This study utilizes the Dynamic Conditional Correlation-Generalized Autoregressive Conditional Heteroskedasticity (DCC-GARCH) model to investigate the dynamic relationship between Chinese and U.S. stock markets amid t...This study utilizes the Dynamic Conditional Correlation-Generalized Autoregressive Conditional Heteroskedasticity (DCC-GARCH) model to investigate the dynamic relationship between Chinese and U.S. stock markets amid the COVID-19 pandemic. Initially, a univariate GARCH model is developed to derive residual sequences, which are then used to estimate the DCC model parameters. The research reveals a significant rise in the interconnection between the Chinese and U.S. stock markets during the pandemic. The S&P 500 index displayed higher sensitivity and greater volatility in response to the pandemic, whereas the CSI 300 index showed superior resilience and stability. Analysis and model estimation suggest that the market’s dependence on historical data has intensified and its sensitivity to recent shocks has heightened. Predictions from the model indicate increased market volatility during the pandemic. While the model is proficient in capturing market trends, there remains potential for enhancing the accuracy of specific volatility predictions. The study proposes recommendations for policymakers and investors, highlighting the importance of improved cooperation in international financial market regulation and investor education.展开更多
A statistical manifold of non-exponential type coming from a model for economics describing stock return process is constructed, with its geometric structure investigated and both Gaussian curvatures and mean curvatur...A statistical manifold of non-exponential type coming from a model for economics describing stock return process is constructed, with its geometric structure investigated and both Gaussian curvatures and mean curvatures of its curved exponential submanifolds deducted. A few graphs describing relevant scalar curvature, mean curvature and Gaussian curvature are also introduced.展开更多
This paper examines the forecasting performance of different kinds of GARCH model (GRACH, EGARCH, TARCH and APARCH) under the Normal, Student-t and Generalized error distributional assumption. We compare the effect ...This paper examines the forecasting performance of different kinds of GARCH model (GRACH, EGARCH, TARCH and APARCH) under the Normal, Student-t and Generalized error distributional assumption. We compare the effect of different distributional assumption on the GARCH models. The data we analyze are the daily stocks indexes for Shenzhen Stock Exchange (SSE) in China from April 3^rd, 1991 to April 14^th, 2005. We find that improvements of the overall estimation are achieved when asymmetric GARCH models are used with student-t distribution and generalized error distribution. Moreover, it is found that TARCH and GARCH models give better forecasting performance than EGARCH and APARCH models. In forecasting performance, the model under normal distribution gives more accurate forecasting performance than non-normal densities and generalized error distributions clearly outperform the student-t densities in case of SSE.展开更多
The financial market is the core of national economic development,and stocks play an important role in the financial market.Analyzing stock prices has become the focus of investors,analysts,and people in related field...The financial market is the core of national economic development,and stocks play an important role in the financial market.Analyzing stock prices has become the focus of investors,analysts,and people in related fields.This paper evaluates the volatility of Apple Inc.(AAPL)returns using five generalized autoregressive conditional heteroskedasticity(GARCH)models:sGARCH with constant mean,GARCH with sstd,GJR-GARCH,AR(1)GJR-GARCH,and GJR-GARCH in mean.The distribution of AAPL’s closing price and earnings data was analyzed,and skewed student t-distribution(sstd)and normal distribution(norm)were used to further compare the data distribution of the five models and capture the shape,skewness,and loglikelihood in Model 4-AR(1)GJR-GARCH.Through further analysis,the results showed that Model 4,AR(1)GJR-GARCH,is the optimal model to describe the volatility of the return series of AAPL.The analysis of the research process is both,a process of exploration and reflection.By analyzing the stock price of AAPL,we reflect on the shortcomings of previous analysis methods,clarify the purpose of the experiment,and identify the optimal analysis model.展开更多
Taking the price of grain in Guizhou Province as an example, by establishing GARCH model, I calculate VAR of logarithm return of grain price index, in order to conduct research on the variation law of price of the agr...Taking the price of grain in Guizhou Province as an example, by establishing GARCH model, I calculate VAR of logarithm return of grain price index, in order to conduct research on the variation law of price of the agricultural products. The results show that VAR of grain in Guizhou has variation. After the year 2010, VAR value is gradually increasing, and the price variation risk of grain market tends to increase progressively. Based on the characteristics of grain price variation, a series of corresponding proposals are put forward to stabilize the grain price as follows: strengthen the agricultural infrastructure construction, and promote the agricultural overall production capacity; reinforce the market supervision on the circulation field of agricultural products, and maintain market order; improve regulation system of agricultural products, and stabilize the price of agricultural products; strengthen mobility regulation, and prevent a flood of speculative cash.展开更多
We consider n observations from the GARCH-type model: Z = UY, where U and Y are independent random variables. We aim to estimate density function Y where Y have a weighted distribution. We determine a sharp upper boun...We consider n observations from the GARCH-type model: Z = UY, where U and Y are independent random variables. We aim to estimate density function Y where Y have a weighted distribution. We determine a sharp upper bound of the associated mean integrated square error. We also make use of the measure of expected true evidence, so as to determine when model leads to a crisis and causes data to be lost.展开更多
The aim of this paper is to use the General Autoregressive Conditional Heteroscedastic (GARCH) type models for the estimation of volatility of the daily returns of the Kenyan stock market: that is Nairobi Securities E...The aim of this paper is to use the General Autoregressive Conditional Heteroscedastic (GARCH) type models for the estimation of volatility of the daily returns of the Kenyan stock market: that is Nairobi Securities Exchange (NSE). The conditional variance is estimated using the data from March 2013 to February 2016. We use both symmetric and asymmetric models to capture the most common features of the stock markets like leverage effect and volatility clustering. The results show that the volatility process is highly persistent, thus, giving evidence of the existence of risk premium for the NSE index return series. This in turn supports the positive correlation hypothesis: that is between volatility and expected stock returns. Another fact revealed by the results is that the asymmetric GARCH models provide better fit for NSE than the symmetric models. This proves the presence of leverage effect in the NSE return series.展开更多
In this study, we focus on the class of BL-GARCH models, which is initially introduced by Storti & Vitale [1] in order to handle leverage effects and volatility clustering. First we illustrate some properties of B...In this study, we focus on the class of BL-GARCH models, which is initially introduced by Storti & Vitale [1] in order to handle leverage effects and volatility clustering. First we illustrate some properties of BL-GARCH (1, 2) model, like the positivity, stationarity and marginal distribution;then we study the statistical inference, apply the composite likelihood on panel of BL-GARCH (1, 2) model, and study the asymptotic behavior of the estimators, like the consistency property and the asymptotic normality.展开更多
The paper introduces a new simple semiparametric estimator of the conditional variance-covariance and correlation matrix (SP-DCC). While sharing a similar sequential approach to existing dynamic conditional correlatio...The paper introduces a new simple semiparametric estimator of the conditional variance-covariance and correlation matrix (SP-DCC). While sharing a similar sequential approach to existing dynamic conditional correlation (DCC) methods, SP-DCC has the advantage of not requiring the direct parameterization of the conditional covariance or correlation processes, therefore also avoiding any assumption on their long-run target. In the proposed framework, conditional variances are estimated by univariate GARCH models, for actual and suitably transformed series, in the first step;the latter are then nonlinearly combined in the second step, according to basic properties of the covariance and correlation operator, to yield nonparametric estimates of the various conditional covariances and correlations. Moreover, in contrast to available DCC methods, SP-DCC allows for straightforward estimation also for the non-symultaneous case, i.e. for the estimation of conditional cross-covariances and correlations, displaced at any time horizon of interest. A simple expost procedure to ensure well behaved conditional variance-covariance and correlation matrices, grounded on nonlinear shrinkage, is finally proposed. Due to its sequential implementation and scant computational burden, SP-DCC is very simple to apply and suitable for the modeling of vast sets of conditionally heteroskedastic time series.展开更多
This paper mainly talks about a popular approach of volatility of a GARCH-type model in R, while the disturbances are independent and have identical Student-t distribution. It uses the Metropolis-Hastings method to pe...This paper mainly talks about a popular approach of volatility of a GARCH-type model in R, while the disturbances are independent and have identical Student-t distribution. It uses the Metropolis-Hastings method to perform the computations and gives the programs in details in R.展开更多
Uncertainty analysis and risk analysis are two important areas of modern water resource management,in which accurate variance estimation is required.The traditional runoff model is established under the assumption tha...Uncertainty analysis and risk analysis are two important areas of modern water resource management,in which accurate variance estimation is required.The traditional runoff model is established under the assumption that the variance is a constant or it changes with the seasons.However,hydrological processes in the real world are often heteroscedastic,which can be tested by McLeod-Li test and Engle Lagrange multiplier test.In such cases,the GARCH model of hydrological processes is established in this article.First,the seasonal factors in the sequence are removed.Second,the traditional ARMA model is established.Then,the GARCH model is used to correct the residual.At last,the daily runoff data in 1949-2001 of Yichang Hydrological Station is taken to be an example.The result shows that compared to the traditional ARMA model,the GARCH model has the ability to predict more accurate confidence intervals under the same confidence level.展开更多
This paper investigates the mean-reversion and volatile of credit spread time series by using regression and time series analysis in Chinese bond market. Then the Longstaff-Schwartz model and GARCH model are applied t...This paper investigates the mean-reversion and volatile of credit spread time series by using regression and time series analysis in Chinese bond market. Then the Longstaff-Schwartz model and GARCH model are applied to price credit spread put option. The authors compare the features of these two models by employing daily bond prices of government bonds and corporate bonds for the period 2010–2012 in Chinese bond market. The proposed results show that the higher the credit ratings of the corporate bonds are, the lower the prices of the credit spread options are.展开更多
In this paper,we study a robust estimation method for the observation-driven integervalued time-series models in which the conditional probability mass of current observations is assumed to follow a negative binomial ...In this paper,we study a robust estimation method for the observation-driven integervalued time-series models in which the conditional probability mass of current observations is assumed to follow a negative binomial distribution.Maximum likelihood estimator is highly affected by the outliers.We resort to the minimum density power divergence estimator as a robust estimator and showthat it is strongly consistent and asymptotically normal under some regularity conditions.Simulation results are provided to illustrate the performance of the estimator.An application is performed on data for campylobacteriosis infections.展开更多
Since the establishment of financial models for risk prediction,the measurement of volatility at risky market has improved,and its significance has also grown.For high-frequency financial data,the degree of investment...Since the establishment of financial models for risk prediction,the measurement of volatility at risky market has improved,and its significance has also grown.For high-frequency financial data,the degree of investment risk,which has always been the focus of attention,is measured by the variance of residual sequence obtained following model regression.By integrating the long short-term memory(LSTM)model with multiple generalized autoregressive conditional heteroscedasticity(GARCH)models,a new hybrid LSTM model is used to predict stock price volatility.In this paper,three GARCH models are used,and the model that can best fit the data is determined.展开更多
The impacts of outlying shocks on wind power time series are explored by considering the outlier effect in the volatility of wind power time series. A novel short term wind power forecasting method based on outlier sm...The impacts of outlying shocks on wind power time series are explored by considering the outlier effect in the volatility of wind power time series. A novel short term wind power forecasting method based on outlier smooth transition autoregressive(OSTAR) structure is advanced, then, combined with the generalized autoregressive conditional heteroskedasticity(GARCH) model, the OSTAR-GARCH model is proposed for wind power forecasting. The proposed model is further generalized to be with fat-tail distribution.Consequently, the mechanisms of regimes against different magnitude of shocks are investigated owing to the outlier effect parameters in the proposed models. Furthermore, the outlier effect is depicted by news impact curve(NIC) and a novel proposed regime switching index(RSI). Case studies based on practical data validate the feasibility of the proposed wind power forecasting method. From the forecast performance comparison of the OSTAR-GARCH models, the OSTAR-GARCH model with fat-tail distribution proves to be promising for wind power forecasting.展开更多
In this article a new approach for checking the adequacy of GARCH-type models in time series was proposed. The resulted tests involve weight functions, which provide them with the flexibility in choosing scores to enh...In this article a new approach for checking the adequacy of GARCH-type models in time series was proposed. The resulted tests involve weight functions, which provide them with the flexibility in choosing scores to enhance power performance. The choice of weight functions and the power properties of the tests are studied. For a large number of alternatives, asymptotically distribution-free maximin test is constructed. The tests are asymptotically chi-squared under the null hypothesis and easy to implement. Simulation results indicate that the tests perform well.展开更多
文摘This study utilizes the Dynamic Conditional Correlation-Generalized Autoregressive Conditional Heteroskedasticity (DCC-GARCH) model to investigate the dynamic relationship between Chinese and U.S. stock markets amid the COVID-19 pandemic. Initially, a univariate GARCH model is developed to derive residual sequences, which are then used to estimate the DCC model parameters. The research reveals a significant rise in the interconnection between the Chinese and U.S. stock markets during the pandemic. The S&P 500 index displayed higher sensitivity and greater volatility in response to the pandemic, whereas the CSI 300 index showed superior resilience and stability. Analysis and model estimation suggest that the market’s dependence on historical data has intensified and its sensitivity to recent shocks has heightened. Predictions from the model indicate increased market volatility during the pandemic. While the model is proficient in capturing market trends, there remains potential for enhancing the accuracy of specific volatility predictions. The study proposes recommendations for policymakers and investors, highlighting the importance of improved cooperation in international financial market regulation and investor education.
基金Sponsored by the National Natural Science Foundation of China(10871218)
文摘A statistical manifold of non-exponential type coming from a model for economics describing stock return process is constructed, with its geometric structure investigated and both Gaussian curvatures and mean curvatures of its curved exponential submanifolds deducted. A few graphs describing relevant scalar curvature, mean curvature and Gaussian curvature are also introduced.
文摘This paper examines the forecasting performance of different kinds of GARCH model (GRACH, EGARCH, TARCH and APARCH) under the Normal, Student-t and Generalized error distributional assumption. We compare the effect of different distributional assumption on the GARCH models. The data we analyze are the daily stocks indexes for Shenzhen Stock Exchange (SSE) in China from April 3^rd, 1991 to April 14^th, 2005. We find that improvements of the overall estimation are achieved when asymmetric GARCH models are used with student-t distribution and generalized error distribution. Moreover, it is found that TARCH and GARCH models give better forecasting performance than EGARCH and APARCH models. In forecasting performance, the model under normal distribution gives more accurate forecasting performance than non-normal densities and generalized error distributions clearly outperform the student-t densities in case of SSE.
文摘The financial market is the core of national economic development,and stocks play an important role in the financial market.Analyzing stock prices has become the focus of investors,analysts,and people in related fields.This paper evaluates the volatility of Apple Inc.(AAPL)returns using five generalized autoregressive conditional heteroskedasticity(GARCH)models:sGARCH with constant mean,GARCH with sstd,GJR-GARCH,AR(1)GJR-GARCH,and GJR-GARCH in mean.The distribution of AAPL’s closing price and earnings data was analyzed,and skewed student t-distribution(sstd)and normal distribution(norm)were used to further compare the data distribution of the five models and capture the shape,skewness,and loglikelihood in Model 4-AR(1)GJR-GARCH.Through further analysis,the results showed that Model 4,AR(1)GJR-GARCH,is the optimal model to describe the volatility of the return series of AAPL.The analysis of the research process is both,a process of exploration and reflection.By analyzing the stock price of AAPL,we reflect on the shortcomings of previous analysis methods,clarify the purpose of the experiment,and identify the optimal analysis model.
基金Supported by Guizhou Provincial Science and Technology Department Soft Science United Funds Research Program(2010LKC2005)
文摘Taking the price of grain in Guizhou Province as an example, by establishing GARCH model, I calculate VAR of logarithm return of grain price index, in order to conduct research on the variation law of price of the agricultural products. The results show that VAR of grain in Guizhou has variation. After the year 2010, VAR value is gradually increasing, and the price variation risk of grain market tends to increase progressively. Based on the characteristics of grain price variation, a series of corresponding proposals are put forward to stabilize the grain price as follows: strengthen the agricultural infrastructure construction, and promote the agricultural overall production capacity; reinforce the market supervision on the circulation field of agricultural products, and maintain market order; improve regulation system of agricultural products, and stabilize the price of agricultural products; strengthen mobility regulation, and prevent a flood of speculative cash.
文摘We consider n observations from the GARCH-type model: Z = UY, where U and Y are independent random variables. We aim to estimate density function Y where Y have a weighted distribution. We determine a sharp upper bound of the associated mean integrated square error. We also make use of the measure of expected true evidence, so as to determine when model leads to a crisis and causes data to be lost.
文摘The aim of this paper is to use the General Autoregressive Conditional Heteroscedastic (GARCH) type models for the estimation of volatility of the daily returns of the Kenyan stock market: that is Nairobi Securities Exchange (NSE). The conditional variance is estimated using the data from March 2013 to February 2016. We use both symmetric and asymmetric models to capture the most common features of the stock markets like leverage effect and volatility clustering. The results show that the volatility process is highly persistent, thus, giving evidence of the existence of risk premium for the NSE index return series. This in turn supports the positive correlation hypothesis: that is between volatility and expected stock returns. Another fact revealed by the results is that the asymmetric GARCH models provide better fit for NSE than the symmetric models. This proves the presence of leverage effect in the NSE return series.
文摘In this study, we focus on the class of BL-GARCH models, which is initially introduced by Storti & Vitale [1] in order to handle leverage effects and volatility clustering. First we illustrate some properties of BL-GARCH (1, 2) model, like the positivity, stationarity and marginal distribution;then we study the statistical inference, apply the composite likelihood on panel of BL-GARCH (1, 2) model, and study the asymptotic behavior of the estimators, like the consistency property and the asymptotic normality.
文摘The paper introduces a new simple semiparametric estimator of the conditional variance-covariance and correlation matrix (SP-DCC). While sharing a similar sequential approach to existing dynamic conditional correlation (DCC) methods, SP-DCC has the advantage of not requiring the direct parameterization of the conditional covariance or correlation processes, therefore also avoiding any assumption on their long-run target. In the proposed framework, conditional variances are estimated by univariate GARCH models, for actual and suitably transformed series, in the first step;the latter are then nonlinearly combined in the second step, according to basic properties of the covariance and correlation operator, to yield nonparametric estimates of the various conditional covariances and correlations. Moreover, in contrast to available DCC methods, SP-DCC allows for straightforward estimation also for the non-symultaneous case, i.e. for the estimation of conditional cross-covariances and correlations, displaced at any time horizon of interest. A simple expost procedure to ensure well behaved conditional variance-covariance and correlation matrices, grounded on nonlinear shrinkage, is finally proposed. Due to its sequential implementation and scant computational burden, SP-DCC is very simple to apply and suitable for the modeling of vast sets of conditionally heteroskedastic time series.
文摘This paper mainly talks about a popular approach of volatility of a GARCH-type model in R, while the disturbances are independent and have identical Student-t distribution. It uses the Metropolis-Hastings method to perform the computations and gives the programs in details in R.
基金supported by the National Hi-Tech Research and Development Program of China ("863" Project) (Grant No. 2012BAB02B04)
文摘Uncertainty analysis and risk analysis are two important areas of modern water resource management,in which accurate variance estimation is required.The traditional runoff model is established under the assumption that the variance is a constant or it changes with the seasons.However,hydrological processes in the real world are often heteroscedastic,which can be tested by McLeod-Li test and Engle Lagrange multiplier test.In such cases,the GARCH model of hydrological processes is established in this article.First,the seasonal factors in the sequence are removed.Second,the traditional ARMA model is established.Then,the GARCH model is used to correct the residual.At last,the daily runoff data in 1949-2001 of Yichang Hydrological Station is taken to be an example.The result shows that compared to the traditional ARMA model,the GARCH model has the ability to predict more accurate confidence intervals under the same confidence level.
基金supported by the National Natural Science Foundation of China under Grant Nos.71171012and 70901019Humanity and Social Science Foundation of Ministry of Education of China under Grant No.14YJA790075
文摘This paper investigates the mean-reversion and volatile of credit spread time series by using regression and time series analysis in Chinese bond market. Then the Longstaff-Schwartz model and GARCH model are applied to price credit spread put option. The authors compare the features of these two models by employing daily bond prices of government bonds and corporate bonds for the period 2010–2012 in Chinese bond market. The proposed results show that the higher the credit ratings of the corporate bonds are, the lower the prices of the credit spread options are.
基金supported by National Natural Science Foundation of China(Nos.11871027,11731015)Science and Technology Developing Plan of Jilin Province(No.20170101057JC)Cultivation Plan for Excellent Young Scholar Candidates of Jilin University.
文摘In this paper,we study a robust estimation method for the observation-driven integervalued time-series models in which the conditional probability mass of current observations is assumed to follow a negative binomial distribution.Maximum likelihood estimator is highly affected by the outliers.We resort to the minimum density power divergence estimator as a robust estimator and showthat it is strongly consistent and asymptotically normal under some regularity conditions.Simulation results are provided to illustrate the performance of the estimator.An application is performed on data for campylobacteriosis infections.
文摘Since the establishment of financial models for risk prediction,the measurement of volatility at risky market has improved,and its significance has also grown.For high-frequency financial data,the degree of investment risk,which has always been the focus of attention,is measured by the variance of residual sequence obtained following model regression.By integrating the long short-term memory(LSTM)model with multiple generalized autoregressive conditional heteroscedasticity(GARCH)models,a new hybrid LSTM model is used to predict stock price volatility.In this paper,three GARCH models are used,and the model that can best fit the data is determined.
基金supported by National Natural Science Foundation of China(No.51507031,No.51577025)
文摘The impacts of outlying shocks on wind power time series are explored by considering the outlier effect in the volatility of wind power time series. A novel short term wind power forecasting method based on outlier smooth transition autoregressive(OSTAR) structure is advanced, then, combined with the generalized autoregressive conditional heteroskedasticity(GARCH) model, the OSTAR-GARCH model is proposed for wind power forecasting. The proposed model is further generalized to be with fat-tail distribution.Consequently, the mechanisms of regimes against different magnitude of shocks are investigated owing to the outlier effect parameters in the proposed models. Furthermore, the outlier effect is depicted by news impact curve(NIC) and a novel proposed regime switching index(RSI). Case studies based on practical data validate the feasibility of the proposed wind power forecasting method. From the forecast performance comparison of the OSTAR-GARCH models, the OSTAR-GARCH model with fat-tail distribution proves to be promising for wind power forecasting.
基金supported by a grant from the Research Grants Council of Hong Kong.Jianhong Wu was also supported by a grant from Humanities & Social Sciences in Chinese University (07JJD790154)the Youth Talent Foundation of Zhejiang GongShang University (Q09-12)
文摘In this article a new approach for checking the adequacy of GARCH-type models in time series was proposed. The resulted tests involve weight functions, which provide them with the flexibility in choosing scores to enhance power performance. The choice of weight functions and the power properties of the tests are studied. For a large number of alternatives, asymptotically distribution-free maximin test is constructed. The tests are asymptotically chi-squared under the null hypothesis and easy to implement. Simulation results indicate that the tests perform well.