By combining of the second gradient operator, the second class of integral theorems, the Gaussian-curvature-based integral theorems and the Gaussian (or spherical) mapping, a series of invariants or geometric conser...By combining of the second gradient operator, the second class of integral theorems, the Gaussian-curvature-based integral theorems and the Gaussian (or spherical) mapping, a series of invariants or geometric conservation quantities under Gaussian (or spherical) mapping are revealed. From these mapping invariants important transformations between original curved surface and the spherical surface are derived. The potential applications of these invariants and transformations to geometry are discussed展开更多
In this work, we use the analytical expression of the propagation of Finite Olver-Gaussian beams (FOGBs) through a paraxial ABCD optical system to study the action of radiation forces produced by highly focused FOGBs ...In this work, we use the analytical expression of the propagation of Finite Olver-Gaussian beams (FOGBs) through a paraxial ABCD optical system to study the action of radiation forces produced by highly focused FOGBs on a Rayleigh dielectric sphere. Our numerical results show that the FOGBs can be employed to trap and manipulate particles with the refractive index larger than that of the ambient. The radiation force distribution has been studied under different beam widths. The trapping stability under different conditions is also analyzed.展开更多
基金Project supported by the National Natural Science Foundation of China (No.10572076)
文摘By combining of the second gradient operator, the second class of integral theorems, the Gaussian-curvature-based integral theorems and the Gaussian (or spherical) mapping, a series of invariants or geometric conservation quantities under Gaussian (or spherical) mapping are revealed. From these mapping invariants important transformations between original curved surface and the spherical surface are derived. The potential applications of these invariants and transformations to geometry are discussed
文摘In this work, we use the analytical expression of the propagation of Finite Olver-Gaussian beams (FOGBs) through a paraxial ABCD optical system to study the action of radiation forces produced by highly focused FOGBs on a Rayleigh dielectric sphere. Our numerical results show that the FOGBs can be employed to trap and manipulate particles with the refractive index larger than that of the ambient. The radiation force distribution has been studied under different beam widths. The trapping stability under different conditions is also analyzed.