The gasoline inline blending process has widely used real-time optimization techniques to achieve optimization objectives,such as minimizing the cost of production.However,the effectiveness of real-time optimization i...The gasoline inline blending process has widely used real-time optimization techniques to achieve optimization objectives,such as minimizing the cost of production.However,the effectiveness of real-time optimization in gasoline blending relies on accurate blending models and is challenged by stochastic disturbances.Thus,we propose a real-time optimization algorithm based on the soft actor-critic(SAC)deep reinforcement learning strategy to optimize gasoline blending without relying on a single blending model and to be robust against disturbances.Our approach constructs the environment using nonlinear blending models and feedstocks with disturbances.The algorithm incorporates the Lagrange multiplier and path constraints in reward design to manage sparse product constraints.Carefully abstracted states facilitate algorithm convergence,and the normalized action vector in each optimization period allows the agent to generalize to some extent across different target production scenarios.Through these well-designed components,the algorithm based on the SAC outperforms real-time optimization methods based on either nonlinear or linear programming.It even demonstrates comparable performance with the time-horizon based real-time optimization method,which requires knowledge of uncertainty models,confirming its capability to handle uncertainty without accurate models.Our simulation illustrates a promising approach to free real-time optimization of the gasoline blending process from uncertainty models that are difficult to acquire in practice.展开更多
To produce low olefin gasoline with high octane number by Fischer-Tropsch (F-T) wax fluid catalytic cracking (FCC) process, operating conditions optimization were carried out in the pilot-scale riser and turbulent flu...To produce low olefin gasoline with high octane number by Fischer-Tropsch (F-T) wax fluid catalytic cracking (FCC) process, operating conditions optimization were carried out in the pilot-scale riser and turbulent fluidized bed (TFB) FCC unit. The experimental results in the riser indicated that under the condition of low reaction temperature and regenerated catalyst temperature, large catalyst-to-oil weight ratio (C/O) and long reaction time, the gasoline olefin content could be reduced to 20.28 wt%, but there is large octane number loss owing to a great loss in high octane number olefin. Therefore, a novel FCC process using the TFB reactor was proposed to strengthen the aromatization reaction. The reaction performance of TFB reactor were investigated. The result demonstrated that the TFB reactor has more significant effect in reducing olefins and improving aromatics. At the expense of certain gasoline yield, the gasoline olefin content reduced to 23.70 wt%, aromatics content could increase to 26.79 wt% and the RON was up to 91.0. The comparison of reactor structure and fluidization demonstrated that the TFB reactor has higher catalyst bed density. The reaction heat and coke combustion heat was calculated indicating the feasibility of its industrial application of the TFB process.展开更多
Although detergent additives for gasoline have been widely commercialized,their formulas are often kept confidential and there is still no standardized method for quickly detecting the main active ingredients and eval...Although detergent additives for gasoline have been widely commercialized,their formulas are often kept confidential and there is still no standardized method for quickly detecting the main active ingredients and evaluating their effectiveness,which makes their regulation difficult.An overview of the current state of the development and application of detergent additives for gasoline in China and other regions,as well as a review of the rapid detection and performance evaluation methods available for analyzing detergent additives are given herein.The review focuses on the convenience,cost,efficiency,and feasibility of on-site detection and the evaluation of various methods,and also looks into future research directions,such as detecting and evaluating detergent additives in ethanol gasoline and with advanced engine technologies.展开更多
The comprehensive characterization of heavy aromatic hydrocarbons in gasoline is important to optimize the blending process and understand the correlation between aromatics content and engine particulate emissions.How...The comprehensive characterization of heavy aromatic hydrocarbons in gasoline is important to optimize the blending process and understand the correlation between aromatics content and engine particulate emissions.However,most current analysis methods can only provide the composition of C_(8)/C_(8-) aromatics.In this study,a simple and fast gas chromatography-mass spectrometry(GC-MS)method to identify and quantify C_(9+)aromatics in gasoline was developed.A selected ion monitoring model was employed to eliminate interference from non-aromatic compounds in the detection of target compounds,as well as that between target compounds with different molecular formulas.The identification of C_(9+)aromatics was based on the retention time of model compounds,combined with characteristic mass fragment ions,boiling points,and retention indexes.Seventy-nine C_(9)–C_(12)aromatic compounds were quantified based on the calibration of representative model compounds,and the method demonstrated good linearity,and high accuracy and precision.Furthermore,the developed methodology was successfully applied to the analysis of gasoline fractions from the reforming,pyrolysis,straight-run,delayed coking,and catalytic cracking processes,as well as commercial gasolines.The results showed that C_(9)aromatics were the predominant aromatics in all gasoline samples,followed by C10 aromatics.Alkylbenzenes such as C_(9)H_(12)and C_(10)H_(14)were the main components in the reforming,straight-run,delayed coking,and catalytic cracking gasoline fractions,as well as in the commercial gasolines,in which 1,2,4-trimethylbenzene and 3-ethyltoluene were dominant;in contrast,aromatics with higher degrees of unsaturation such as indene were the most abundant aromatics in the pyrolysis gasoline fraction.展开更多
Gasoline compression ignition(GCI)has been considered as a promising combustion concept to yield ultralow NOX and soot emissions while maintaining high thermal efficiency.However,how to improve the low-load performanc...Gasoline compression ignition(GCI)has been considered as a promising combustion concept to yield ultralow NOX and soot emissions while maintaining high thermal efficiency.However,how to improve the low-load performance becomes an urgent issue to be solved.In this paper,a GCI engine model was built to investigate the effects of internal EGR(i-EGR)and pre-injection on in-cylinder temperature,spatial concentration of mixture and OH radical,combustion and emission characteristics,and the control strategy for improving the combustion performance was further explored.The results showed an obvious expansion of the zone with an equivalence ratio between 0.8∼1.2 is realized by higher pre-injection ratios,and the s decreases with the increase of pre-injection ratio,but increases with the increase of i-EGR ratio.The high overlap among the equivalentmixture zone,the hightemperature zone,and the OH radical-rich zone can be achieved by higher i-EGR ratio coupled with higher preinjection ratio.By increasing the pre-injection ratio,the combustion efficiency increases first and then decreases,also achieves the peak value with a pre-injection ratio of 60%and is unaffected by i-EGR.The emissions of CO,HC,NOX,and soot can also be reduced to low levels by the combination of higher i-EGR ratios and a pre-injection ratio of 60%.展开更多
Background: Occupational health is an important consideration, especially for people that work in an environment with pollutants. Gasoline attendants are individuals that work in filling stations. They are constantly ...Background: Occupational health is an important consideration, especially for people that work in an environment with pollutants. Gasoline attendants are individuals that work in filling stations. They are constantly exposed to gasoline fumes and automobile engine products from vehicle exhaust. This increases the risk of acute and chronic respiratory diseases and carcinogenesis among them. The risk of health complications tends to increase with the duration of exposure. The study aimed to determine the proportion of gasoline attendants with lung function impairment. Methods and Materials: Two hundred and eight eligible participants were recruited for this study. A cross-sectional analytical study was carried out in Esan West local government area of Edo state, Nigeria. The study was carried out for a period of six months from December 2015 to May 2016. A questionnaire was used to obtain information on demographic characteristics, work history, mode of exposure and duration of exposure to petrol fumes. Lung function was assessed using a DTspiro spirometer (Model POP 10. Serial no 110843-005);also the anthropometric parameters of the respondent were measured. Statistical analysis was done using IBM SPSS version 20.0. Frequency and percentages were used to present categorical data. The mean and standard deviation of continuous variables were calculated and compared using the student’s t-test. The criteria of significant association were assumed for a p-value less than 0.05. Results: A total of one hundred and forty petrol pump attendants and one hundred and forty controls participated in this study. The mean age for petrol pump attendants was 24 ± 3.1 years and 23 ± 2.8 years for the control group. There were no significant differences in the gender distribution and anthropometric parameters as observed in this study. The lung impairment pattern observed in this study was obstructive in twelve (8.6%) gasoline pump attendants and restrictive pattern in thirty-nine (27.9%) gasoline pump attendants, while only four (2.9%) had an obstructive pattern and twelve (8.6%) had a restrictive pattern of lung impairment among the control group. This implies that a restrictive pattern was predominant. This study also observed that there was an increase in the number of gasoline pump attendants with declined lung function compared to the control group. Conclusion: Restrictive pattern of lung impairment was more predominant than the obstructive pattern among gasoline pump attendants. As a result, public health interventions should be instituted among these individuals, especially in developing countries.展开更多
Background: Occupational health is an important consideration, especially for people that work in an environment with pollutants. Gasoline attendants are individuals that work in filling stations. They are constantly ...Background: Occupational health is an important consideration, especially for people that work in an environment with pollutants. Gasoline attendants are individuals that work in filling stations. They are constantly exposed to gasoline fumes and automobile engine products from vehicle exhaust. This increases the risk of acute and chronic respiratory diseases and carcinogenesis among them. The risk of health complications tends to increase with the duration of exposure. The study aimed to determine the proportion of gasoline attendants with lung function impairment. Methods and Materials: Two hundred and eight eligible participants were recruited for this study. A cross-sectional analytical study was carried out in Esan West local government area of Edo state, Nigeria. The study was carried out for a period of six months from December 2015 to May 2016. A questionnaire was used to obtain information on demographic characteristics, work history, mode of exposure and duration of exposure to petrol fumes. Lung function was assessed using a DTspiro spirometer (Model POP 10. Serial no 110843-005);also the anthropometric parameters of the respondent were measured. Statistical analysis was done using IBM SPSS version 20.0. Frequency and percentages were used to present categorical data. The mean and standard deviation of continuous variables were calculated and compared using the student’s t-test. The criteria of significant association were assumed for a p-value less than 0.05. Results: A total of one hundred and forty petrol pump attendants and one hundred and forty controls participated in this study. The mean age for petrol pump attendants was 24 ± 3.1 years and 23 ± 2.8 years for the control group. There were no significant differences in the gender distribution and anthropometric parameters as observed in this study. The lung impairment pattern observed in this study was obstructive in twelve (8.6%) gasoline pump attendants and restrictive pattern in thirty-nine (27.9%) gasoline pump attendants, while only four (2.9%) had an obstructive pattern and twelve (8.6%) had a restrictive pattern of lung impairment among the control group. This implies that a restrictive pattern was predominant. This study also observed that there was an increase in the number of gasoline pump attendants with declined lung function compared to the control group. Conclusion: Restrictive pattern of lung impairment was more predominant than the obstructive pattern among gasoline pump attendants. As a result, public health interventions should be instituted among these individuals, especially in developing countries.展开更多
In order to improve the steady and dynamic characteristic of the idle speed control and study the performance of the fuzzy control method for the idle speed control, a fuzzy control system is developed to control the ...In order to improve the steady and dynamic characteristic of the idle speed control and study the performance of the fuzzy control method for the idle speed control, a fuzzy control system is developed to control the idle speed of gasoline engine. The construction and working principle of the fuzzy controller are described, and the design procedure of the fuzzy controller is given in detail. The control parameters are determined by computer simulation. The simulation and experiments on the engine test bench show that the idle speed is controlled accurately both in stationary and in dynamic states, and the fuzzy control method is robust to the changes of engine parameters.展开更多
To investigate the characteristics of the condensation in gasoline vapor condensation recovery,the condensation process of gasoline vapor with turbulent flow in a vertical tube is simulated based on the gas-liquid two...To investigate the characteristics of the condensation in gasoline vapor condensation recovery,the condensation process of gasoline vapor with turbulent flow in a vertical tube is simulated based on the gas-liquid two-phase flow model.An effective diffusion coefficient is used to describe mass diffusion among the species of gasoline vapor.Several variables including temperature,pressure,liquid film thickness and the variation of the Nusselt number in the tube are simulated.The effects of the inlet-to-wall temperature difference and the Reynolds number on the condensation rate and the Nusselt number are obtained by modelling.The results show that heat transfer and condensation can be enhanced significantly by increasing the inlet Reynolds number.However,the increase in the inlet-to-wall temperature difference has little effect on the condensation rate.It is also found that the gasoline vapor condensation rate is influenced greatly by the mass transfer resistance.The comparison of results from the model with previous experiments shows a good agreement.展开更多
The effect of olefins on formation of sulfur compounds in FCC gasoline was studied in a small-scale fixed fluidized bed (FFB) unit at temperatures ranging from 400℃ to 500℃, a weight hourly space velocity (WHSV)...The effect of olefins on formation of sulfur compounds in FCC gasoline was studied in a small-scale fixed fluidized bed (FFB) unit at temperatures ranging from 400℃ to 500℃, a weight hourly space velocity (WHSV) of 10 h-1, and a catalyst/oil ratio of 6. The results showed that C4--C6 olefins contained in the FCC gasoline could react with HzS to form predominantly thiophenes, alkyl-thiophenes as well as a fractional amount of thiols, while large molecular olefins such as heptene could react with hydrogen sulfide to form benzothiophenes. The amount of sulfur compounds formed at different tem- peratures over different catalysts were in proportion to the mass fractions of olefins in the feedstock, with the amount of sulfur compounds formed over REUSY catalyst exceeding those formed over the shape selective zeolite catalyst owing to the effect of catalyst performance and the impact of catalyst on the degree of olefin conversion. The amount of sulfur compounds generated and their increase reached a maximum at 450℃ and a minimum at 400℃ because of the influence of temperature on the thermodynamic and kinetic constants for formation of sulfur compound as well as on the olefin conversion degree. Based on the above-mentioned study, a reaction network and a model for prediction of sulfur compounds generated upon reaction of olefins in FCC gasoline with HES were established.展开更多
In this paper, the effect of MMT on the induction period of unleaded motor gasoline was studied, the manganese concentration, storage period of MMT-blended gasoline and environmental variables such as temperature and ...In this paper, the effect of MMT on the induction period of unleaded motor gasoline was studied, the manganese concentration, storage period of MMT-blended gasoline and environmental variables such as temperature and radiation intensity were considered to be main factors affecting the induction period of gasoline,when MMT-blended gasoline was exposed to light. It is found from experiments that the addition of MMT can improve the induction period of gasoline that is shielded from light, and reduce the induction period remarkably,when the gasoline is exposed to light. However, the radiation intensity is proved to be the leading influencing factor among all the environmental variables investigated.展开更多
According to advantages of neural network and characteristics of operatingprocedures of engine, a new strategy is represented on the control of fuel injection and ignitiontiming of gasoline engine based on improved BP...According to advantages of neural network and characteristics of operatingprocedures of engine, a new strategy is represented on the control of fuel injection and ignitiontiming of gasoline engine based on improved BP network algorithm. The optimum ignition advance angleand fuel injection pulse band of engine under different speed and load are tested for the samplestraining network, focusing on the study of the design method and procedure of BP neural network inengine injection and ignition control. The results show that artificial neural network technique canmeet the requirement of engine injection and ignition control. The method is feasible for improvingpower performance, economy and emission performances of gasoline engine.展开更多
A simulated gasoline consisting of model sulfur compounds of thiophene (C4H4S) and 3-methythiophene (3-MC4H4S) dissolved in n-heptane was tested for the oxidative desulfurization in the hydrogen peroxide (H202) ...A simulated gasoline consisting of model sulfur compounds of thiophene (C4H4S) and 3-methythiophene (3-MC4H4S) dissolved in n-heptane was tested for the oxidative desulfurization in the hydrogen peroxide (H202) and formic acid oxidative system over metal oxide-loaded molecular sieve. The effects of the oxidative system, loaded metal oxides, phase transfer catalyst, the addition of olefin and aromatics on sulfur removal were investigated in details. The results showed that the sulfur removal rate of simulated gasoline in the H202/formic acid system was higher than in other oxidative systems. The cerium oxide-loaded molecular sieve was found very active catalyst for oxidation of simulated gasoline in this system. The sulfur removal rates of C4H4S and 3-MC4H4S were enhanced when phase transfer catalyst (PTC) was added. However, the sulfur removal rate of simulated gasoline was reduced with the addition of olefin and aromatics.展开更多
The extractive desulfurization of a model gaso- line containing several alkyl thiols and aromatic thiophenic compounds was investigated using two imidazolium-based ionic liquids (ILs), 1-butyl-3-methylimidazolium te...The extractive desulfurization of a model gaso- line containing several alkyl thiols and aromatic thiophenic compounds was investigated using two imidazolium-based ionic liquids (ILs), 1-butyl-3-methylimidazolium tetrachloroaluminate, and 1-octyl-3-methylimidazolium te- trafluoroborate, as extractants. A fractional factorial design of experiments was employed to evaluate the effects and possible interactions of several process variables. Analysis of variance tests indicated that the number of extraction steps and the IL/gasoline volume ratio were of statistically highly significant, but none of the interactions were significant. The results showed that the desulfurization efficiency of the model gasoline by the ILs could reach 95.2 % under the optimal conditions. The optimized conditions were applied to study the extraction of thiophenic compounds in model gasoline and several real gasoline samples; the following order was observed in their separation: benzothio- phenc 〉 thiophcne 〉 3-methylthiophene 〉 2-methylthiophene, with 96.1% removal efficiency for benzothiophene. The IL extraction was successfully applied as a complementary process to the adsorptive desulfurization with acti- vated Raney nickel and acetonitrile solvent. The results indicated that the adsorptive process combined with IL extraction could provide high efficiency and selectivity, which can be regarded as a promising energy efficient desulfurization strategy for production of low-sulfur gasoline.展开更多
In this study, phosphorus modification by trimethyl phosphate impregnation was employed to enhance the hydrothermal stability of nano‐sized HZSM‐5 zeolites. A parallel modification was studied by ammonium dihydrogen...In this study, phosphorus modification by trimethyl phosphate impregnation was employed to enhance the hydrothermal stability of nano‐sized HZSM‐5 zeolites. A parallel modification was studied by ammonium dihydrogen phosphate impregnation. The modified zeolites were subjected to steam treatment at 800 °C for 4 h (100% steam) and employed as catalysts for olefin catalyticcracking (OCC) of full‐range fluid catalytic cracking (FCC) gasoline. X‐ray diffraction, N2 physicaladsorption and NH3 temperature‐programmed desorption analysis indicated that, although significantimprovements to the hydrothermal stability of nano‐sized HZSM‐5 zeolites can be observedwhen adopting both phosphorus modification strategies, impregnation with trimethyl phosphatedisplays further enhancement of the hydrothermal stability. This is because higher structural crystallinityis retained, larger specific surface areas/micropore volumes form, and there are greaternumbers of surface acid sites. Reaction experiments conducted using a fixed‐bed micro‐reactor(catalyst/oil ratio = 4, time on stream = 4 s) showed OCC of full‐range FCC gasoline-under a fluidized‐bed reaction mode configuration-to be a viable solution for the olefin problem of FCC gasoline.This reaction significantly decreased the olefin content in the full‐range FCC gasoline feed, andspecifically heavy‐end olefins, by converting the olefins into value‐added C2–C4 olefins and aromatics.At the same time, sulfide content of the gasoline decreased via a non‐hydrodesulfurization process.Nano‐sized HZSM‐5 zeolites modified with trimethyl phosphate exhibited enhanced catalytic performance for OCC of full‐range FCC gasoline.展开更多
To improve the energy utilization efficiency of internal combustion (IC) engine, exergy analysis was conducted on a passenger car gasoline engine. According to the thermodynamic theory of IC engine, in-cylinder exer...To improve the energy utilization efficiency of internal combustion (IC) engine, exergy analysis was conducted on a passenger car gasoline engine. According to the thermodynamic theory of IC engine, in-cylinder exergy balance model was built. The working processes of gasoline engine were simulated by using the GT-power. In this way, the required parameters were calculated and then gasoline engine exergy balance was obtained by programming on computer. On this basis, the influences of various parameters on exergy balance were analyzed. Results show that, the proportions of various forms of exergy in gasoline engine from high to low are irreversible loss, effective work, exhaust gas exergy and heat transfer exergy. Effective exergy proportion fluctuates with cylinder volumetric efficiency at full load, while it always increases with break mean effective pressure (BMEP) at part load. Exhaust gas exergy proportion is more sensitive to speed, and it increases with speed increasing except at the highest speed. The lower proportion of heat transfer exergy appears at high speed and high load. Irreversible loss is mainly influenced by load. At part load, higher BMEP results in lower proportion of irreversible loss; at full load, the proportion of irreversible loss changes little except at the highest speed.展开更多
The restriction on sulfur level in gasoline has been increasingly tightened. The U.S.Tier 22222 regulation requires a reduction from average 340ppm to 30ppm from 2004 to 2008. Recently significant progress has been ma...The restriction on sulfur level in gasoline has been increasingly tightened. The U.S.Tier 22222 regulation requires a reduction from average 340ppm to 30ppm from 2004 to 2008. Recently significant progress has been made in effective high sulfur removal, such as post treatment of FCC gasoline by selective hydrotreating, S Zorb sulfur removal technology, OATS process etc. The sulfur content of FCC gasoline can be deceased to less than 10ppm. With regard to gasoline pool composition in China, it is very important to look for effective desulfurization processes that are simple, straightforward, with less hydrogen consumption. Post-treatment of FCC gasoline is a preferred option. From the point of view of comprehensive utilization, alkylation, polymerization, isomerisation etc. can be added to desulfurization process to meet the requirement of ultra low sulfur, premium.展开更多
This paper investigated the secondary cracking of gasoline and diesel from the catalytic pyrolysis of Daqing atmospheric residue on catalyst CEP-1 in a fluidized bed reactor.The results show that the secondary crackin...This paper investigated the secondary cracking of gasoline and diesel from the catalytic pyrolysis of Daqing atmospheric residue on catalyst CEP-1 in a fluidized bed reactor.The results show that the secondary cracking reactivity of gasoline and diesel is poor,and the yield of total light olefins is only about 10%(by mass).As reaction temperature increases,ethylene yield increases,butylene yield decreases,and propylene yield shows a maximum.The optimal reaction temperature is about 670℃for the production of light olefins.With the enhance- ment of catalyst-to-oil mass ratio and steam-to-oil mass ratio,the yields of light olefins increase to some extent. About 6.30%of the mass of total aromatic rings is converted by secondary cracking,indicating that aromatic hy- drocarbons are not easy to undergo ring-opening reactions under the present experimental conditions.展开更多
Light cycle oil(LCO) with high content of poly-aromatics was difficult to upgrade and convert,which had hindered upgrading fuel quality to meet with the standard of automotive diesel for the purpose of sustainable dev...Light cycle oil(LCO) with high content of poly-aromatics was difficult to upgrade and convert,which had hindered upgrading fuel quality to meet with the standard of automotive diesel for the purpose of sustainable development.The hydrocracking behaviors of typical aromatics in LCO of naphthalene and tetralin were investigated over NiMo and CoMo catalysts.Several characterization methods including N2-adsoprtion and desorption,ammonia temperature-programmed desorption(NH3-TPD),Pyridine infrared spectroscopy(Py-IR),CO infrared spectroscopy(CO-IR),Raman and X-ray photoelectron spectroscopy(XPS) were applied to determine the properties of different catalysts.The results showed that CoMo catalyst with high concentration of S-edges could hydrosaturate more naphthalene to tetralin but exhibit lower yield of high-value light aromatics(carbon numbers less than 10) than NiMo catalyst.NiMo catalyst with high concentration of Mo-edges also presented a higher selectivity of converting naphthalene into cyclanes than CoMo catalyst.Subsequently,the naphthalene and LCO hydrocracking performances were also investigated over different catalysts systems.The activity evaluation and kinetic analysis results showed that the naphthalene hydrocracking conversion and the yield of light aromatics for CoMo-AY/NiMo-AY grading catalysts were higher than NiMo-AY/CoMo-AY grading catalysts at same condition.A stepwise reaction principle was proposed to explain the high efficiency of CoMo-AY/NiMoAY grading catalysts.Finally,the LCO hydrocracking evaluation results confirmed that CoMo-AY/NiMoAY catalysts grading system with low carbon deposition and high stability could remain high percentage of active phases,which was more efficient to convert LCO to high-octane gasoline.展开更多
A series of Co-imbedded zeolite-based catalysts were synthesized following a facile solvent-free grinding route.The catalytic performance for direct syngas conversion to gasoline range hydrocarbons was compared with t...A series of Co-imbedded zeolite-based catalysts were synthesized following a facile solvent-free grinding route.The catalytic performance for direct syngas conversion to gasoline range hydrocarbons was compared with their counterpart Co-impregnated zeolite-based catalysts.Successful transformation of solid raw materials to targeted zeolite was confirmed by XRD,SEM,STEM,and N2 physisorption analysis.An in-depth study of acidic strength and acidic site distribution was conducted by NH3-TPD and Py-IR spectroscopy.Acidic strength showed a pivotal role in defining product range.Co@S1,with the weakest acidic strength of silicalite-1 among three types of zeolites,evaded over-cracking of product and exhibited the highest gasoline and isoparaffin selectivity(≈70%and 30.7%,respectively).Moreover,the solvent-free raw material grinding route for zeolite synthesis accompanies several advantages like the elimination of production of wastewater,high product yield within confined crystallization space,and elimination of safety concerns regarding high pressure due to the absence of the solvent.Facileness and easiness of the solvent-free synthesis route together with promising catalytic performance strongly support its application on the industrial scale.展开更多
基金supported by National Key Research & Development Program-Intergovernmental International Science and Technology Innovation Cooperation Project (2021YFE0112800)National Natural Science Foundation of China (Key Program: 62136003)+2 种基金National Natural Science Foundation of China (62073142)Fundamental Research Funds for the Central Universities (222202417006)Shanghai Al Lab
文摘The gasoline inline blending process has widely used real-time optimization techniques to achieve optimization objectives,such as minimizing the cost of production.However,the effectiveness of real-time optimization in gasoline blending relies on accurate blending models and is challenged by stochastic disturbances.Thus,we propose a real-time optimization algorithm based on the soft actor-critic(SAC)deep reinforcement learning strategy to optimize gasoline blending without relying on a single blending model and to be robust against disturbances.Our approach constructs the environment using nonlinear blending models and feedstocks with disturbances.The algorithm incorporates the Lagrange multiplier and path constraints in reward design to manage sparse product constraints.Carefully abstracted states facilitate algorithm convergence,and the normalized action vector in each optimization period allows the agent to generalize to some extent across different target production scenarios.Through these well-designed components,the algorithm based on the SAC outperforms real-time optimization methods based on either nonlinear or linear programming.It even demonstrates comparable performance with the time-horizon based real-time optimization method,which requires knowledge of uncertainty models,confirming its capability to handle uncertainty without accurate models.Our simulation illustrates a promising approach to free real-time optimization of the gasoline blending process from uncertainty models that are difficult to acquire in practice.
基金supported by the National Key Research and Development Program of China(2017YFB0602504)the General Program of National Natural Science Foundation of China(22178385).
文摘To produce low olefin gasoline with high octane number by Fischer-Tropsch (F-T) wax fluid catalytic cracking (FCC) process, operating conditions optimization were carried out in the pilot-scale riser and turbulent fluidized bed (TFB) FCC unit. The experimental results in the riser indicated that under the condition of low reaction temperature and regenerated catalyst temperature, large catalyst-to-oil weight ratio (C/O) and long reaction time, the gasoline olefin content could be reduced to 20.28 wt%, but there is large octane number loss owing to a great loss in high octane number olefin. Therefore, a novel FCC process using the TFB reactor was proposed to strengthen the aromatization reaction. The reaction performance of TFB reactor were investigated. The result demonstrated that the TFB reactor has more significant effect in reducing olefins and improving aromatics. At the expense of certain gasoline yield, the gasoline olefin content reduced to 23.70 wt%, aromatics content could increase to 26.79 wt% and the RON was up to 91.0. The comparison of reactor structure and fluidization demonstrated that the TFB reactor has higher catalyst bed density. The reaction heat and coke combustion heat was calculated indicating the feasibility of its industrial application of the TFB process.
基金This work was supported by the SINOPEC Research Project(No.121052-2).
文摘Although detergent additives for gasoline have been widely commercialized,their formulas are often kept confidential and there is still no standardized method for quickly detecting the main active ingredients and evaluating their effectiveness,which makes their regulation difficult.An overview of the current state of the development and application of detergent additives for gasoline in China and other regions,as well as a review of the rapid detection and performance evaluation methods available for analyzing detergent additives are given herein.The review focuses on the convenience,cost,efficiency,and feasibility of on-site detection and the evaluation of various methods,and also looks into future research directions,such as detecting and evaluating detergent additives in ethanol gasoline and with advanced engine technologies.
基金This work was supported by the research project of Sinopec Research Institute of Petroleum Processing Co.,Ltd.(G720007).
文摘The comprehensive characterization of heavy aromatic hydrocarbons in gasoline is important to optimize the blending process and understand the correlation between aromatics content and engine particulate emissions.However,most current analysis methods can only provide the composition of C_(8)/C_(8-) aromatics.In this study,a simple and fast gas chromatography-mass spectrometry(GC-MS)method to identify and quantify C_(9+)aromatics in gasoline was developed.A selected ion monitoring model was employed to eliminate interference from non-aromatic compounds in the detection of target compounds,as well as that between target compounds with different molecular formulas.The identification of C_(9+)aromatics was based on the retention time of model compounds,combined with characteristic mass fragment ions,boiling points,and retention indexes.Seventy-nine C_(9)–C_(12)aromatic compounds were quantified based on the calibration of representative model compounds,and the method demonstrated good linearity,and high accuracy and precision.Furthermore,the developed methodology was successfully applied to the analysis of gasoline fractions from the reforming,pyrolysis,straight-run,delayed coking,and catalytic cracking processes,as well as commercial gasolines.The results showed that C_(9)aromatics were the predominant aromatics in all gasoline samples,followed by C10 aromatics.Alkylbenzenes such as C_(9)H_(12)and C_(10)H_(14)were the main components in the reforming,straight-run,delayed coking,and catalytic cracking gasoline fractions,as well as in the commercial gasolines,in which 1,2,4-trimethylbenzene and 3-ethyltoluene were dominant;in contrast,aromatics with higher degrees of unsaturation such as indene were the most abundant aromatics in the pyrolysis gasoline fraction.
基金sponsored by the projects of National Natural Science Foundation of China (Grant Nos.51806127 and 52075307)Key Research and Development Program of Shandong Province (Grant No.2019GHZ016).
文摘Gasoline compression ignition(GCI)has been considered as a promising combustion concept to yield ultralow NOX and soot emissions while maintaining high thermal efficiency.However,how to improve the low-load performance becomes an urgent issue to be solved.In this paper,a GCI engine model was built to investigate the effects of internal EGR(i-EGR)and pre-injection on in-cylinder temperature,spatial concentration of mixture and OH radical,combustion and emission characteristics,and the control strategy for improving the combustion performance was further explored.The results showed an obvious expansion of the zone with an equivalence ratio between 0.8∼1.2 is realized by higher pre-injection ratios,and the s decreases with the increase of pre-injection ratio,but increases with the increase of i-EGR ratio.The high overlap among the equivalentmixture zone,the hightemperature zone,and the OH radical-rich zone can be achieved by higher i-EGR ratio coupled with higher preinjection ratio.By increasing the pre-injection ratio,the combustion efficiency increases first and then decreases,also achieves the peak value with a pre-injection ratio of 60%and is unaffected by i-EGR.The emissions of CO,HC,NOX,and soot can also be reduced to low levels by the combination of higher i-EGR ratios and a pre-injection ratio of 60%.
文摘Background: Occupational health is an important consideration, especially for people that work in an environment with pollutants. Gasoline attendants are individuals that work in filling stations. They are constantly exposed to gasoline fumes and automobile engine products from vehicle exhaust. This increases the risk of acute and chronic respiratory diseases and carcinogenesis among them. The risk of health complications tends to increase with the duration of exposure. The study aimed to determine the proportion of gasoline attendants with lung function impairment. Methods and Materials: Two hundred and eight eligible participants were recruited for this study. A cross-sectional analytical study was carried out in Esan West local government area of Edo state, Nigeria. The study was carried out for a period of six months from December 2015 to May 2016. A questionnaire was used to obtain information on demographic characteristics, work history, mode of exposure and duration of exposure to petrol fumes. Lung function was assessed using a DTspiro spirometer (Model POP 10. Serial no 110843-005);also the anthropometric parameters of the respondent were measured. Statistical analysis was done using IBM SPSS version 20.0. Frequency and percentages were used to present categorical data. The mean and standard deviation of continuous variables were calculated and compared using the student’s t-test. The criteria of significant association were assumed for a p-value less than 0.05. Results: A total of one hundred and forty petrol pump attendants and one hundred and forty controls participated in this study. The mean age for petrol pump attendants was 24 ± 3.1 years and 23 ± 2.8 years for the control group. There were no significant differences in the gender distribution and anthropometric parameters as observed in this study. The lung impairment pattern observed in this study was obstructive in twelve (8.6%) gasoline pump attendants and restrictive pattern in thirty-nine (27.9%) gasoline pump attendants, while only four (2.9%) had an obstructive pattern and twelve (8.6%) had a restrictive pattern of lung impairment among the control group. This implies that a restrictive pattern was predominant. This study also observed that there was an increase in the number of gasoline pump attendants with declined lung function compared to the control group. Conclusion: Restrictive pattern of lung impairment was more predominant than the obstructive pattern among gasoline pump attendants. As a result, public health interventions should be instituted among these individuals, especially in developing countries.
文摘Background: Occupational health is an important consideration, especially for people that work in an environment with pollutants. Gasoline attendants are individuals that work in filling stations. They are constantly exposed to gasoline fumes and automobile engine products from vehicle exhaust. This increases the risk of acute and chronic respiratory diseases and carcinogenesis among them. The risk of health complications tends to increase with the duration of exposure. The study aimed to determine the proportion of gasoline attendants with lung function impairment. Methods and Materials: Two hundred and eight eligible participants were recruited for this study. A cross-sectional analytical study was carried out in Esan West local government area of Edo state, Nigeria. The study was carried out for a period of six months from December 2015 to May 2016. A questionnaire was used to obtain information on demographic characteristics, work history, mode of exposure and duration of exposure to petrol fumes. Lung function was assessed using a DTspiro spirometer (Model POP 10. Serial no 110843-005);also the anthropometric parameters of the respondent were measured. Statistical analysis was done using IBM SPSS version 20.0. Frequency and percentages were used to present categorical data. The mean and standard deviation of continuous variables were calculated and compared using the student’s t-test. The criteria of significant association were assumed for a p-value less than 0.05. Results: A total of one hundred and forty petrol pump attendants and one hundred and forty controls participated in this study. The mean age for petrol pump attendants was 24 ± 3.1 years and 23 ± 2.8 years for the control group. There were no significant differences in the gender distribution and anthropometric parameters as observed in this study. The lung impairment pattern observed in this study was obstructive in twelve (8.6%) gasoline pump attendants and restrictive pattern in thirty-nine (27.9%) gasoline pump attendants, while only four (2.9%) had an obstructive pattern and twelve (8.6%) had a restrictive pattern of lung impairment among the control group. This implies that a restrictive pattern was predominant. This study also observed that there was an increase in the number of gasoline pump attendants with declined lung function compared to the control group. Conclusion: Restrictive pattern of lung impairment was more predominant than the obstructive pattern among gasoline pump attendants. As a result, public health interventions should be instituted among these individuals, especially in developing countries.
文摘In order to improve the steady and dynamic characteristic of the idle speed control and study the performance of the fuzzy control method for the idle speed control, a fuzzy control system is developed to control the idle speed of gasoline engine. The construction and working principle of the fuzzy controller are described, and the design procedure of the fuzzy controller is given in detail. The control parameters are determined by computer simulation. The simulation and experiments on the engine test bench show that the idle speed is controlled accurately both in stationary and in dynamic states, and the fuzzy control method is robust to the changes of engine parameters.
文摘To investigate the characteristics of the condensation in gasoline vapor condensation recovery,the condensation process of gasoline vapor with turbulent flow in a vertical tube is simulated based on the gas-liquid two-phase flow model.An effective diffusion coefficient is used to describe mass diffusion among the species of gasoline vapor.Several variables including temperature,pressure,liquid film thickness and the variation of the Nusselt number in the tube are simulated.The effects of the inlet-to-wall temperature difference and the Reynolds number on the condensation rate and the Nusselt number are obtained by modelling.The results show that heat transfer and condensation can be enhanced significantly by increasing the inlet Reynolds number.However,the increase in the inlet-to-wall temperature difference has little effect on the condensation rate.It is also found that the gasoline vapor condensation rate is influenced greatly by the mass transfer resistance.The comparison of results from the model with previous experiments shows a good agreement.
文摘The effect of olefins on formation of sulfur compounds in FCC gasoline was studied in a small-scale fixed fluidized bed (FFB) unit at temperatures ranging from 400℃ to 500℃, a weight hourly space velocity (WHSV) of 10 h-1, and a catalyst/oil ratio of 6. The results showed that C4--C6 olefins contained in the FCC gasoline could react with HzS to form predominantly thiophenes, alkyl-thiophenes as well as a fractional amount of thiols, while large molecular olefins such as heptene could react with hydrogen sulfide to form benzothiophenes. The amount of sulfur compounds formed at different tem- peratures over different catalysts were in proportion to the mass fractions of olefins in the feedstock, with the amount of sulfur compounds formed over REUSY catalyst exceeding those formed over the shape selective zeolite catalyst owing to the effect of catalyst performance and the impact of catalyst on the degree of olefin conversion. The amount of sulfur compounds generated and their increase reached a maximum at 450℃ and a minimum at 400℃ because of the influence of temperature on the thermodynamic and kinetic constants for formation of sulfur compound as well as on the olefin conversion degree. Based on the above-mentioned study, a reaction network and a model for prediction of sulfur compounds generated upon reaction of olefins in FCC gasoline with HES were established.
文摘In this paper, the effect of MMT on the induction period of unleaded motor gasoline was studied, the manganese concentration, storage period of MMT-blended gasoline and environmental variables such as temperature and radiation intensity were considered to be main factors affecting the induction period of gasoline,when MMT-blended gasoline was exposed to light. It is found from experiments that the addition of MMT can improve the induction period of gasoline that is shielded from light, and reduce the induction period remarkably,when the gasoline is exposed to light. However, the radiation intensity is proved to be the leading influencing factor among all the environmental variables investigated.
文摘According to advantages of neural network and characteristics of operatingprocedures of engine, a new strategy is represented on the control of fuel injection and ignitiontiming of gasoline engine based on improved BP network algorithm. The optimum ignition advance angleand fuel injection pulse band of engine under different speed and load are tested for the samplestraining network, focusing on the study of the design method and procedure of BP neural network inengine injection and ignition control. The results show that artificial neural network technique canmeet the requirement of engine injection and ignition control. The method is feasible for improvingpower performance, economy and emission performances of gasoline engine.
基金Supported by the National Natural Science Foundation of China (No.20276015) and the Natural Science Foundation of Hebei Province (No.203364).
文摘A simulated gasoline consisting of model sulfur compounds of thiophene (C4H4S) and 3-methythiophene (3-MC4H4S) dissolved in n-heptane was tested for the oxidative desulfurization in the hydrogen peroxide (H202) and formic acid oxidative system over metal oxide-loaded molecular sieve. The effects of the oxidative system, loaded metal oxides, phase transfer catalyst, the addition of olefin and aromatics on sulfur removal were investigated in details. The results showed that the sulfur removal rate of simulated gasoline in the H202/formic acid system was higher than in other oxidative systems. The cerium oxide-loaded molecular sieve was found very active catalyst for oxidation of simulated gasoline in this system. The sulfur removal rates of C4H4S and 3-MC4H4S were enhanced when phase transfer catalyst (PTC) was added. However, the sulfur removal rate of simulated gasoline was reduced with the addition of olefin and aromatics.
基金National Iranian Oil Refining & Distribution Company(NIORDC) and Research & Development (R&D) center of this company for their financial support during the completion of this work
文摘The extractive desulfurization of a model gaso- line containing several alkyl thiols and aromatic thiophenic compounds was investigated using two imidazolium-based ionic liquids (ILs), 1-butyl-3-methylimidazolium tetrachloroaluminate, and 1-octyl-3-methylimidazolium te- trafluoroborate, as extractants. A fractional factorial design of experiments was employed to evaluate the effects and possible interactions of several process variables. Analysis of variance tests indicated that the number of extraction steps and the IL/gasoline volume ratio were of statistically highly significant, but none of the interactions were significant. The results showed that the desulfurization efficiency of the model gasoline by the ILs could reach 95.2 % under the optimal conditions. The optimized conditions were applied to study the extraction of thiophenic compounds in model gasoline and several real gasoline samples; the following order was observed in their separation: benzothio- phenc 〉 thiophcne 〉 3-methylthiophene 〉 2-methylthiophene, with 96.1% removal efficiency for benzothiophene. The IL extraction was successfully applied as a complementary process to the adsorptive desulfurization with acti- vated Raney nickel and acetonitrile solvent. The results indicated that the adsorptive process combined with IL extraction could provide high efficiency and selectivity, which can be regarded as a promising energy efficient desulfurization strategy for production of low-sulfur gasoline.
基金supported by the National Natural Science Foundation of China (21603023)the Petro China Innovation Foundation, China (2014D-5006-0501)~~
文摘In this study, phosphorus modification by trimethyl phosphate impregnation was employed to enhance the hydrothermal stability of nano‐sized HZSM‐5 zeolites. A parallel modification was studied by ammonium dihydrogen phosphate impregnation. The modified zeolites were subjected to steam treatment at 800 °C for 4 h (100% steam) and employed as catalysts for olefin catalyticcracking (OCC) of full‐range fluid catalytic cracking (FCC) gasoline. X‐ray diffraction, N2 physicaladsorption and NH3 temperature‐programmed desorption analysis indicated that, although significantimprovements to the hydrothermal stability of nano‐sized HZSM‐5 zeolites can be observedwhen adopting both phosphorus modification strategies, impregnation with trimethyl phosphatedisplays further enhancement of the hydrothermal stability. This is because higher structural crystallinityis retained, larger specific surface areas/micropore volumes form, and there are greaternumbers of surface acid sites. Reaction experiments conducted using a fixed‐bed micro‐reactor(catalyst/oil ratio = 4, time on stream = 4 s) showed OCC of full‐range FCC gasoline-under a fluidized‐bed reaction mode configuration-to be a viable solution for the olefin problem of FCC gasoline.This reaction significantly decreased the olefin content in the full‐range FCC gasoline feed, andspecifically heavy‐end olefins, by converting the olefins into value‐added C2–C4 olefins and aromatics.At the same time, sulfide content of the gasoline decreased via a non‐hydrodesulfurization process.Nano‐sized HZSM‐5 zeolites modified with trimethyl phosphate exhibited enhanced catalytic performance for OCC of full‐range FCC gasoline.
基金Foundation item: Project(2011CB707201) supported by the National Basic Research Program of China Project(10JJ5058) supported by the Natural Science Foundation of Hunan Province, China
文摘To improve the energy utilization efficiency of internal combustion (IC) engine, exergy analysis was conducted on a passenger car gasoline engine. According to the thermodynamic theory of IC engine, in-cylinder exergy balance model was built. The working processes of gasoline engine were simulated by using the GT-power. In this way, the required parameters were calculated and then gasoline engine exergy balance was obtained by programming on computer. On this basis, the influences of various parameters on exergy balance were analyzed. Results show that, the proportions of various forms of exergy in gasoline engine from high to low are irreversible loss, effective work, exhaust gas exergy and heat transfer exergy. Effective exergy proportion fluctuates with cylinder volumetric efficiency at full load, while it always increases with break mean effective pressure (BMEP) at part load. Exhaust gas exergy proportion is more sensitive to speed, and it increases with speed increasing except at the highest speed. The lower proportion of heat transfer exergy appears at high speed and high load. Irreversible loss is mainly influenced by load. At part load, higher BMEP results in lower proportion of irreversible loss; at full load, the proportion of irreversible loss changes little except at the highest speed.
文摘The restriction on sulfur level in gasoline has been increasingly tightened. The U.S.Tier 22222 regulation requires a reduction from average 340ppm to 30ppm from 2004 to 2008. Recently significant progress has been made in effective high sulfur removal, such as post treatment of FCC gasoline by selective hydrotreating, S Zorb sulfur removal technology, OATS process etc. The sulfur content of FCC gasoline can be deceased to less than 10ppm. With regard to gasoline pool composition in China, it is very important to look for effective desulfurization processes that are simple, straightforward, with less hydrogen consumption. Post-treatment of FCC gasoline is a preferred option. From the point of view of comprehensive utilization, alkylation, polymerization, isomerisation etc. can be added to desulfurization process to meet the requirement of ultra low sulfur, premium.
基金Supported by the Major Research Plan of Ministry of Education of China(No.307008).
文摘This paper investigated the secondary cracking of gasoline and diesel from the catalytic pyrolysis of Daqing atmospheric residue on catalyst CEP-1 in a fluidized bed reactor.The results show that the secondary cracking reactivity of gasoline and diesel is poor,and the yield of total light olefins is only about 10%(by mass).As reaction temperature increases,ethylene yield increases,butylene yield decreases,and propylene yield shows a maximum.The optimal reaction temperature is about 670℃for the production of light olefins.With the enhance- ment of catalyst-to-oil mass ratio and steam-to-oil mass ratio,the yields of light olefins increase to some extent. About 6.30%of the mass of total aromatic rings is converted by secondary cracking,indicating that aromatic hy- drocarbons are not easy to undergo ring-opening reactions under the present experimental conditions.
基金supported by the National Natural Science Foundation of China (Nos. 21878330, 21676298)the National Science and Technology Major Project, the CNPC Key Research Project (2016E-0707)the King Abdullah University of Science and Technology (KAUST) Office of Sponsored Research (OSR) under Award (No. OSR-2019-CPF-4103.2)。
文摘Light cycle oil(LCO) with high content of poly-aromatics was difficult to upgrade and convert,which had hindered upgrading fuel quality to meet with the standard of automotive diesel for the purpose of sustainable development.The hydrocracking behaviors of typical aromatics in LCO of naphthalene and tetralin were investigated over NiMo and CoMo catalysts.Several characterization methods including N2-adsoprtion and desorption,ammonia temperature-programmed desorption(NH3-TPD),Pyridine infrared spectroscopy(Py-IR),CO infrared spectroscopy(CO-IR),Raman and X-ray photoelectron spectroscopy(XPS) were applied to determine the properties of different catalysts.The results showed that CoMo catalyst with high concentration of S-edges could hydrosaturate more naphthalene to tetralin but exhibit lower yield of high-value light aromatics(carbon numbers less than 10) than NiMo catalyst.NiMo catalyst with high concentration of Mo-edges also presented a higher selectivity of converting naphthalene into cyclanes than CoMo catalyst.Subsequently,the naphthalene and LCO hydrocracking performances were also investigated over different catalysts systems.The activity evaluation and kinetic analysis results showed that the naphthalene hydrocracking conversion and the yield of light aromatics for CoMo-AY/NiMo-AY grading catalysts were higher than NiMo-AY/CoMo-AY grading catalysts at same condition.A stepwise reaction principle was proposed to explain the high efficiency of CoMo-AY/NiMoAY grading catalysts.Finally,the LCO hydrocracking evaluation results confirmed that CoMo-AY/NiMoAY catalysts grading system with low carbon deposition and high stability could remain high percentage of active phases,which was more efficient to convert LCO to high-octane gasoline.
基金the financial support from the Zhejiang Province Natural Science Foundation(LY19B060001)the Foundation of State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering(2018-K25)the Foundation of Zhejiang University of Science and Technology(2019QN18,2019QN23)~~
文摘A series of Co-imbedded zeolite-based catalysts were synthesized following a facile solvent-free grinding route.The catalytic performance for direct syngas conversion to gasoline range hydrocarbons was compared with their counterpart Co-impregnated zeolite-based catalysts.Successful transformation of solid raw materials to targeted zeolite was confirmed by XRD,SEM,STEM,and N2 physisorption analysis.An in-depth study of acidic strength and acidic site distribution was conducted by NH3-TPD and Py-IR spectroscopy.Acidic strength showed a pivotal role in defining product range.Co@S1,with the weakest acidic strength of silicalite-1 among three types of zeolites,evaded over-cracking of product and exhibited the highest gasoline and isoparaffin selectivity(≈70%and 30.7%,respectively).Moreover,the solvent-free raw material grinding route for zeolite synthesis accompanies several advantages like the elimination of production of wastewater,high product yield within confined crystallization space,and elimination of safety concerns regarding high pressure due to the absence of the solvent.Facileness and easiness of the solvent-free synthesis route together with promising catalytic performance strongly support its application on the industrial scale.