A tightly coupled GPS ( global positioning system )/SINS ( strap down inertial navigation system) based on a GMDH ( group method of data handling) neural network was presented to solve the problem of degraded ac...A tightly coupled GPS ( global positioning system )/SINS ( strap down inertial navigation system) based on a GMDH ( group method of data handling) neural network was presented to solve the problem of degraded accuracy for less than four visible GPS satellites with poor signal quality. Positions and velocities of the satellites were predicted by a GMDH neural network, and the pseudo ranges and pseudo range rates received by the GPS receiver were simulated to ensure the regular op eration of the GPS/SINS Kalman filter during outages. In the mathematical simulation a tightly cou pled navigation system with a proposed approach has better navigation accuracy during GPS outages, and the anti jamming ability is strengthened for the tightly coupled navigation system.展开更多
In orderto furtherstudy theperform ance oftightly integrated navigation system ofGPS/ INS, a sem i-physicalsim ulation oftightly coupled system has been done based on the data gathered from the experim entof integra...In orderto furtherstudy theperform ance oftightly integrated navigation system ofGPS/ INS, a sem i-physicalsim ulation oftightly coupled system has been done based on the data gathered from the experim entof integrated system ofGPSand INS. The closed-loop Kalm an Filter and U-D discom pose algorithm have been used. The sim ulation results associated to four integrated m odels of pseudo-range, delta-range, pseudo-range and delta-range alternation, and pseudo-range and delta- range synthesis have been provided, and the actualeffects of variously integrated m odels have been analyzed. The results show that the pseudo-range and delta-range synthesis coupled m odelis the m osteffective to im provethe coupled system perform anceand the individualdelta-rangecoupled m od- elhad betterbe avoided in application.展开更多
The method of integrated data processing for GPS and INS(inertial navigation system) field test over the Rocky Mountains using the adaptive Kalman filtering technique is presented. On the basis of the known GPS output...The method of integrated data processing for GPS and INS(inertial navigation system) field test over the Rocky Mountains using the adaptive Kalman filtering technique is presented. On the basis of the known GPS outputs and the offset of GPS and INS, state equations and observations are designed to perform the calculation and improve the navigation accuracy. An example shows that with the method the reliable navigation parameters have been obtained.展开更多
Traditional cubature Kalman filter(CKF)is a preferable tool for the inertial navigation system(INS)/global positioning system(GPS)integration under Gaussian noises.The CKF,however,may provide a significantly biased es...Traditional cubature Kalman filter(CKF)is a preferable tool for the inertial navigation system(INS)/global positioning system(GPS)integration under Gaussian noises.The CKF,however,may provide a significantly biased estimate when the INS/GPS system suffers from complex non-Gaussian disturbances.To address this issue,a robust nonlinear Kalman filter referred to as cubature Kalman filter under minimum error entropy with fiducial points(MEEF-CKF)is proposed.The MEEF-CKF behaves a strong robustness against complex nonGaussian noises by operating several major steps,i.e.,regression model construction,robust state estimation and free parameters optimization.More concretely,a regression model is constructed with the consideration of residual error caused by linearizing a nonlinear function at the first step.The MEEF-CKF is then developed by solving an optimization problem based on minimum error entropy with fiducial points(MEEF)under the framework of the regression model.In the MEEF-CKF,a novel optimization approach is provided for the purpose of determining free parameters adaptively.In addition,the computational complexity and convergence analyses of the MEEF-CKF are conducted for demonstrating the calculational burden and convergence characteristic.The enhanced robustness of the MEEF-CKF is demonstrated by Monte Carlo simulations on the application of a target tracking with INS/GPS integration under complex nonGaussian noises.展开更多
文摘A tightly coupled GPS ( global positioning system )/SINS ( strap down inertial navigation system) based on a GMDH ( group method of data handling) neural network was presented to solve the problem of degraded accuracy for less than four visible GPS satellites with poor signal quality. Positions and velocities of the satellites were predicted by a GMDH neural network, and the pseudo ranges and pseudo range rates received by the GPS receiver were simulated to ensure the regular op eration of the GPS/SINS Kalman filter during outages. In the mathematical simulation a tightly cou pled navigation system with a proposed approach has better navigation accuracy during GPS outages, and the anti jamming ability is strengthened for the tightly coupled navigation system.
文摘In orderto furtherstudy theperform ance oftightly integrated navigation system ofGPS/ INS, a sem i-physicalsim ulation oftightly coupled system has been done based on the data gathered from the experim entof integrated system ofGPSand INS. The closed-loop Kalm an Filter and U-D discom pose algorithm have been used. The sim ulation results associated to four integrated m odels of pseudo-range, delta-range, pseudo-range and delta-range alternation, and pseudo-range and delta- range synthesis have been provided, and the actualeffects of variously integrated m odels have been analyzed. The results show that the pseudo-range and delta-range synthesis coupled m odelis the m osteffective to im provethe coupled system perform anceand the individualdelta-rangecoupled m od- elhad betterbe avoided in application.
基金Supported by the Scientific Research Foundation for ROCS,SEMJiangxi Education Bureau Project(No.200525) .
文摘The method of integrated data processing for GPS and INS(inertial navigation system) field test over the Rocky Mountains using the adaptive Kalman filtering technique is presented. On the basis of the known GPS outputs and the offset of GPS and INS, state equations and observations are designed to perform the calculation and improve the navigation accuracy. An example shows that with the method the reliable navigation parameters have been obtained.
基金supported by the Fundamental Research Funds for the Central Universities(xzy022020045)the National Natural Science Foundation of China(61976175)。
文摘Traditional cubature Kalman filter(CKF)is a preferable tool for the inertial navigation system(INS)/global positioning system(GPS)integration under Gaussian noises.The CKF,however,may provide a significantly biased estimate when the INS/GPS system suffers from complex non-Gaussian disturbances.To address this issue,a robust nonlinear Kalman filter referred to as cubature Kalman filter under minimum error entropy with fiducial points(MEEF-CKF)is proposed.The MEEF-CKF behaves a strong robustness against complex nonGaussian noises by operating several major steps,i.e.,regression model construction,robust state estimation and free parameters optimization.More concretely,a regression model is constructed with the consideration of residual error caused by linearizing a nonlinear function at the first step.The MEEF-CKF is then developed by solving an optimization problem based on minimum error entropy with fiducial points(MEEF)under the framework of the regression model.In the MEEF-CKF,a novel optimization approach is provided for the purpose of determining free parameters adaptively.In addition,the computational complexity and convergence analyses of the MEEF-CKF are conducted for demonstrating the calculational burden and convergence characteristic.The enhanced robustness of the MEEF-CKF is demonstrated by Monte Carlo simulations on the application of a target tracking with INS/GPS integration under complex nonGaussian noises.