期刊文献+
共找到590篇文章
< 1 2 30 >
每页显示 20 50 100
Identifying the enhancement mechanism of Al/MoO_(3) reactive multilayered films on the ignition ability of semiconductor bridge using a one-dimensional gas-solid two-phase flow model
1
作者 Jianbing Xu Yuxuan Zhou +3 位作者 Yun Shen Yueting Wang Yinghua Ye Ruiqi Shen 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第3期168-179,共12页
Energetic Semiconductor bridge(ESCB)based on reactive multilayered films(RMFs)has a promising application in the miniature and intelligence of initiator and pyrotechnics device.Understanding the ignition enhancement m... Energetic Semiconductor bridge(ESCB)based on reactive multilayered films(RMFs)has a promising application in the miniature and intelligence of initiator and pyrotechnics device.Understanding the ignition enhancement mechanism of RMFs on semiconductor bridge(SCB)during the ignition process is crucial for the engineering and practical application of advanced initiator and pyrotechnics devices.In this study,a one-dimensional(1D)gas-solid two-phase flow ignition model was established to study the ignition process of ESCB to charge particles based on the reactivity of Al/MoO_(3) RMFs.In order to fully consider the coupled exothermic between the RMFs and the SCB plasma during the ignition process,the heat release of chemical reaction in RMFs was used as an internal heat source in this model.It is found that the exothermal reaction in RMFs improved the ignition performance of SCB.In the process of plasma rapid condensation with heat release,the product of RMFs enhanced the heat transfer process between the gas phase and the solid charge particle,which accelerated the expansion of hot plasma,and heated the solid charge particle as well as gas phase region with low temperature.In addition,it made up for pressure loss in the gas phase.During the plasma dissipation process,the exothermal chemical reaction in RMFs acted as the main heating source to heat the charge particle,making the surface temperature of the charge particle,gas pressure,and gas temperature rise continuously.This result may yield significant advantages in providing a universal ignition model for miniaturized ignition devices. 展开更多
关键词 Ignition enhancement mechanism 1D gas-solid two-phase flow Al/MoO_(3)reactive multilayered films Semiconductor bridge Miniaturized ignition device
下载PDF
Numerical simulation of the gas-solid two-phase flow inside the multi-channel nozzle for the surface nanocrystallization induced by the ultrasonic particulate peening 被引量:1
2
作者 ZHANG Yujun,LIANG Yongli and ZHANG Junbao Advanced Technology Division,Research Institute,Baoshan Iron & Steel Co.,Ltd.,Shanghai 201900,China 《Baosteel Technical Research》 CAS 2010年第4期3-7,共5页
Using a gas-solid two-phase model(a discrete phase model),the authors investigated the flow field inside the multi-channel nozzle for surface nanocrystallization(SNC)induced by the ultrasonic particulate peening(USPP)... Using a gas-solid two-phase model(a discrete phase model),the authors investigated the flow field inside the multi-channel nozzle for surface nanocrystallization(SNC)induced by the ultrasonic particulate peening(USPP).By computation,the velocity fields of both the gas and the solid phases were simulated and the track of the solid phase was analyzed in detail.It can be found that the velocities of the two phases are able to reach an ultrasonic level;meanwhile,the dispersion width of the solid phase at the nozzle exit is less than that of the gas phase.When particle diameters are less than 5 μm,there is a decreasing trend in the dispersion width of the solid phase with an increase in particle diameters.The trend becomes stable as the particle diameters are greater than 5 μm;in the meantime,the distribution of solid particles is near the axis of the jet flow.The optimal standoff distance between the nozzle and the substrate in the process of USPP is about 120 mm.Simulation results can help improve the design of mass-production-oriented multi-channel nozzles for SNC induced by USPP. 展开更多
关键词 USPP SNC multi-channel nozzle gas-solid two-phase flow numerical simulation
下载PDF
Numerical Simulation of the Gas-solid Two-phase Flows in a Precalciner 被引量:1
3
作者 王家楣 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2006年第4期177-179,共3页
The gas-solid two-phase flous of the precalciner were simulated by different multiphase models,such as mixture model,the Enderium model,including mixture and dispersed,and discrete phase model(DPM),The results of th... The gas-solid two-phase flous of the precalciner were simulated by different multiphase models,such as mixture model,the Enderium model,including mixture and dispersed,and discrete phase model(DPM),The results of the different multiphase models were analyzed and compared.showing the rationality of the diffusion and mixture of the cenment raic meals and coal poroder some extent Moreover,the results also shose the rationality of the given inlets parameters of actual process of the precalciner. 展开更多
关键词 preculciner gas-solid two-phase flow mumerical simulation
下载PDF
Experimental investigation of erosion rate for gas-solid two-phase flow in 304 stainless/L245 carbon steel 被引量:3
4
作者 Bingyuan Hong Yanbo Li +6 位作者 Xiaoping Li Gen Li ong Huang Shuaipeng Ji Weidong Li Jing Gong Jian Guo 《Petroleum Science》 SCIE CAS CSCD 2022年第3期1347-1360,共14页
Erosion is one of the most concerning issues in pipeline flow assurance for the Oil&Gas pipeline industries,which can easily lead to wall thinning,perforation leakage,and other crucial safety risks to the steady o... Erosion is one of the most concerning issues in pipeline flow assurance for the Oil&Gas pipeline industries,which can easily lead to wall thinning,perforation leakage,and other crucial safety risks to the steady operation of pipelines.In this research,a novel experimental device is designed to investigate the erosion characteristics of 304 stainless and L245 carbon steel in the gas-solid two-phase flow.Regarding the impacts on erosion rate,the typical factors such as gas velocity,impact angle,erosion time,particle material and target material are individually observed and comprehensive analyzed with the assistance of apparent morphology characterized via Scanning Electron Microscope.Experimental results show that the severest erosion occurs when the angle reaches approximate 30°whether eroded by type I or type II particles,which is observed in both two types of steel.Concretely,304 stainless steel and L245 carbon steel appear to be cut at low angles,and impacted at high angles to form erosion pits.In the steady operational state,the erosion rate is insensitive to the short erosion time and free from the influences caused by the“erosion latent period”.Based on the comparison between experimental data and numerical results generated by existing erosion models,a modified model with low tolerance(<3%),high feasibility and strong consistency is proposed to make an accurate prediction of the erosion in terms of two types of steel under various industrial conditions. 展开更多
关键词 gas-solid flow EROSION 304 stainless L245 carbon steel Erosion model
下载PDF
Numerical Simulation of Gas-Solid Two-Phase Flow in Reverse Blowing Pickup Mouth 被引量:1
5
作者 郗元 成凯 +2 位作者 娄希同 程磊 董超 《Journal of Donghua University(English Edition)》 EI CAS 2015年第4期530-535,共6页
Pickup mouth is a key component for the service performance of a street sweeper. Computational fluid dynamics( CFD) technology,as an analysis tool in fluid flow simulation,is employed in this work because it can great... Pickup mouth is a key component for the service performance of a street sweeper. Computational fluid dynamics( CFD) technology,as an analysis tool in fluid flow simulation,is employed in this work because it can greatly shorten the design period. To obtain higher simulation accuracy,the gas-solid coupling inside the process cannot be neglected during numerical simulation.Our optimization procedure considers the influence of structure and operational parameters. It is recommended that the outlet diameter is less than 0. 42 of the width and the outlet inclination angle is 110°for structure parameters. The dust collection efficiency is improved when the reverse flow rate is 70% of the total volume,the sweepertraveling speed is 10 km / h,and the pressure drop is 2 400 Pa.Simulation results exhibit well consistency with the physical experimental results. 展开更多
关键词 SWEEPER pickup mouth parameter optimization computational fluid dynamics(CFD) gas-solid flow
下载PDF
Transportation characteristics of gas-solid two-phase flow in a long-distance pipeline 被引量:5
6
作者 Xiaoqiang Zhang Dongfeng Zhang +1 位作者 An Wang Yide Geng 《Particuology》 SCIE EI CAS CSCD 2015年第4期196-202,共7页
In this study, experiments on fly ash conveying were carried out with a home-made long-distance positive-pressure pneumatic conveying system equipped with a high performance electrical capacitance tomography system to... In this study, experiments on fly ash conveying were carried out with a home-made long-distance positive-pressure pneumatic conveying system equipped with a high performance electrical capacitance tomography system to observe the transient characteristics of gas-solid two-phase flow. The experimen- tal results indicated that solids throughput increased with increasing solids-gas ratio when the conveying pipeline was not plugged. Moreover, the optimum operating state was determined for the 1000 m long conveying pipeline with a throttle plate of 26 orifices. At this state the solids throughput was about 12.97 t/h. Additionally, the transportation pattern of fly ash gradually changed from sparse-dense flow to partial and plug flows with increasing conveying distance because of the conveying pressure loss, These experimental results provide important reference data for the development of pneumatic conveying technology. 展开更多
关键词 Pneumatic conveying Electrical capacitance tomography Fly ash gas-solid two-phase flow Solid concentration
原文传递
Evaluation of frictional pressure drop correlations for air-water and air-oil two-phase flow in pipeline-riser system
7
作者 Nai-Liang Li Bin Chen 《Petroleum Science》 SCIE EI CAS CSCD 2024年第2期1305-1319,共15页
Accurate prediction of the frictional pressure drop is important for the design and operation of subsea oil and gas transporting system considering the length of the pipeline. The applicability of the correlations to ... Accurate prediction of the frictional pressure drop is important for the design and operation of subsea oil and gas transporting system considering the length of the pipeline. The applicability of the correlations to pipeline-riser flow needs evaluation since the flow condition in pipeline-riser is quite different from the original data where they were derived from. In the present study, a comprehensive evaluation of 24prevailing correlation in predicting frictional pressure drop is carried out based on experimentally measured data of air-water and air-oil two-phase flows in pipeline-riser. Experiments are performed in a system having different configuration of pipeline-riser with the inclination of the downcomer varied from-2°to-5°to investigated the effect of the elbow on the frictional pressure drop in the riser. The inlet gas velocity ranges from 0.03 to 6.2 m/s, and liquid velocity varies from 0.02 to 1.3 m/s. A total of885 experimental data points including 782 on air-water flows and 103 on air-oil flows are obtained and used to access the prediction ability of the correlations. Comparison of the predicted results with the measured data indicate that a majority of the investigated correlations under-predict the pressure drop on severe slugging. The result of this study highlights the requirement of new method considering the effect of pipe layout on the frictional pressure drop. 展开更多
关键词 Frictional pressure drop Pipeline-riser Gas-liquid two-phase flow Severe slugging CORRELATION
下载PDF
Insight into evolution of invasive patterns on fingering phenomenon during immiscible two-phase flow through pore structure
8
作者 Yu Li Hui-Qing Liu +3 位作者 Chao Peng Peng Jiao Wai Lam Loh Qing Wang 《Petroleum Science》 SCIE EI CAS CSCD 2024年第5期3307-3325,共19页
Understanding fingering, as a challenge to stable displacement during the immiscible flow, has become a crucial phenomenon for geological carbon sequestration, enhanced oil recovery, and groundwater protection. Typica... Understanding fingering, as a challenge to stable displacement during the immiscible flow, has become a crucial phenomenon for geological carbon sequestration, enhanced oil recovery, and groundwater protection. Typically governed by gravity, viscous and capillary forces, these factors lead invasive fluids to occupy pore space irregularly and incompletely. Previous studies have demonstrated capillary numbers,describing the viscous and capillary forces, to quantificationally induce evolution of invasion patterns.While the evolution mechanisms of invasive patterns have not been deeply elucidated under the constant capillary number and three variable parameters including velocity, viscosity, and interfacial tension.Our research employs two horizontal visualization systems and a two-phase laminar flow simulation to investigate the tendency of invasive pattern transition by various parameters at the pore scale. We showed that increasing invasive viscosity or reducing interfacial tension in a homogeneous pore space significantly enhanced sweep efficiency, under constant capillary number. Additionally, in the fingering crossover pattern, the region near the inlet was prone to capillary fingering with multi-directional invasion, while the viscous fingering with unidirectional invasion was more susceptible occurred in the region near the outlet. Furthermore, increasing invasive viscosity or decreasing invasive velocity and interfacial tension promoted the extension of viscous fingering from the outlet to the inlet, presenting that the subsequent invasive fluid flows toward the outlet. In the case of invasive trunk along a unidirectional path, the invasive flow increased exponentially closer to the outlet, resulting in a significant decrease in the width of the invasive interface. Our work holds promising applications for optimizing invasive patterns in heterogeneous porous media. 展开更多
关键词 Immiscible two-phase flow Fingering phenomenon Invasive pattern Capillary number Parameters optimization
下载PDF
Pressure transient characteristics of non-uniform conductivity fractured wells in viscoelasticity polymer flooding based on oil-water two-phase flow
9
作者 Yang Wang Jia Zhang +2 位作者 Shi-Long Yang Ze-Xuan Xu Shi-Qing Cheng 《Petroleum Science》 SCIE EI CAS CSCD 2024年第1期343-351,共9页
Polymer flooding in fractured wells has been extensively applied in oilfields to enhance oil recovery.In contrast to water,polymer solution exhibits non-Newtonian and nonlinear behavior such as effects of shear thinni... Polymer flooding in fractured wells has been extensively applied in oilfields to enhance oil recovery.In contrast to water,polymer solution exhibits non-Newtonian and nonlinear behavior such as effects of shear thinning and shear thickening,polymer convection,diffusion,adsorption retention,inaccessible pore volume and reduced effective permeability.Meanwhile,the flux density and fracture conductivity along the hydraulic fracture are generally non-uniform due to the effects of pressure distribution,formation damage,and proppant breakage.In this paper,we present an oil-water two-phase flow model that captures these complex non-Newtonian and nonlinear behavior,and non-uniform fracture characteristics in fractured polymer flooding.The hydraulic fracture is firstly divided into two parts:high-conductivity fracture near the wellbore and low-conductivity fracture in the far-wellbore section.A hybrid grid system,including perpendicular bisection(PEBI)and Cartesian grid,is applied to discrete the partial differential flow equations,and the local grid refinement method is applied in the near-wellbore region to accurately calculate the pressure distribution and shear rate of polymer solution.The combination of polymer behavior characterizations and numerical flow simulations are applied,resulting in the calculation for the distribution of water saturation,polymer concentration and reservoir pressure.Compared with the polymer flooding well with uniform fracture conductivity,this non-uniform fracture conductivity model exhibits the larger pressure difference,and the shorter bilinear flow period due to the decrease of fracture flow ability in the far-wellbore section.The field case of the fall-off test demonstrates that the proposed method characterizes fracture characteristics more accurately,and yields fracture half-lengths that better match engineering reality,enabling a quantitative segmented characterization of the near-wellbore section with high fracture conductivity and the far-wellbore section with low fracture conductivity.The novelty of this paper is the analysis of pressure performances caused by the fracture dynamics and polymer rheology,as well as an analysis method that derives formation and fracture parameters based on the pressure and its derivative curves. 展开更多
关键词 Polymer flooding Non-Newtonian fluid Non-uniform fracture conductivity two-phase flow Pressure transient analysis
下载PDF
Integrated numerical simulation of hydraulic fracturing and production in shale gas well considering gas-water two-phase flow
10
作者 TANG Huiying LUO Shangui +4 位作者 LIANG Haipeng ZENG Bo ZHANG Liehui ZHAO Yulong SONG Yi 《Petroleum Exploration and Development》 SCIE 2024年第3期684-696,共13页
Based on the displacement discontinuity method and the discrete fracture unified pipe network model,a sequential iterative numerical method was used to build a fracturing-production integrated numerical model of shale... Based on the displacement discontinuity method and the discrete fracture unified pipe network model,a sequential iterative numerical method was used to build a fracturing-production integrated numerical model of shale gas well considering the two-phase flow of gas and water.The model accounts for the influence of natural fractures and matrix properties on the fracturing process and directly applies post-fracturing formation pressure and water saturation distribution to subsequent well shut-in and production simulation,allowing for a more accurate fracturing-production integrated simulation.The results show that the reservoir physical properties have great impacts on fracture propagation,and the reasonable prediction of formation pressure and reservoir fluid distribution after the fracturing is critical to accurately predict the gas and fluid production of the shale gas wells.Compared with the conventional method,the proposed model can more accurately simulate the water and gas production by considering the impact of fracturing on both matrix pressure and water saturation.The established model is applied to the integrated fracturing-production simulation of practical horizontal shale gas wells.The simulation results are in good agreement with the practical production data,thus verifying the accuracy of the model. 展开更多
关键词 shale gas well hydraulic fracturing fracture propagation gas-water two-phase flow fracturing-production integrated numerical simulation
下载PDF
Arbitrary High-Order Fully-Decoupled Numerical Schemes for Phase-Field Models of Two-Phase Incompressible Flows
11
作者 Ruihan Guo Yinhua Xia 《Communications on Applied Mathematics and Computation》 EI 2024年第1期625-657,共33页
Due to the coupling between the hydrodynamic equation and the phase-field equation in two-phase incompressible flows,it is desirable to develop efficient and high-order accurate numerical schemes that can decouple the... Due to the coupling between the hydrodynamic equation and the phase-field equation in two-phase incompressible flows,it is desirable to develop efficient and high-order accurate numerical schemes that can decouple these two equations.One popular and efficient strategy is to add an explicit stabilizing term to the convective velocity in the phase-field equation to decouple them.The resulting schemes are only first-order accurate in time,and it seems extremely difficult to generalize the idea of stabilization to the second-order or higher version.In this paper,we employ the spectral deferred correction method to improve the temporal accuracy,based on the first-order decoupled and energy-stable scheme constructed by the stabilization idea.The novelty lies in how the decoupling and linear implicit properties are maintained to improve the efficiency.Within the framework of the spatially discretized local discontinuous Galerkin method,the resulting numerical schemes are fully decoupled,efficient,and high-order accurate in both time and space.Numerical experiments are performed to validate the high-order accuracy and efficiency of the methods for solving phase-field models of two-phase incompressible flows. 展开更多
关键词 two-phase incompressible flows Fully-decoupled High-order accurate Linear implicit Spectral deferred correction method Local discontinuous Galerkin method
下载PDF
Numerical Simulation of Oil-Water Two-Phase Flow in Low Permeability Tight Reservoirs Based on Weighted Least Squares Meshless Method
12
作者 Xin Liu Kai Yan +3 位作者 Bo Fang Xiaoyu Sun Daqiang Feng Li Yin 《Fluid Dynamics & Materials Processing》 EI 2024年第7期1539-1552,共14页
In response to the complex characteristics of actual low-permeability tight reservoirs,this study develops a meshless-based numerical simulation method for oil-water two-phase flow in these reservoirs,considering comp... In response to the complex characteristics of actual low-permeability tight reservoirs,this study develops a meshless-based numerical simulation method for oil-water two-phase flow in these reservoirs,considering complex boundary shapes.Utilizing radial basis function point interpolation,the method approximates shape functions for unknown functions within the nodal influence domain.The shape functions constructed by the aforementioned meshless interpolation method haveδ-function properties,which facilitate the handling of essential aspects like the controlled bottom-hole flow pressure in horizontal wells.Moreover,the meshless method offers greater flexibility and freedom compared to grid cell discretization,making it simpler to discretize complex geometries.A variational principle for the flow control equation group is introduced using a weighted least squares meshless method,and the pressure distribution is solved implicitly.Example results demonstrate that the computational outcomes of the meshless point cloud model,which has a relatively small degree of freedom,are in close agreement with those of the Discrete Fracture Model(DFM)employing refined grid partitioning,with pressure calculation accuracy exceeding 98.2%.Compared to high-resolution grid-based computational methods,the meshless method can achieve a better balance between computational efficiency and accuracy.Additionally,the impact of fracture half-length on the productivity of horizontal wells is discussed.The results indicate that increasing the fracture half-length is an effective strategy for enhancing production from the perspective of cumulative oil production. 展开更多
关键词 Weighted least squares method meshless method numerical simulation of low permeability tight reservoirs oil-water two-phase flow fracture half-length
下载PDF
Optimizing Two-Phase Flow Heat Transfer:DCS Hybrid Modeling and Automation in Coal-Fired Power Plant Boilers
13
作者 Ming Yan Caijiang Lu +3 位作者 Pan Shi Meiling Zhang Jiawei Zhang Liang Wang 《Frontiers in Heat and Mass Transfer》 EI 2024年第2期615-631,共17页
In response to escalating challenges in energy conservation and emission reduction,this study delves into the complexities of heat transfer in two-phase flows and adjustments to combustion processes within coal-fired ... In response to escalating challenges in energy conservation and emission reduction,this study delves into the complexities of heat transfer in two-phase flows and adjustments to combustion processes within coal-fired boilers.Utilizing a fusion of hybrid modeling and automation technologies,we develop soft measurement models for key combustion parameters,such as the net calorific value of coal,flue gas oxygen content,and fly ash carbon content,within theDistributedControl System(DCS).Validated with performance test data,thesemodels exhibit controlled root mean square error(RMSE)and maximum absolute error(MAXE)values,both within the range of 0.203.Integrated into their respective automatic control systems,thesemodels optimize two-phase flow heat transfer,finetune combustion conditions,and mitigate incomplete combustion.Furthermore,this paper conducts an in-depth exploration of the generationmechanismof nitrogen oxides(NOx)and low oxygen emission reduction technology in coal-fired boilers,demonstrating a substantial reduction in furnace exit NOx generation by 30%to 40%and the power supply coal consumption decreased by 1.62 g/(kW h).The research outcomes highlight the model’s rapid responsiveness,enabling prompt reflection of transient variations in various economic indicator parameters.This provides a more effective means for real-time monitoring of crucial variables in coal-fired boilers and facilitates timely combustion adjustments,underscoring notable achievements in boiler combustion.The research not only provides valuable and practical insights into the intricacies of two-phase flow heat transfer and heat exchange but also establishes a pioneering methodology for tackling industry challenges. 展开更多
关键词 two-phase flow coal-fired boiler oxygen content of flue gas carbon content in fly ash hybrid modeling automation control
下载PDF
Numerical Solutions of the Classical and Modified Buckley-Leverett Equations Applied to Two-Phase Fluid Flow
14
作者 Raphael de O. Garcia Graciele P. Silveira 《Open Journal of Fluid Dynamics》 2024年第3期184-204,共21页
Climate change is a reality. The burning of fossil fuels from oil, natural gas and coal is responsible for much of the pollution and the increase in the planet’s average temperature, which has raised discussions on t... Climate change is a reality. The burning of fossil fuels from oil, natural gas and coal is responsible for much of the pollution and the increase in the planet’s average temperature, which has raised discussions on the subject, given the emergencies related to climate. An energy transition to clean and renewable sources is necessary and urgent, but it will not be quick. In this sense, increasing the efficiency of oil extraction from existing sources is crucial, to avoid waste and the drilling of new wells. The purpose of this work was to add diffusive and dispersive terms to the Buckley-Leverett equation in order to incorporate extra phenomena in the temporal evolution between the water-oil and oil-water transitions in the pipeline. For this, the modified Buckley-Leverett equation was discretized via essentially weighted non-oscillatory schemes, coupled with a three-stage Runge-Kutta and a fourth-order centered finite difference methods. Then, computational simulations were performed and the results showed that new features emerge in the transitions, when compared to classical simulations. For instance, the dispersive term inhibits the diffusive term, adding oscillations, which indicates that the absorption of the fluid by the porous medium occurs in a non-homogeneous manner. Therefore, based on research such as this, decisions can be made regarding the replacement of the porous medium or the insertion of new components to delay the replacement. 展开更多
关键词 Computational Fluid Dynamics Buckley-Leverett Equation Numerical Methods two-phase Fluid flow
下载PDF
Numerical Simulation on Gas-Solid Two-Phase Turbulent Flow in FCC Riser Reactors(Ⅰ) Turbulent Gas-Solid Flow-Reaction Model 被引量:3
15
作者 高金森 徐春明 +2 位作者 杨光华 郭印诚 林文漪 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 1998年第1期16-24,共9页
Gas-solid two-phase turbulent flows,mass transfer,heat transfer and catalytic cracking reactions areknown to exert interrelated influences in commercial fluid catalytic cracking(FCC)riser reactors.In the presentpaper,... Gas-solid two-phase turbulent flows,mass transfer,heat transfer and catalytic cracking reactions areknown to exert interrelated influences in commercial fluid catalytic cracking(FCC)riser reactors.In the presentpaper,a three-dimensional turbulent gas-solid two-phase flow-reaction model for FCC riser reactors was devel-oped.The model took into account the gas-solid two-phase turbulent flows,inter-phase heat transfer,masstransfer,catalytic cracking reactions and their interrelated influence.The k-V-k_P two-phase turbulence modelwas employed and modified for the two-phase turbulent flow patterns with relatively high particle concentration.Boundary conditions for the flow-reaction model were given.Related numerical algorithm was formed and a nu-merical code was drawn up.Numerical modeling for commercial FCC riser reactors could be carried out with thepresented model. 展开更多
关键词 RISER REACTOR TURBULENT flow gas-solid flow flow-reaction model numerical algorithm
下载PDF
Numerical study of gas-solid two-phase flow and erosion in a cavity with a slope 被引量:3
16
作者 Zhe Lin Xiwang Sun +1 位作者 Yi Li Zuchao Zhu 《Particuology》 SCIE EI CAS CSCD 2022年第3期25-35,共11页
Gate valve is mainly used to turn on or turn off the pipeline in pneumatic conveying.When the gate valve is fully open,the particles are easy to collide with the cavity rear wall and enter into the cavity,resulting in... Gate valve is mainly used to turn on or turn off the pipeline in pneumatic conveying.When the gate valve is fully open,the particles are easy to collide with the cavity rear wall and enter into the cavity,resulting in particles’accumulation in the cavity.The particles in cavity will accumulate between the cavity bottom and the flashboard bottom wall and prevent the gate from turning off normally.Meanwhile,the particles’collision with cavity rear wall will cause serious erosion.Both the particles’accumulation and erosion will cause the poor sealing of the gate valve,further resulting in the leakage of the pipeline system.To reduce the particles’accumulation in cavity and erosion on cavity when the gate valve is fully open,we simplify the gate valve into a cavity structure and study it.We find that adding a slope upstream the cavity can effectively reduce the particles’accumulation in the cavity and the erosion on the cavity rear wall.In this work,Eulerian-Lagrangian method in commercial code(FLUENT)was used to study the gas-solid two-phase flow and erosion characteristics of a cavity with a slope.The particle distribution shows that the particles with Stokes number St=1.3 and St=13 cannot enter the cavity due to the slope,but the particles with St=0.13 enter the cavity following the gas.For St=13,the particles collide with the wall many times in the ideal cavity.Erosion results show that the slope can transfer the erosion on cavity rear wall to the slope and reduce the maximum erosion rate of the wall near the cavity to some degrees. 展开更多
关键词 Cavity with a slope gas-solid flow Solid particle erosion Stokes number
原文传递
PREDICTIONS OF 3-D STRONGLY SWIRLING GAS-SOLID TWO-PHASE FLOW WITH GAS COMBUSTION
17
作者 王振宇 还博文 《Journal of Shanghai Jiaotong university(Science)》 EI 1998年第1期59-63,共5页
PREDICTIONSOF3┐DSTRONGLYSWIRLINGGAS┐SOLIDTWO┐PHASEFLOWWITHGASCOMBUSTIONWangZhenyu(王振宇)(ShanghaiWujingThermal... PREDICTIONSOF3┐DSTRONGLYSWIRLINGGAS┐SOLIDTWO┐PHASEFLOWWITHGASCOMBUSTIONWangZhenyu(王振宇)(ShanghaiWujingThermalPowerPlant)HuanBo... 展开更多
关键词 王振宇 STRONGLY SWIRLING two-phase OF PREDICTIONS flow WITH COMBUSTION gas-solid
下载PDF
Ultrasonic method for measuring water holdup of low velocity and high-water-cut oil-water two-phase flow 被引量:2
18
作者 赵安 韩云峰 +2 位作者 任英玉 翟路生 金宁德 《Applied Geophysics》 SCIE CSCD 2016年第1期179-193,222,共16页
Oil reservoirs with low permeability and porosity that are in the middle and late exploitation periods in China's onshore oil fields are mostly in the high-water-cut production stage.This stage is associated with sev... Oil reservoirs with low permeability and porosity that are in the middle and late exploitation periods in China's onshore oil fields are mostly in the high-water-cut production stage.This stage is associated with severely non-uniform local-velocity flow profiles and dispersed-phase concentration(of oil droplets) in oil-water two-phase flow,which makes it difficult to measure water holdup in oil wells.In this study,we use an ultrasonic method based on a transmission-type sensor in oil-water two-phase flow to measure water holdup in lowvelocity and high water-cut conditions.First,we optimize the excitation frequency of the ultrasonic sensor by calculating the sensitivity of the ultrasonic field using the finite element method for multiphysics coupling.Then we calculate the change trend of sound pressure level attenuation ratio with the increase in oil holdup to verify the feasibility of the employed diameter for the ultrasonic sensor.Based on the results,we then investigate the effects of oildroplet diameter and distribution on the ultrasonic field.To further understand the measurement characteristics of the ultrasonic sensor,we perform a flow loop test on vertical upward oilwater two-phase flow and measure the responses of the optimized ultrasonic sensor.The results show that the ultrasonic sensor yields poor resolution for a dispersed oil slug in water flow(D OS/W flow),but the resolution is favorable for dispersed oil in water flow(D O/W flow) and very fine dispersed oil in water flow(VFD O/W flow).This research demonstrates the potential application of a pulsed-transmission ultrasonic method for measuring the fraction of individual components in oil-water two-phase flow with a low mixture velocity and high water cut. 展开更多
关键词 Oil-water two-phase flow low mixture velocity high water cut ultrasonic sensor water holdup
下载PDF
A Numerical Sirnulation of Gas-Particle Two-Phase Flow in a Suspension Bed Using DifFusion Flux Model 被引量:1
19
作者 尚智 杨瑞昌 +2 位作者 FUKUDA Kenji 钟勇 巨泽建 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2003年第5期497-503,共7页
A mathematical modei of two-dimensional turbulent gas-particle twophase flow based on the modified diffusion flux modei (DFM) and a numerical simulation method to analyze the gas-particle flow structures are developed... A mathematical modei of two-dimensional turbulent gas-particle twophase flow based on the modified diffusion flux modei (DFM) and a numerical simulation method to analyze the gas-particle flow structures are developed. The modified diffusion flux modei, in which the acceleration due to various forces is taken into account for the calculation of the diffusion velocity of particles, is applicable to the analysis of multi-dimensional gas-particle two-phase turbulent flow. In order to verify its accuracy and efficiency, the numerical simulation by DFM is compared with experimental studies and the prediction by k-ε-kp two-fluid modei, which shows a reasonable agreement. It is confirmed that the modified diffusion flux modei is suitable for simulating the multi-dimensional gas-particle two-phase flow. 展开更多
关键词 diffusion flux model gas-solid two-phase flow turbulent flow numerical simulation
下载PDF
LARGE-EDDY SIMULATION OF TWO-PHASE REACTING FLOW IN MODEL COMBUSTOR 被引量:1
20
作者 颜应文 赵坚行 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2005年第1期1-8,共8页
The gas-droplet two-phase reacting flow in a model combustor with the V-gutter flame holder is studied by an Eulerian-Lagrangian large-eddy simulation (LES) approach. The k-equation subgrid-scale model is used to simu... The gas-droplet two-phase reacting flow in a model combustor with the V-gutter flame holder is studied by an Eulerian-Lagrangian large-eddy simulation (LES) approach. The k-equation subgrid-scale model is used to simulate the subgrid eddy viscosity, and the eddy-break-up (EBU) combustion subgrid-scale model is used to determine the chemical reaction rate. A two-step turbulent combustion subgrid-scale model is employed for calculating carbon monoxide CO concentration, and the NO subgrid-scale pollutant formation model for the evaluation of the rate of NO formation. The heat flux model is applied to the prediction of radiant heat transfer. The gas phase is solved with the SIMPLE algorithm and a hybrid scheme in the staggered grid system. The liquid phase equations are solved in a Lagrangian frame in reference of the particle-source-in-cell (PSIC) algorithm. From simulation results, the exchange of mass, moment and energy between gas and particle fields for the reacting flow in the afterburner with a V-gutter flame holder can be obtained. By the comparison of experimental and simulation results, profile temperature and pollutant of the outlet are quite in agreement with experimental data. Results show that the LES approach for predicting the two-phase instantaneous reacting flow and pollutant emissions in the afterburner is feasible. 展开更多
关键词 two-phase reacting flow large-eddy simulation pollutant emission AFTERBURNER
下载PDF
上一页 1 2 30 下一页 到第
使用帮助 返回顶部