Measurement results show that the frequency synthesizer has a frequency span from 2.07 to 3.11 GHz and the typical phase noise is 86:34 dBc/Hz at 100 k Hz offset and 114:17 dBc/Hz at 1 MHz offset with a loop bandwidth of about 200 k Hz, which meet the WSN nodes' requirements.展开更多
A 1.4-2 GHz phase-locked loop (PLL) ∑-△ fraction-N frequency synthesizer with automatic fre- quency control (AFC) for 802.1 lah applications is presented. A class-C voltage control oscillator (VCO) ranging fr...A 1.4-2 GHz phase-locked loop (PLL) ∑-△ fraction-N frequency synthesizer with automatic fre- quency control (AFC) for 802.1 lah applications is presented. A class-C voltage control oscillator (VCO) ranging from 1.4 to 2 GHz is integrated on-chip to save power for the sub-GHz band. A novel AFC algorithm is introduced to maintain the VCO oscillation at the start-up and automatically search for the appropriate control word of the switched-capacitor array to extend the PLL tuning range. A 20-bit third-order ∑-△ modulator is utilized to reduce the fraction spurs while achieving a frequency resolution that is lower than 30 Hz. The measurement results show that the frequency synthesizer has achieved a phase noise of 〈 -120 dBc/Hz at 1 MHz offset and consumes 11.1 mW from a 1.7 V supply. Moreover, compared with the traditional class-A counterparts, the phase noise in class-C mode has been improved by 5 dB under the same power consumption.展开更多
This paper presents a single event transient(SET) suppressor circuit,which can suppress the effect of SET in charge pump(CP) on the whole PLL frequency synthesizers,and at the same time it brings little negative effec...This paper presents a single event transient(SET) suppressor circuit,which can suppress the effect of SET in charge pump(CP) on the whole PLL frequency synthesizers,and at the same time it brings little negative effect to the system during normal operation.Because the proposed SET suppressor circuit only includes a resistor,a PMOS and an NMOS device,little area penalty is introduced.By preventing SET propagating from CP to low pass filter(LPF) and VCO when a single event strikes on CP output node,the system shows excellent hardness to SET in CP.Mixed simulations are performed on TCAD workbench.The results show that a single event with an LET at 80 MeV cm 2 /mg can only induce approximately 2.3 mV disturbance on the control voltage of VCO.展开更多
A low noise phase locked loop (PLL) frequency synthesizer implemented in 65 nm CMOS technology is introduced. A VCO noise reduction method suited for short channel design is proposed to minimize PLL output phase noi...A low noise phase locked loop (PLL) frequency synthesizer implemented in 65 nm CMOS technology is introduced. A VCO noise reduction method suited for short channel design is proposed to minimize PLL output phase noise. A self-calibrated voltage controlled oscillator is proposed in cooperation with the automatic frequency calibration circuit, whose accurate binary search algorithm helps reduce the VCO tuning curve coverage, which reduces the VCO noise contribution at PLL output phase noise. A low noise, charge pump is also introduced to extend the tuning voltage range of the proposed VCO, which further reduces its phase noise contribution. The frequency synthesizer generates 9.75-11.5 GHz high frequency wide band local oscillator (LO) carriers. Tested 11.5 GHz LO bears a phase noise of-104 dBc/Hz at 1 MHz frequency offset. The total power dissipation of the proposed frequency synthesizer is 48 mW. The area of the proposed frequency synthesizer is 0.3 mm^2, including bias circuits and buffers.展开更多
An improved adaptive frequency calibration(AFC) has been employed to implement a fast lock phaselocked loop based frequency synthesizer in a 0.18μm CMOS process.The AFC can work in two modes:the frequency calibrat...An improved adaptive frequency calibration(AFC) has been employed to implement a fast lock phaselocked loop based frequency synthesizer in a 0.18μm CMOS process.The AFC can work in two modes:the frequency calibration mode and the store/load mode.In the frequency calibration mode,a novel frequency-detector is used to reduce the frequency calibration time to 16 us typically.In the store/load mode,the AFC makes the voltage-controlled oscillator(VCO) return to the calibrated frequency in about 1μs by loading the calibration result stored after the frequency calibration.The experimental results show that the VCO tuning frequency range is about 620-920 MHz and the in-band phase noise within the loop bandwidth of 10 kHz is-82 dBc/Hz.The lock time is about 20μs in frequency calibration mode and about 5 us in store/load mode.The synthesizer consumes 12 mA from a single 1.8 V supply voltage when steady.展开更多
文摘An optimized method is presented to design the down scalers in a GHz frequency synthesizer. The down scalers are comprised of dual modulus prescaler (DMP) and programmable & pulse swallow divider,different methods of high frequency analog circuit and digital logical synthesis are adopted respectively. Using a DMP high speed, lower jitter and lower power dissipation are obtained,and output frequency of 133.0MHz of the DMP working at divide-by-8 shows an RMS jitter less than 2ps. The flexibility and reusability of the progrs, mmable divider is high;its use could be extended to many complicated frequency synthesizers. By comparison,it is a better design on performance of high-frequency circuit and good design flexibility.
文摘A complete closed-loop third order s-domain model is analyzed for a frequency synthesizer. Based on the model and root-locus technique, the procedure for parameters design is described, and the relationship between the process,voltage,and temperature variation of parameters and the loop stability is quantitatively analyzed. A variation margin is proposed for stability compensation. Furthermore,a simple adjustable current cell in the charge pump is proposed for additional stability compensation and a novel VCO with linear gain is adopted to limit the total variation. A fully integrated frequency synthesizer from 1 to 1.05GHz with 250kHz channel resolution is implemented to verify the methods.
文摘A design and implementation for a 2.4GHz quadrature output frequency synthesizer intended for bluetooth in 0. 35μm CMOS technology are presented. A differentially controlled quadrature voltage-controlled oscillator (QVCO) is employed to generate quadrature (I/Q) signals. A second-order loop filter, with a unit gain transconductance amplifier having the performance of a third-order loop filter,is exploited for low cost. The measured spot phase noise is -106.15dBc/Hz@ 1MHz. Close-in phase noise is less than -70dBc/Hz. The synthesizer consumes 13.5mA under a 3.3V voltage supply. The core size is 1.3mm×0. 8mm.
文摘A scheme of a frequency-hopping frequency-synthesizer applied to a Bluetooth ratio frequency (RF) front-end is presented,and design of a voltage controlled oscillator (VCO) and dual-modulus prescaler are focused on.It is fabricated in a 0.18 μm mixed-signal CMOS (complementary metal-oxide-semiconductor transistor) process.The power dissipation of VCO is low and a stable performance is gained.The measured phase noise of VCO at 2.4 GHz is less than -114.32 dBc/Hz.The structure of the DMP is optimized and a novel D-latch integrated with "OR" logic gate is used.The measured results show that the chip can work well under a 1.8 V power supply.The power dissipation of the core part in a dual modulus prescaler is only 5.76 mW.An RMS jitter of 2 ps is measured on the output signal at 118.3 MHz.It is less than 0.02% of the clock period.
基金The Research Project of Science and Technology at the University of Inner Mongolia Autonomous Region(No.NJZY11016)the Innovation Fund of the Ministry of Science and Technology for Small and Medium Sized Enterprises of China(No.11C26213211234)
文摘This paper describes a wideband low phase noise frequency synthesizer.It operates in the multi-band including digital radio mondiale DRM digital audio broadcasting DAB amplitude modulation AM and frequency modulation FM .In order to cover the signals of the overall frequencies a novel frequency planning and a new structure are proposed. A wide-band low-phase-noise low-power voltage-control oscillator VCO and a high speed wide band high frequency division ratio pulse swallow frequency divider with a low power consumption are presented.The monolithic DRM/DAB/AM/FM frequency synthesizer chip is also fabricated in a SMIC's 0.18-μm CMOS process.The die area is 1 425 μm ×795 μm including the test buffer and pads. The measured results show that the VCO operating frequency range is from 2.22 to 3.57 GHz the measured phase noise of the VCO is 120.22 dBc/Hz at 1 MHz offset the pulse swallow frequency divider operation frequency is from 0.9 to 3.4 GHz.The phase noise in the phase-locked loop PLL is-59.52 dBc/Hz at 10 kHz offset and fits for the demand of the DRM/DAB/AM/FM RF front-end. The proposed frequency synthesizer consumes 47 mW including test buffer under a 1.8 V supply.
文摘The wideband CMOS voltage-controlled oscillator(VCO)with low phase noise and low power consumption is presented for a DRM/DAB(digital radio mondiale and digital audio broadcasting)frequency synthesizer.In order to obtain a wide band and a large tuning range,a parallel switched capacitor bank is added in the LC tank.The proposed VCO is implemented in SMIC 0.18-μm RF CMOS technology and the chip area is 750 μm×560 μm,including the test buffer circuit and the pads.Measured results show that the tuning range is 44.6%;i.e.,the frequency turning range is from 2.27 to 3.57 GHz.The measured phase noise is-122.22 dBc/Hz at a 1 MHz offset from the carrier.The maximum power consumption of the core part is 6.16 mW at a 1.8 V power supply.
文摘A novel method to partially compensate sigma-delta shaped noise is proposed. By injecting the compensation current into the passive loop filter during the delay time of the phase frequency detector(PFD),a maximum reduction of the phase noise by about 16dB can be achieved. Compared to other compensation methods,the technique proposed here is relatively simple and easy to implement. Key building blocks for realizing the noise cancellation,including the delay variable PFD and compensation current source, are specially designed. Both the behavior level and circuit level simulation results are presented.
文摘A fractional-N frequency synthesizer for 433/868MHz SRD applications is implemented in a 0.3μm CMOS process. A wide-band VCO and an AFC are used to cover the desired bands. A 3bit third order sigma-delta modulator is adopted to reduce the out-band phase noise. The measurements show a VCO tuning range from 1.31 to 1.88GHz with AFC working correctly,an out-band phase noise of -139dBc/Hz at 3MHz offset frequency, and a fractional spur of less than - 60dBc. The chip area is 1.5mm × 1.2mm and the total current dissipation including LO buffers is 19mA from a single 3.0V supply voltage.
文摘A new coarse tuning loop for a wide-band dual-loop frequency synthesizer is presented. The coarse tuning structure is composed of two digital modules, including a successive approximation register and a frequency comparator with a novel structure. The frequency comparator counts the prescaler cycles within a certain reference time and compares the number with preset data to estimate the VCO frequency. The frequency comparison error is analyzed in detail. Within a given coarse tuning time,our proposed structure shows a comparison error 20 times smaller than that of other reported structures. This structure also reuses the programmable divider as a part of the coarse tuning loop so that the circuit is greatly simplified.
基金supported by the National Natural Science Foundation of China under Grant No. 61006027the New Century Excellent Talents Program of China under Grant No. NCET-10-0297
文摘The design procedure of an 1-GHz phase-locked loop (PLL)-based frequency synthesizer used in IEEE 1394b physical (PHY) system is presented in this paper. The PLL's loop dynamics are analyzed in depth and theoretical relationships between all loop parameters are clearly described. All the parameters are derived and verified by Verilog-A model, which ensures the accuracy and efficiency of the circuit design and simulation. A 4-stage ring oscillator is employed to generate 1-GHz oscillation frequency and is divided into low frequency clocks by a feedback divider. The architecture is a third-order, type-2 charge pump PLL. The simulated settling time is less than 4μs. The RMS value of period jitter of the PLL's output is 2.1 ps. The PLL core occupies an area of 0.12 mm2, one fourth of which is occupied by the MiM loop capacitors. The total current consumption of the chip is 16.5 mA. The chip has been sent for fabrication in 0.13 μm complementary metal oxide semiconductor (CMOS) technology.
文摘The technology of DDS-driven PLL is introduced and a new scheme of frequency synthesizer which is suitable for SW SFH/MFSK System is presented in this paper. Based on the special requirement of SW communication, a model of the scheme is given and the results show that the frequency synthesizer has small frequency insteval (≤0.1 Hz), short switch pierod (<200 ms) and high frequency stability as crystal oseillator.
基金Funded by the Communication System Project of Jiangsu Provincial Education Committee under grant No.JHB04010
文摘A fully integrated frequency synthesizer with low jitter and low power consumption in 0.18 μm CMOS (complementary metal-oxide semiconductor) technology is proposed in this paper.The frequency synthesizer uses a novel single-end gain-boosting charge pump, a differential coupled voltage controlled oscillator (VCO) and a dynamic logic phase/frequency detecor (PFD) to acquire low output jitter.The output frequency range of the frequency synthesizer is up to 1 200 MHz to 1 400 MHz for GPS (global position system) application.The post simulation results show that the phase noise of VCO is only 127.1 dBc/Hz at a 1 MHz offset and the Vp-p jitter of the frequency synthesizer output clock is 13.65 ps.The power consumption of the frequency synthesizer not including the divider is 4.8 mW for 1.8 V supply and it occupies a 0.8 mm×0.7 mm chip area.
基金Supported by National High-Technology Research and Development Plan of China (Grant No.2006AA01Z452)
文摘Amplitude quantization is one of the main sources of spurious noise frequencies in Direct Digital Frequency Synthesizers (DDFSs), which affect their application to many wireless telecommu- nication systems. In this paper, two different kinds of spurious signals due to amplitude quantization in DDFSs are exactly formulated in the time domain and detailedly compared in the frequency do- main, and the effects of the DDFS parameter variations on the spurious performance are thoroughly studied. Then the spectral properties and power levels of the amplitude-quantization spurs in the absence of phase-accumulator truncation are emphatically analyzed by waveform estimation and computer simulation, and several important conclusions are derived which can provide theoretical support for parameter choice and spurious performance evaluation in the application of DDFSs.
基金the National Natural Science Foundation of China (No. 60025101, No.90207001, and No. 90307016).
文摘This paper investigates the design of digital Sigma-Delta Modulator (SDM) for fractional-N frequency synthesizer. Characteristics of SDMs are compared through theory analysis and simulation. The curve of maximum-loop-bandwidth vs. maximum-phase-noise is suggested to be a new criterion to the performance of SDM,which greatly helps designers to select an appropriate SDM structure to meet their real application requirements and to reduce the cost as low as possible. A low-spur 3-order Mul-tistage Noise Shaping (MASH)-1-1-1 SDM using three 2-bit first-order cascaded modulators is proposed,which balances the requirements of tone-free and maximum operation frequency.
文摘This paper presents a wide tuning range CMOS frequency synthesizer for a dual-band GPS receiver,which has been fabricated in a standard 0.18μm RF CMOS process. With a high Q on-chip inductor, the wide-band VCO shows a tuning range from 2 to 3.6GHz to cover 2.45 and 3.14GHz in case of process corner or temperature variation,with a current consumption varying accordingly from 0.8 to 0.4mA,from a 1.8V supply voltage. Measurement results show that the whole frequency synthesizer consumes very low power of 5.6mW working at L1 band with in-band phase noise less than - 82dBc/Hz and out-of-band phase noise about - ll2dBc/Hz at 1MHz offset from a 3. 142GHz carrier. The performance of the frequency synthesizer meets the requirements of GPS applications very well.
基金supported by the National Science and Technology Major Project of the Ministry of Science and Technology of China(Nos.2010ZX03006-003-02,2012ZX03004-006)
文摘This paper presents a fractional-N frequency synthesizer for wireless sensor network(WSN) nodes. The proposed frequency synthesizer adopts a phase locked loop(PLL) based structure, which employs an LC voltagecontrolled oscillator(VCO) with small VCO gain(KVCO) and frequency step(fstep) variations, a charge pump(CP)with current changing in proportion with the division ratio and a 20-bit △∑ modulator, etc. To realize constant KVCO and fstep, a novel capacitor sub-bands grouping method is proposed. The VCO sub-groups' sizes are arranged according to the maximal allowed KVCOvariation of the system. Besides, a current mode logic divide-by-2 circuit with inside-loop buffers ensures the synthesizer generates I/Q quadrature signals robustly. This synthesizer is implemented in a 0.13μm CMOS process. Measurement results show that the frequency synthesizer has a frequency span from 2.07 to 3.11 GHz and the typical phase noise is 86:34 dBc/Hz at 100 k Hz offset and 114:17 dBc/Hz at 1 MHz offset with a loop bandwidth of about 200 k Hz, which meet the WSN nodes' requirements.
文摘A 1.4-2 GHz phase-locked loop (PLL) ∑-△ fraction-N frequency synthesizer with automatic fre- quency control (AFC) for 802.1 lah applications is presented. A class-C voltage control oscillator (VCO) ranging from 1.4 to 2 GHz is integrated on-chip to save power for the sub-GHz band. A novel AFC algorithm is introduced to maintain the VCO oscillation at the start-up and automatically search for the appropriate control word of the switched-capacitor array to extend the PLL tuning range. A 20-bit third-order ∑-△ modulator is utilized to reduce the fraction spurs while achieving a frequency resolution that is lower than 30 Hz. The measurement results show that the frequency synthesizer has achieved a phase noise of 〈 -120 dBc/Hz at 1 MHz offset and consumes 11.1 mW from a 1.7 V supply. Moreover, compared with the traditional class-A counterparts, the phase noise in class-C mode has been improved by 5 dB under the same power consumption.
基金supported by the Nation Twelfth Five-Year Plan (Grant No.11015131)
文摘This paper presents a single event transient(SET) suppressor circuit,which can suppress the effect of SET in charge pump(CP) on the whole PLL frequency synthesizers,and at the same time it brings little negative effect to the system during normal operation.Because the proposed SET suppressor circuit only includes a resistor,a PMOS and an NMOS device,little area penalty is introduced.By preventing SET propagating from CP to low pass filter(LPF) and VCO when a single event strikes on CP output node,the system shows excellent hardness to SET in CP.Mixed simulations are performed on TCAD workbench.The results show that a single event with an LET at 80 MeV cm 2 /mg can only induce approximately 2.3 mV disturbance on the control voltage of VCO.
文摘A low noise phase locked loop (PLL) frequency synthesizer implemented in 65 nm CMOS technology is introduced. A VCO noise reduction method suited for short channel design is proposed to minimize PLL output phase noise. A self-calibrated voltage controlled oscillator is proposed in cooperation with the automatic frequency calibration circuit, whose accurate binary search algorithm helps reduce the VCO tuning curve coverage, which reduces the VCO noise contribution at PLL output phase noise. A low noise, charge pump is also introduced to extend the tuning voltage range of the proposed VCO, which further reduces its phase noise contribution. The frequency synthesizer generates 9.75-11.5 GHz high frequency wide band local oscillator (LO) carriers. Tested 11.5 GHz LO bears a phase noise of-104 dBc/Hz at 1 MHz frequency offset. The total power dissipation of the proposed frequency synthesizer is 48 mW. The area of the proposed frequency synthesizer is 0.3 mm^2, including bias circuits and buffers.
基金Project supported by the National High Technology Research and Development Program of China(No.2007AA01Z2a8).
文摘An improved adaptive frequency calibration(AFC) has been employed to implement a fast lock phaselocked loop based frequency synthesizer in a 0.18μm CMOS process.The AFC can work in two modes:the frequency calibration mode and the store/load mode.In the frequency calibration mode,a novel frequency-detector is used to reduce the frequency calibration time to 16 us typically.In the store/load mode,the AFC makes the voltage-controlled oscillator(VCO) return to the calibrated frequency in about 1μs by loading the calibration result stored after the frequency calibration.The experimental results show that the VCO tuning frequency range is about 620-920 MHz and the in-band phase noise within the loop bandwidth of 10 kHz is-82 dBc/Hz.The lock time is about 20μs in frequency calibration mode and about 5 us in store/load mode.The synthesizer consumes 12 mA from a single 1.8 V supply voltage when steady.