In order to investigate the effect of chitosan/pshRNA plasmid nanoparticles targeting MDR1 genes on the resistance of A2780/TS cells to paclitaxel, chitosan/pshRNA plasmid nanoparti- cles were synthesized by means of ...In order to investigate the effect of chitosan/pshRNA plasmid nanoparticles targeting MDR1 genes on the resistance of A2780/TS cells to paclitaxel, chitosan/pshRNA plasmid nanoparti- cles were synthesized by means of a complex coacervation technique and transfected into A2780/TS cells. The cells transfected with MDRl-targeted chitosan/pshRNA plasmid nanoparticles were experimental cells and the cells transfected with chitosan/pGPU6/GFP/Neo no-load plasmid nanoparticles served as negative control cells. Morphological features of the nanoparticles were observed under transmission electron microscope (TEM). MDR1 mRNA expression was assessed by RT-PCR. Half-inhibitory concentration (IC50) ofpaclitaxel for A2780/TS cells was determined by MTT method. TEM showed that the nanoparticles were round-shaped, smooth in surface and the diameters varied from 80 to 120 nm. The MDR1 mRNA in the transfected cells was significantly decreased by 17.6%, 27.8% and 52.6% on the post-transfection day 2, 4 and 7 when compared with that in A2780/TS cells control (P〈0.05). MTT assay revealed that the relative reversal efficiency was increased over time and was 29.6%, 51.2% and 61.3% respectively in the transfected cells 2, 4, 7 days after transfection and IC_50 (0.197±0.003, 0.144±0.001, 0.120±0.004) were decreased with difference being significant when compared with that in A2780/TS (0.269±0.003) cells control (P〈0.05). It was concluded that chitosan/pshRNA plasmid nanoparticles targeting MDR1 can effectively reverse the paclitaxel resistance in A2780/TS cells in a time-dependent manner.展开更多
Tazarotene-induced gene 1(TIG1)is induced by a derivative of vitamin A and is known to regulate many important biological processes and control the development of cancer.TIG1 is widely expressed in various tissues;yet...Tazarotene-induced gene 1(TIG1)is induced by a derivative of vitamin A and is known to regulate many important biological processes and control the development of cancer.TIG1 is widely expressed in various tissues;yet in many cancer tissues,it is not expressed because of the methylation of its promoter.Additionally,the expression of TIG1 in cancer cells inhibits their growth and invasion,suggesting that TIG1 acts as a tumor suppressor gene.However,in some cancers,poor prognosis is associated with TIG1 expression,indicating its protumor growth characteristics,especially in promoting the invasion of inflammatory breast cancer cells.This review comprehensively summarizes the roles of the TIG1 gene in cancer development and details the mechanisms through which TIG1 regulates cancer development,with the aim of understanding its various roles in cancer development.展开更多
AIM: To reverse the multidrug resistance (MDR) by RNA interference (RNAi)-mediated MDRI suppression in heparoma cells.METHODS: For reversing MDR by RNAi technology, two different short hairpin RNAs (shRNAs) we...AIM: To reverse the multidrug resistance (MDR) by RNA interference (RNAi)-mediated MDRI suppression in heparoma cells.METHODS: For reversing MDR by RNAi technology, two different short hairpin RNAs (shRNAs) were designed and constructed into pGenSil-1 plasmid, respectively. They were then transfected into a highly adriarnycin-resistant HepG2 hepatorna cell line (HepG2/ADM). The RNAi effect on MDR was evaluated by real-time PCR, cell cytotoxicity assay and rhodarnine 123 (Rh123) efflux assy. RESULTS: The stably-transfected clones showed various degrees of reversal of MDR phenotype. Surprisingly, the MDR phenotype was completely reversed in two transfected clones. CONCLUSION: MDR can be reversed by the shRNAmediated MDRI suppression in HepG2/ADM cells, which provides a valuable clue to make multidrug-resistant hepatoma cells sensitive to anti-cancer drugs.展开更多
AIM: Tacrolimus shows considerable interindividual pharmacokinetic variability, therapeutic drug monitoring of trough blood concentration is necessary to avoid adverse effects. CYP3A5 and P-glycoprotein (P-gp, encoded...AIM: Tacrolimus shows considerable interindividual pharmacokinetic variability, therapeutic drug monitoring of trough blood concentration is necessary to avoid adverse effects. CYP3A5 and P-glycoprotein (P-gp, encoded by MDR1) are involved in tacrolimus’ metabolism and absorption process. This study is to investigate whether tacrolimus dosage adjustment is affected by the polymorphism in CYP3A5 and MDR1 in Chinese liver transplant patients. METHODS: Forty-nine liver transplant patients treated with tacrolimus were enrolled in this study. Polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) analysis was applied to determine the genotype of CYP3A5 and MDR1. Tacrolimus blood tough concentration was measured by FPIA, and concentration/dose ratio(C/D) was investigated at day 7, day 14 and 1 month after liver transplantation. RESULTS: The CD ratios in recipient with CYP3A5*1/*1 (*1/*3) were significantly lower than those of CYP3A5*3/*3 patients after liver transplantation, and the C/D ratios of CYP3A5*1/*1 ,*1/*3 and *3/*3 were shown as follows: 76, 82±18, 164±51 at 7 days; 32, 76±19, 132±31 at 14 days; 36, 65±25, 122±32 at 1 month. No significant difference was found among the MDR1 G2677T/A and C3435T genotype. CONCLUSION: There was no relationship between MDR1 gene polymorphism (C3435T, G2677T/A) and tacrolimus C/D ratio in Chinese liver transplantation patients. CYP3A5 *3 polymorphism is correlated with the whole blood concentration of tacrolimus and dose requirement. The intestinal CYP3A5 plays an important role in the metabolism of orally administered tacrolimus in the first month after liver transplantation.展开更多
Ethylene plays essential roles in plant growth,development and stress responses.The ethylene signaling pathway and molecular mechanism have been studied extensively in Arabidopsis and rice but limited in peanuts.Here,...Ethylene plays essential roles in plant growth,development and stress responses.The ethylene signaling pathway and molecular mechanism have been studied extensively in Arabidopsis and rice but limited in peanuts.Here,we established a sand-culture method to screen pingyangmycin mutagenized peanut lines based on their specific response to ethylene(“triple response”).An ethylene-insensitive mutant,inhibition of peanut hypocotyl elongation 1(iph1),was identified that showed reduced sensitivity to ethylene in both hypocotyl elongation and root growth.Through bulked segregant analysis sequencing,a major gene related to iph1,named AhIPH1,was preliminarily mapped at the chromosome Arahy.01,and further narrowed to a 450-kb genomic region through substitution mapping strategy.A total of 7014 genes were differentially expressed among the ACC treatment through RNA-seq analysis,of which only the Arahy.5BLU0Q gene in the candidate mapping interval was differentially expressed between WT and mutant iph1.Integrating sequence variations,functional annotation and transcriptome analysis revealed that a predicated gene,Arahy.5BLU0Q,encoding SNF1 protein kinase,may be the candidate gene for AhIPH1.This gene contained two single-nucleotide polymorphisms at promoter region and was more highly expressed in iph1 than WT.Our findings reveal a novel ethylene-responsive gene,which provides a theoretical foundation and new genetic resources for the mechanism of ethylene signaling in peanuts.展开更多
Objective:Autosomal recessive bestrophinopathy(ARB),a retinal degenerative disease,is characterized by central visual loss,yellowish multifocal diffuse subretinal deposits,and a dramatic decrease in the light peak on ...Objective:Autosomal recessive bestrophinopathy(ARB),a retinal degenerative disease,is characterized by central visual loss,yellowish multifocal diffuse subretinal deposits,and a dramatic decrease in the light peak on electrooculogram.The potential pathogenic mechanism involves mutations in the BEST1 gene,which encodes Ca2+-activated Cl−channels in the retinal pigment epithelium(RPE),resulting in degeneration of RPE and photoreceptor.In this study,the complete clinical characteristics of two Chinese ARB families were summarized.Methods:Pacific Biosciences(PacBio)single-molecule real-time(SMRT)sequencing was performed on the probands to screen for disease-causing gene mutations,and Sanger sequencing was applied to validate variants in the patients and their family members.Results:Two novel mutations,c.202T>C(chr11:61722628,p.Y68H)and c.867+97G>A,in the BEST1 gene were identified in the two Chinese ARB families.The novel missense mutation BEST1 c.202T>C(p.Y68H)resulted in the substitution of tyrosine with histidine in the N-terminal region of transmembrane domain 2 of bestrophin-1.Another novel variant,BEST1 c.867+97G>A(chr11:61725867),located in intron 7,might be considered a regulatory variant that changes allele-specific binding affinity based on motifs of important transcriptional regulators.Conclusion:Our findings represent the first use of third-generation sequencing(TGS)to identify novel BEST1 mutations in patients with ARB,indicating that TGS can be a more accurate and efficient tool for identifying mutations in specific genes.The novel variants identified further broaden the mutation spectrum of BEST1 in the Chinese population.展开更多
Parkinsonism by unilateral,intranigralβ-sitosterolβ-D-glucoside administration in rats is distinguished in that theα-synuclein insult begins unilaterally but spreads bilaterally and increases in severity over time,...Parkinsonism by unilateral,intranigralβ-sitosterolβ-D-glucoside administration in rats is distinguished in that theα-synuclein insult begins unilaterally but spreads bilaterally and increases in severity over time,thus replicating several clinical features of Parkinson’s disease,a typicalα-synucleinopathy.As Nurr1 repressesα-synuclein,we evaluated whether unilateral transfected of rNurr1-V5 transgene via neurotensin-polyplex to the substantia nigra on day 30 after unilateralβ-sitosterolβ-D-glucoside lesion could affect bilateral neuropathology and sensorimotor deficits on day 30 post-transfection.This study found that rNurr1-V5 expression but not that of the green fluorescent protein(the negative control)reducedβ-sitosterolβ-D-glucoside-induced neuropathology.Accordingly,a bilateral increase in tyrosine hydroxylase-positive cells and arborization occurred in the substantia nigra and increased tyrosine hydroxylase-positive ramifications in the striatum.In addition,tyrosine hydroxylase-positive cells displayed less senescence markerβ-galactosidase and more neuron-cytoskeleton markerβIII-tubulin and brain-derived neurotrophic factor.A significant decrease in activated microglia(positive to ionized calcium-binding adaptor molecule 1)and neurotoxic astrocytes(positive to glial fibrillary acidic protein and complement component 3)and increased neurotrophic astrocytes(positive to glial fibrillary acidic protein and S100 calcium-binding protein A10)also occurred in the substantia nigra.These effects followed the bilateral reduction inα-synuclein aggregates in the nigrostriatal system,improving sensorimotor behavior.Our results show that unilateral rNurr1-V5 transgene expression in nigral dopaminergic neurons mitigates bilateral neurodegeneration(senescence and loss of neuron-cytoskeleton and tyrosine hydroxylase-positive cells),neuroinflammation(activated microglia,neurotoxic astrocytes),α-synuclein aggregation,and sensorimotor deficits.Increased neurotrophic astrocytes and brain-derived neurotrophic factor can mediate the rNurr1-V5 effect,supporting its potential clinical use in the treatment of Parkinson’s disease.展开更多
Objective: To establish a fluoregenic probe quantitative RT-PCR (FQ-RT-PCR) method for detection of the expression of MDR1 gene in tumor cells and to investigate the expression of MDR1 gene in patients with lung cance...Objective: To establish a fluoregenic probe quantitative RT-PCR (FQ-RT-PCR) method for detection of the expression of MDR1 gene in tumor cells and to investigate the expression of MDR1 gene in patients with lung cancer. Methods: The fluorogenic quantitative RT-PCR method for detection of the expression of MDR1 gene was established. K562/ADM and K562 cell lines or 45 tumor tissues from patients with lung cancer were examined on PE Applied Biosystems 7700 Sequence Detection machine. Results: the average levels of MDR1 gene expression in K562/ADM cells and K562 cells were (6.86±0.65)× 107 copies/μg RNA and (8.49±0.67)×105 copies/μg RNA, respectively. The former was 80.8 times greater than the latter. Each sample was measured 10 times and the coefficient variation (CV) was 9.5% and 7.9%, respectively. Various levels of MDR1 gene expression were detected in 12 of 45 patients with lung cancer. Conclusion: Quantitative detection of MDR1 gene expression in tumor cells was achieved by using FQ-RT-PCR. FQ-RT-PCR is an accurate, and sensitive method and easy to perform. Using this method, low levels of MDR1 gene expression could be detected in 24% of the patients with lung cancer.展开更多
Objective: To investigate the effects of neoadjuvant chemotherapy on the expression of drug resistance genes, multidrug resistance-1 (MDR1) and multidrug resistance-associated protein (MRP), in patients with primary b...Objective: To investigate the effects of neoadjuvant chemotherapy on the expression of drug resistance genes, multidrug resistance-1 (MDR1) and multidrug resistance-associated protein (MRP), in patients with primary breast cancer. Methods: MDR1 and MRP expression were detected by semi-quantitative RT-PCR in 20 patients with primary breast cancer, before and after chemotherapy. Results: Before chemotherapy, MDR1 and MRP expression can be detected in 15 cases (75%) and 18 cases (90%) respectively. After chemotherapy, expression of MDR1 is not significantly different from that before chemotherapy, but expression of MRP is significantly different from that before chemotherapy. Conclusion: Expression of drug resistance gene MRP, but not MDR1, is enhanced in patients with primary breast cancer submitted to neoadjuvant chemotherapy.展开更多
BACKGROUND:Adeno-associated virus(AAV)gene therapy has been proven to be reliable and safe for the treatment of osteoarthritis in recent years.However,given the complexity of osteoarthritis pathogenesis,single gene ma...BACKGROUND:Adeno-associated virus(AAV)gene therapy has been proven to be reliable and safe for the treatment of osteoarthritis in recent years.However,given the complexity of osteoarthritis pathogenesis,single gene manipulation for the treatment of osteoarthritis may not produce satisfactory results.Previous studies have shown that nuclear factorκB could promote the inflammatory pathway in osteoarthritic chondrocytes,and bone morphogenetic protein 4(BMP4)could promote cartilage regeneration.OBJECTIVE:To test whether combined application of AAV-p65shRNA and AAV-BMP4 will yield the synergistic effect on chondrocytes regeneration and osteoarthritis treatment.METHODS:Viral particles containing AAV-p65-shRNA and AAV-BMP4 were prepared.Their efficacy in inhibiting inflammation in chondrocytes and promoting chondrogenesis was assessed in vitro and in vivo by transfecting AAV-p65-shRNA or AAV-BMP4 into cells.The experiments were divided into five groups:PBS group;osteoarthritis group;AAV-BMP4 group;AAV-p65shRNA group;and BMP4-p65shRNA 1:1 group.Samples were collected at 4,12,and 24 weeks postoperatively.Tissue staining,including safranin O and Alcian blue,was applied after collecting articular tissue.Then,the optimal ratio between the two types of transfected viral particles was further investigated to improve the chondrogenic potential of mixed cells in vivo.RESULTS AND CONCLUSION:The combined application of AAV-p65shRNA and AAV-BMP4 together showed a synergistic effect on cartilage regeneration and osteoarthritis treatment.Mixed cells transfected with AAV-p65shRNA and AAV-BMP4 at a 1:1 ratio produced the most extracellular matrix synthesis(P<0.05).In vivo results also revealed that the combination of the two viruses had the highest regenerative potential for osteoarthritic cartilage(P<0.05).In the present study,we also discovered that the combined therapy had the maximum effect when the two viruses were administered in equal proportions.Decreasing either p65shRNA or BMP4 transfected cells resulted in less collagen II synthesis.This implies that inhibiting inflammation by p65shRNA and promoting regeneration by BMP4 are equally important for osteoarthritis treatment.These findings provide a new strategy for the treatment of early osteoarthritis by simultaneously inhibiting cartilage inflammation and promoting cartilage repair.展开更多
In this editorial we comment on the article by Wei et al,published in the recent issue of the World Journal of Clinical Oncology.The authors investigated the role of Transmembrane 9 superfamily member 1(TM9SF1)protein...In this editorial we comment on the article by Wei et al,published in the recent issue of the World Journal of Clinical Oncology.The authors investigated the role of Transmembrane 9 superfamily member 1(TM9SF1)protein in bladder cancer(BC)carcinogenesis.Lentiviral vectors were used to achieve silencing or overexpression of TM9SF1 gene in three BC cell lines.These cell lines were then subject to cell counting kit 8,wound-healing assay,transwell assay,and flow cytometry.Proliferation,migration,and invasion of BC cells were increased in cell lines subjected to TM9SF1 overexpression.TM9SF1 silencing inhibited proliferation,migration and invasion of BC cells.The authors conclude that TM9SF1 may be an oncogene in bladder cancer pathogenesis.展开更多
Activity of bc1 complex kinase(ABC1K)is an atypical protein kinase(aPK)that plays a crucial role in plant mitochondrial and plastid stress responses,but little is known about the responses of ABC1Ks to stress in cotto...Activity of bc1 complex kinase(ABC1K)is an atypical protein kinase(aPK)that plays a crucial role in plant mitochondrial and plastid stress responses,but little is known about the responses of ABC1Ks to stress in cotton(Gossypium spp.).Here,we identified 40 ABC1Ks in upland cotton(Gossypium hirsutum L.)and found that the Gh ABC1Ks were unevenly distributed across 17 chromosomes.The GhABC1K family members included 35 paralogous gene pairs and were expanded by segmental duplication.The GhABC1K promoter sequences contained diverse cis-acting regulatory elements relevant to hormone or stress responses.The qRT-PCR results revealed that most Gh ABC1Ks were upregulated by exposure to different stresses.Gh ABC1K2-A05 and Gh ABC1K12-A07 expression levels were upregulated by at least three stress treatments.These genes were further functionally characterized by virus-induced gene silencing(VIGS).Compared with the controls,the Gh ABC1K2-A05-and Gh ABC1K12-A07-silenced cotton lines exhibited higher malondialdehyde(MDA)contents,lower catalase(CAT),peroxidase(POD)and superoxide dismutase(SOD)activities and reduced chlorophyll and soluble sugar contents under NaCl and PEG stress.In addition,the expression levels of six stress marker genes(Gh DREB2A,Gh SOS1,Gh CIPK6,Gh SOS2,Gh WRKY33,and Gh RD29A)were significantly downregulated after stress in the Gh ABC1K2-A05-and Gh ABC1K12-A07-silenced lines.The results indicate that knockdown of Gh ABC1K2-A05 and Gh ABC1K12-A07 make cotton more sensitive to salt and PEG stress.These findings can provide valuable information for intensive studies of Gh ABC1Ks in the responses and resistance of cotton to abiotic stresses.展开更多
In four rice genomes,85 ABC1-family genes were identified by comparative genomics,evolution,genetics,and physiology.One,OsABC1-13,was shown by knockdown and knockout experiments to affect plant height,grain size,and p...In four rice genomes,85 ABC1-family genes were identified by comparative genomics,evolution,genetics,and physiology.One,OsABC1-13,was shown by knockdown and knockout experiments to affect plant height,grain size,and photosynthetic capability.展开更多
Leaf senescence is the final stage of leaf development, where the nutrients and energy of senescent leaves are redistributed to developing tissues or organs for plant growth, reproduction, and defense. Outer leaves ar...Leaf senescence is the final stage of leaf development, where the nutrients and energy of senescent leaves are redistributed to developing tissues or organs for plant growth, reproduction, and defense. Outer leaves are photosynthetic organs that usually senesce at the late heading stage in Chinese cabbage, and premature leaf senescence often reduces leafy head yield and quality. In this study, 11 premature leaf senescence mutants were screened from an ethyl methanesulfonate-mutagenized population of the double haploid line ‘FT' in Chinese cabbage. At the early heading stage, the mutants exhibited edge yellowing within its outer leaves, and at the mature stage, its leafy head weight decreased significantly. Genetic analysis revealed that the mutated trait of all 11 mutants corresponds to single gene recessive inheritance. Semi-diallel cross tests showed that 5 of the 11 were allelic mutants. MutMap and Kompetitive Allele Specific PCR genotyping revealed that BraA01g001400.3C was the candidate gene, which is orthologous of Arabidopsis SUPPRESSOR OF rps4-RLD 1, encoding an immune regulator, so we named it as BrSRFR1. All the BrSRFR1 in the five allelic mutants exhibited single nucleotide polymorphisms at different positions on their exons and led to premature translation termination, which confirmed that defect in BrSRFR1 led to premature leaf senescence. These results verify the role of Br SRFR1 on leaf senescence and provide a new insight into the mechanisms of leaf senescence in Chinese cabbage, which reveals a novel function of SRFR1 in plant development.展开更多
Objective:To investigate whether angiotensinⅡtype 1 receptor(AGTR1 A1166C)gene polymorphism was associated with the effectiveness of valsartan monotherapy in Chinese patients with essential hypertension.Methods:This ...Objective:To investigate whether angiotensinⅡtype 1 receptor(AGTR1 A1166C)gene polymorphism was associated with the effectiveness of valsartan monotherapy in Chinese patients with essential hypertension.Methods:This retrospective analysis included 198 patients(≥18 years of age)who received valsartan monotherapy(80 mg/day)for newly developed essential hypertension at the authors’center between January 1,2020 and December 31,2023.Genotyping for AGTR1 A1166C gene polymorphism was done by polymerase chain reaction(PCR)-melting curve analysis of genomic DNA from peripheral blood samples.A dominant genetic model for AGTR1 A1166C(AA genotype versus AC+CC genotype)was used.Multivariate regression analysis of baseline variables and AGTR1 polymorphism was conducted to identify predictors of target blood pressure attainment(<140/90 mmHg)at the 4-week follow-up.Results:The median age of the 198 patients was(53.7±13.5)years,and 58%were men.Genotyping assays showed that 164 patients had the AA genotype,and 34 patients were of the AC/CC genotype,including 30 with the AC genotype and 4 with the CC genotype.Allele distribution was consistent with Hardy Weinberg equilibrium.109 Patients(55.1%)attained the blood pressure target.Multivariate analysis showed that smoking(versus no smoking,HR 0.314,95%CI 0.159-0.619,P=0.001)and AGTR1 A1166C AA genotype(versus AC/CC,HR 2.927,95%CI 1.296-6.611,P=0.023)were significant and independent predictors of target attainment.25 Patients(73.5%)with AGTR1 A1166C AC/CC genotype attained the target versus 51.2%(51/164)of patients with AGTR1 A1166C AA genotype(P=0.017).Patients with AGTR1 A1166C AC/CC genotype had a significantly greater reduction in systolic blood pressure[(33.1±10.8)mmHg versus(29.2±11.7)mmHg in AA carriers;(P=0.029)].Conclusions:Hypertensive patients carrying one or two C alleles of the AGTR1 A1166C gene were more responsive to valsartan treatment.展开更多
High temperature stress is one of the major environmental factors that affect the growth and development of plants. Although WRKY transcription factors play a critical role in stress responses, there are few studies o...High temperature stress is one of the major environmental factors that affect the growth and development of plants. Although WRKY transcription factors play a critical role in stress responses, there are few studies on the regulation of heat stress by WRKY transcription factors,especially in tomato. Here, we identified a group I WRKY transcription factor, SlWRKY3, involved in thermotolerance in tomato. First, SlWRKY3 was induced and upregulated under heat stress. Accordingly, overexpression of SlWRKY3 led to an increase, whereas knock-out of SlWRKY3 resulted in decreased tolerance to heat stress. Overexpression of SlWRKY3 accumulated less reactive oxygen species(ROS), whereas knock-out of SlWRKY3 accumulated more ROS under heat stress. This indicated that SlWRKY3 positively regulates heat stress in tomato. In addition,SlWRKY3 activated the expression of a range of abiotic stress-responsive genes involved in ROS scavenging, such as a SlGRXS1 gene cluster.Further analysis showed that SlWRKY3 can bind to the promoters of the SlGRXS1 gene cluster and activate their expression. Collectively, these results imply that SlWRKY3 is a positive regulator of thermotolerance through direct binding to the promoters of the SlGRXS1 gene cluster and activating their expression and ROS scavenging.展开更多
Chronic enteropathy associated with the SLCO2A1 gene(CEAS)is a complex gastroenterological condition characterized by multiple ulcers in the small intestine with chronic bleeding and protein loss.This review explores ...Chronic enteropathy associated with the SLCO2A1 gene(CEAS)is a complex gastroenterological condition characterized by multiple ulcers in the small intestine with chronic bleeding and protein loss.This review explores the potential mechanisms underlying the pathogenesis of CEAS,focusing on the role of SLCO2A1-encoded prostaglandin transporter OATP2A1 and its impact on prostaglandin E2(PGE2)levels.Studies have suggested that elevated PGE2 levels contribute to mucosal damage,inflammation,and disruption of the intestinal barrier.The effects of PGE2 on macrophage activation and Maxi-Cl channel functionality,as well as its interaction with nonsteroidal anti-inflammatory drugs play crucial roles in the progression of CEAS.Understanding the balance between its protective and pro-inflammatory effects and the complex interactions within the gastrointestinal tract can shed light on potential therapeutic targets for CEAS and guide the development of novel,targeted therapies.展开更多
Retinitis pigmentosa is a group of inherited diseases that lead to retinal degeneration and photoreceptor cell death.However,there is no effective treatment for retinitis pigmentosa caused by PDE6B mutation.Adeno-asso...Retinitis pigmentosa is a group of inherited diseases that lead to retinal degeneration and photoreceptor cell death.However,there is no effective treatment for retinitis pigmentosa caused by PDE6B mutation.Adeno-associated virus(AAV)-mediated gene therapy is a promising strategy for treating retinitis pigmentosa.The aim of this study was to explore the molecular mechanisms by which AAV2-PDE6B rescues retinal function.To do this,we injected retinal degeneration 10(rd10)mice subretinally with AAV2-PDE6B and assessed the therapeutic effects on retinal function and structure using dark-and light-adapted electroretinogram,optical coherence tomography,and immunofluorescence.Data-independent acquisition-mass spectrometry-based proteomic analysis was conducted to investigate protein expression levels and pathway enrichment,and the results from this analysis were verified by real-time polymerase chain reaction and western blotting.AAV2-PDE6B injection significantly upregulated PDE6βexpression,preserved electroretinogram responses,and preserved outer nuclear layer thickness in rd10 mice.Differentially expressed proteins between wild-type and rd10 mice were closely related to visual perception,and treating rd10 mice with AAV2-PDE6B restored differentially expressed protein expression to levels similar to those seen in wild-type mice.Kyoto Encyclopedia of Genes and Genome analysis showed that the differentially expressed proteins whose expression was most significantly altered by AAV2-PDE6B injection were enriched in phototransduction pathways.Furthermore,the phototransductionrelated proteins Pde6α,Rom1,Rho,Aldh1a1,and Rbp1 exhibited opposite expression patterns in rd10 mice with or without AAV2-PDE6B treatment.Finally,Bax/Bcl-2,p-ERK/ERK,and p-c-Fos/c-Fos expression levels decreased in rd10 mice following AAV2-PDE6B treatment.Our data suggest that AAV2-PDE6B-mediated gene therapy promotes phototransduction and inhibits apoptosis by inhibiting the ERK signaling pathway and upregulating Bcl-2/Bax expression in retinitis pigmentosa.展开更多
Clubroot disease is a severe threat to Brassica crops globally,particularly in western Canada.Genetic resistance,achieved through pyramiding clubroot resistance(CR)genes with different modes of action,is the most impo...Clubroot disease is a severe threat to Brassica crops globally,particularly in western Canada.Genetic resistance,achieved through pyramiding clubroot resistance(CR)genes with different modes of action,is the most important strategy for managing the disease.However,studies on the CR gene functions are quite limited.In this study,we have conducted investigations into the temporal,structural,and interacting features of a newly cloned CR gene,Rcr1,using CRISPR/Cas9 technology.For temporal functionality,we developed a novel CRISPR/Cas9-based binary vector,pHHIGR-Hsp18.2,to deliver Rcr1 into a susceptible canola line(DH12075)and observed that early expression of Rcr1 is critical for conferring resistance.For structural functionality,several independent mutations in specific domains of Rcr1 resulted in loss-offunction,highlighting their importance for CR phenotype.In the study of the interacting features of Rcr1,a cysteine protease gene and its homologous allele in canola were successfully disrupted via CRISPR/Cas9 as an interacting component with Rcr1 protein,resulting in the conversion from clubroot resistant to susceptible in plants carrying intact Rcr1.These results indicated an indispensable role of these two cysteine proteases in Rcr1-mediated resistance response.This study,the first of its kind,provides valuable insights into the functionality of Rcr1.Further,the new vector p HHIGR-Hsp18.2 demonstrated an inducible feature on the removal of add-on traits,which should be useful for functional genomics and other similar research in brassica crops.展开更多
基金supported by grants from Scientific Research Foundation of Hubei health department (No.JX2B17)a grant from Key Technologies R&D Programme of Hubei Province (No.2007AA301C20)
文摘In order to investigate the effect of chitosan/pshRNA plasmid nanoparticles targeting MDR1 genes on the resistance of A2780/TS cells to paclitaxel, chitosan/pshRNA plasmid nanoparti- cles were synthesized by means of a complex coacervation technique and transfected into A2780/TS cells. The cells transfected with MDRl-targeted chitosan/pshRNA plasmid nanoparticles were experimental cells and the cells transfected with chitosan/pGPU6/GFP/Neo no-load plasmid nanoparticles served as negative control cells. Morphological features of the nanoparticles were observed under transmission electron microscope (TEM). MDR1 mRNA expression was assessed by RT-PCR. Half-inhibitory concentration (IC50) ofpaclitaxel for A2780/TS cells was determined by MTT method. TEM showed that the nanoparticles were round-shaped, smooth in surface and the diameters varied from 80 to 120 nm. The MDR1 mRNA in the transfected cells was significantly decreased by 17.6%, 27.8% and 52.6% on the post-transfection day 2, 4 and 7 when compared with that in A2780/TS cells control (P〈0.05). MTT assay revealed that the relative reversal efficiency was increased over time and was 29.6%, 51.2% and 61.3% respectively in the transfected cells 2, 4, 7 days after transfection and IC_50 (0.197±0.003, 0.144±0.001, 0.120±0.004) were decreased with difference being significant when compared with that in A2780/TS (0.269±0.003) cells control (P〈0.05). It was concluded that chitosan/pshRNA plasmid nanoparticles targeting MDR1 can effectively reverse the paclitaxel resistance in A2780/TS cells in a time-dependent manner.
基金supported by the Taipei Tzu Chi Hospital through grants from the Buddhist Tzu Chi Medical Foundation under the Numbers TCRD-TPE-111-23(2/3)and TCRD-TPE-113-20,Taipei,Taiwan.
文摘Tazarotene-induced gene 1(TIG1)is induced by a derivative of vitamin A and is known to regulate many important biological processes and control the development of cancer.TIG1 is widely expressed in various tissues;yet in many cancer tissues,it is not expressed because of the methylation of its promoter.Additionally,the expression of TIG1 in cancer cells inhibits their growth and invasion,suggesting that TIG1 acts as a tumor suppressor gene.However,in some cancers,poor prognosis is associated with TIG1 expression,indicating its protumor growth characteristics,especially in promoting the invasion of inflammatory breast cancer cells.This review comprehensively summarizes the roles of the TIG1 gene in cancer development and details the mechanisms through which TIG1 regulates cancer development,with the aim of understanding its various roles in cancer development.
基金Supported by the National Natural Science Foundation of China,No. 30400431
文摘AIM: To reverse the multidrug resistance (MDR) by RNA interference (RNAi)-mediated MDRI suppression in heparoma cells.METHODS: For reversing MDR by RNAi technology, two different short hairpin RNAs (shRNAs) were designed and constructed into pGenSil-1 plasmid, respectively. They were then transfected into a highly adriarnycin-resistant HepG2 hepatorna cell line (HepG2/ADM). The RNAi effect on MDR was evaluated by real-time PCR, cell cytotoxicity assay and rhodarnine 123 (Rh123) efflux assy. RESULTS: The stably-transfected clones showed various degrees of reversal of MDR phenotype. Surprisingly, the MDR phenotype was completely reversed in two transfected clones. CONCLUSION: MDR can be reversed by the shRNAmediated MDRI suppression in HepG2/ADM cells, which provides a valuable clue to make multidrug-resistant hepatoma cells sensitive to anti-cancer drugs.
基金This work was supported by the National Natural Science Foundation of China ( No. 30500626 ).
文摘AIM: Tacrolimus shows considerable interindividual pharmacokinetic variability, therapeutic drug monitoring of trough blood concentration is necessary to avoid adverse effects. CYP3A5 and P-glycoprotein (P-gp, encoded by MDR1) are involved in tacrolimus’ metabolism and absorption process. This study is to investigate whether tacrolimus dosage adjustment is affected by the polymorphism in CYP3A5 and MDR1 in Chinese liver transplant patients. METHODS: Forty-nine liver transplant patients treated with tacrolimus were enrolled in this study. Polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) analysis was applied to determine the genotype of CYP3A5 and MDR1. Tacrolimus blood tough concentration was measured by FPIA, and concentration/dose ratio(C/D) was investigated at day 7, day 14 and 1 month after liver transplantation. RESULTS: The CD ratios in recipient with CYP3A5*1/*1 (*1/*3) were significantly lower than those of CYP3A5*3/*3 patients after liver transplantation, and the C/D ratios of CYP3A5*1/*1 ,*1/*3 and *3/*3 were shown as follows: 76, 82±18, 164±51 at 7 days; 32, 76±19, 132±31 at 14 days; 36, 65±25, 122±32 at 1 month. No significant difference was found among the MDR1 G2677T/A and C3435T genotype. CONCLUSION: There was no relationship between MDR1 gene polymorphism (C3435T, G2677T/A) and tacrolimus C/D ratio in Chinese liver transplantation patients. CYP3A5 *3 polymorphism is correlated with the whole blood concentration of tacrolimus and dose requirement. The intestinal CYP3A5 plays an important role in the metabolism of orally administered tacrolimus in the first month after liver transplantation.
基金supported by the National Natural Science Foundation of China(32001578)Qingdao Science&Technology Key Projects(22-1-3-1-zyyd-nsh,23-1-3-8-zyyd-nsh)+1 种基金Salt-Alkali Agriculture Industry System of Shandong Province(SDAIT-29-03)Science&Technology Specific Projects in Agricultural High-tech Industrial Demonstration Area of the Yellow River Delta(2022SZX19)。
文摘Ethylene plays essential roles in plant growth,development and stress responses.The ethylene signaling pathway and molecular mechanism have been studied extensively in Arabidopsis and rice but limited in peanuts.Here,we established a sand-culture method to screen pingyangmycin mutagenized peanut lines based on their specific response to ethylene(“triple response”).An ethylene-insensitive mutant,inhibition of peanut hypocotyl elongation 1(iph1),was identified that showed reduced sensitivity to ethylene in both hypocotyl elongation and root growth.Through bulked segregant analysis sequencing,a major gene related to iph1,named AhIPH1,was preliminarily mapped at the chromosome Arahy.01,and further narrowed to a 450-kb genomic region through substitution mapping strategy.A total of 7014 genes were differentially expressed among the ACC treatment through RNA-seq analysis,of which only the Arahy.5BLU0Q gene in the candidate mapping interval was differentially expressed between WT and mutant iph1.Integrating sequence variations,functional annotation and transcriptome analysis revealed that a predicated gene,Arahy.5BLU0Q,encoding SNF1 protein kinase,may be the candidate gene for AhIPH1.This gene contained two single-nucleotide polymorphisms at promoter region and was more highly expressed in iph1 than WT.Our findings reveal a novel ethylene-responsive gene,which provides a theoretical foundation and new genetic resources for the mechanism of ethylene signaling in peanuts.
文摘Objective:Autosomal recessive bestrophinopathy(ARB),a retinal degenerative disease,is characterized by central visual loss,yellowish multifocal diffuse subretinal deposits,and a dramatic decrease in the light peak on electrooculogram.The potential pathogenic mechanism involves mutations in the BEST1 gene,which encodes Ca2+-activated Cl−channels in the retinal pigment epithelium(RPE),resulting in degeneration of RPE and photoreceptor.In this study,the complete clinical characteristics of two Chinese ARB families were summarized.Methods:Pacific Biosciences(PacBio)single-molecule real-time(SMRT)sequencing was performed on the probands to screen for disease-causing gene mutations,and Sanger sequencing was applied to validate variants in the patients and their family members.Results:Two novel mutations,c.202T>C(chr11:61722628,p.Y68H)and c.867+97G>A,in the BEST1 gene were identified in the two Chinese ARB families.The novel missense mutation BEST1 c.202T>C(p.Y68H)resulted in the substitution of tyrosine with histidine in the N-terminal region of transmembrane domain 2 of bestrophin-1.Another novel variant,BEST1 c.867+97G>A(chr11:61725867),located in intron 7,might be considered a regulatory variant that changes allele-specific binding affinity based on motifs of important transcriptional regulators.Conclusion:Our findings represent the first use of third-generation sequencing(TGS)to identify novel BEST1 mutations in patients with ARB,indicating that TGS can be a more accurate and efficient tool for identifying mutations in specific genes.The novel variants identified further broaden the mutation spectrum of BEST1 in the Chinese population.
文摘Parkinsonism by unilateral,intranigralβ-sitosterolβ-D-glucoside administration in rats is distinguished in that theα-synuclein insult begins unilaterally but spreads bilaterally and increases in severity over time,thus replicating several clinical features of Parkinson’s disease,a typicalα-synucleinopathy.As Nurr1 repressesα-synuclein,we evaluated whether unilateral transfected of rNurr1-V5 transgene via neurotensin-polyplex to the substantia nigra on day 30 after unilateralβ-sitosterolβ-D-glucoside lesion could affect bilateral neuropathology and sensorimotor deficits on day 30 post-transfection.This study found that rNurr1-V5 expression but not that of the green fluorescent protein(the negative control)reducedβ-sitosterolβ-D-glucoside-induced neuropathology.Accordingly,a bilateral increase in tyrosine hydroxylase-positive cells and arborization occurred in the substantia nigra and increased tyrosine hydroxylase-positive ramifications in the striatum.In addition,tyrosine hydroxylase-positive cells displayed less senescence markerβ-galactosidase and more neuron-cytoskeleton markerβIII-tubulin and brain-derived neurotrophic factor.A significant decrease in activated microglia(positive to ionized calcium-binding adaptor molecule 1)and neurotoxic astrocytes(positive to glial fibrillary acidic protein and complement component 3)and increased neurotrophic astrocytes(positive to glial fibrillary acidic protein and S100 calcium-binding protein A10)also occurred in the substantia nigra.These effects followed the bilateral reduction inα-synuclein aggregates in the nigrostriatal system,improving sensorimotor behavior.Our results show that unilateral rNurr1-V5 transgene expression in nigral dopaminergic neurons mitigates bilateral neurodegeneration(senescence and loss of neuron-cytoskeleton and tyrosine hydroxylase-positive cells),neuroinflammation(activated microglia,neurotoxic astrocytes),α-synuclein aggregation,and sensorimotor deficits.Increased neurotrophic astrocytes and brain-derived neurotrophic factor can mediate the rNurr1-V5 effect,supporting its potential clinical use in the treatment of Parkinson’s disease.
基金a grant from the National New Technology Program (No. 1998-345).
文摘Objective: To establish a fluoregenic probe quantitative RT-PCR (FQ-RT-PCR) method for detection of the expression of MDR1 gene in tumor cells and to investigate the expression of MDR1 gene in patients with lung cancer. Methods: The fluorogenic quantitative RT-PCR method for detection of the expression of MDR1 gene was established. K562/ADM and K562 cell lines or 45 tumor tissues from patients with lung cancer were examined on PE Applied Biosystems 7700 Sequence Detection machine. Results: the average levels of MDR1 gene expression in K562/ADM cells and K562 cells were (6.86±0.65)× 107 copies/μg RNA and (8.49±0.67)×105 copies/μg RNA, respectively. The former was 80.8 times greater than the latter. Each sample was measured 10 times and the coefficient variation (CV) was 9.5% and 7.9%, respectively. Various levels of MDR1 gene expression were detected in 12 of 45 patients with lung cancer. Conclusion: Quantitative detection of MDR1 gene expression in tumor cells was achieved by using FQ-RT-PCR. FQ-RT-PCR is an accurate, and sensitive method and easy to perform. Using this method, low levels of MDR1 gene expression could be detected in 24% of the patients with lung cancer.
文摘Objective: To investigate the effects of neoadjuvant chemotherapy on the expression of drug resistance genes, multidrug resistance-1 (MDR1) and multidrug resistance-associated protein (MRP), in patients with primary breast cancer. Methods: MDR1 and MRP expression were detected by semi-quantitative RT-PCR in 20 patients with primary breast cancer, before and after chemotherapy. Results: Before chemotherapy, MDR1 and MRP expression can be detected in 15 cases (75%) and 18 cases (90%) respectively. After chemotherapy, expression of MDR1 is not significantly different from that before chemotherapy, but expression of MRP is significantly different from that before chemotherapy. Conclusion: Expression of drug resistance gene MRP, but not MDR1, is enhanced in patients with primary breast cancer submitted to neoadjuvant chemotherapy.
文摘BACKGROUND:Adeno-associated virus(AAV)gene therapy has been proven to be reliable and safe for the treatment of osteoarthritis in recent years.However,given the complexity of osteoarthritis pathogenesis,single gene manipulation for the treatment of osteoarthritis may not produce satisfactory results.Previous studies have shown that nuclear factorκB could promote the inflammatory pathway in osteoarthritic chondrocytes,and bone morphogenetic protein 4(BMP4)could promote cartilage regeneration.OBJECTIVE:To test whether combined application of AAV-p65shRNA and AAV-BMP4 will yield the synergistic effect on chondrocytes regeneration and osteoarthritis treatment.METHODS:Viral particles containing AAV-p65-shRNA and AAV-BMP4 were prepared.Their efficacy in inhibiting inflammation in chondrocytes and promoting chondrogenesis was assessed in vitro and in vivo by transfecting AAV-p65-shRNA or AAV-BMP4 into cells.The experiments were divided into five groups:PBS group;osteoarthritis group;AAV-BMP4 group;AAV-p65shRNA group;and BMP4-p65shRNA 1:1 group.Samples were collected at 4,12,and 24 weeks postoperatively.Tissue staining,including safranin O and Alcian blue,was applied after collecting articular tissue.Then,the optimal ratio between the two types of transfected viral particles was further investigated to improve the chondrogenic potential of mixed cells in vivo.RESULTS AND CONCLUSION:The combined application of AAV-p65shRNA and AAV-BMP4 together showed a synergistic effect on cartilage regeneration and osteoarthritis treatment.Mixed cells transfected with AAV-p65shRNA and AAV-BMP4 at a 1:1 ratio produced the most extracellular matrix synthesis(P<0.05).In vivo results also revealed that the combination of the two viruses had the highest regenerative potential for osteoarthritic cartilage(P<0.05).In the present study,we also discovered that the combined therapy had the maximum effect when the two viruses were administered in equal proportions.Decreasing either p65shRNA or BMP4 transfected cells resulted in less collagen II synthesis.This implies that inhibiting inflammation by p65shRNA and promoting regeneration by BMP4 are equally important for osteoarthritis treatment.These findings provide a new strategy for the treatment of early osteoarthritis by simultaneously inhibiting cartilage inflammation and promoting cartilage repair.
文摘In this editorial we comment on the article by Wei et al,published in the recent issue of the World Journal of Clinical Oncology.The authors investigated the role of Transmembrane 9 superfamily member 1(TM9SF1)protein in bladder cancer(BC)carcinogenesis.Lentiviral vectors were used to achieve silencing or overexpression of TM9SF1 gene in three BC cell lines.These cell lines were then subject to cell counting kit 8,wound-healing assay,transwell assay,and flow cytometry.Proliferation,migration,and invasion of BC cells were increased in cell lines subjected to TM9SF1 overexpression.TM9SF1 silencing inhibited proliferation,migration and invasion of BC cells.The authors conclude that TM9SF1 may be an oncogene in bladder cancer pathogenesis.
基金supported by the State Key Laboratory of Aridland Crop Science,Gansu Agricultural University,China(GSCS-2019-10)the National Natural Science Foundation of China(31801414 and 32260478)+2 种基金the Gansu Province Science and Technology Program,China(20JR10RA531)the Natural Science Foundation of Xinjiang Uygur Autonomous Region,China(2022D01E103)the Education Technology Innovation Project of Gansu Province,China(2022QB-076)。
文摘Activity of bc1 complex kinase(ABC1K)is an atypical protein kinase(aPK)that plays a crucial role in plant mitochondrial and plastid stress responses,but little is known about the responses of ABC1Ks to stress in cotton(Gossypium spp.).Here,we identified 40 ABC1Ks in upland cotton(Gossypium hirsutum L.)and found that the Gh ABC1Ks were unevenly distributed across 17 chromosomes.The GhABC1K family members included 35 paralogous gene pairs and were expanded by segmental duplication.The GhABC1K promoter sequences contained diverse cis-acting regulatory elements relevant to hormone or stress responses.The qRT-PCR results revealed that most Gh ABC1Ks were upregulated by exposure to different stresses.Gh ABC1K2-A05 and Gh ABC1K12-A07 expression levels were upregulated by at least three stress treatments.These genes were further functionally characterized by virus-induced gene silencing(VIGS).Compared with the controls,the Gh ABC1K2-A05-and Gh ABC1K12-A07-silenced cotton lines exhibited higher malondialdehyde(MDA)contents,lower catalase(CAT),peroxidase(POD)and superoxide dismutase(SOD)activities and reduced chlorophyll and soluble sugar contents under NaCl and PEG stress.In addition,the expression levels of six stress marker genes(Gh DREB2A,Gh SOS1,Gh CIPK6,Gh SOS2,Gh WRKY33,and Gh RD29A)were significantly downregulated after stress in the Gh ABC1K2-A05-and Gh ABC1K12-A07-silenced lines.The results indicate that knockdown of Gh ABC1K2-A05 and Gh ABC1K12-A07 make cotton more sensitive to salt and PEG stress.These findings can provide valuable information for intensive studies of Gh ABC1Ks in the responses and resistance of cotton to abiotic stresses.
基金supported by the Innovation Program of the Shanghai Municipal Education Commission(2023ZKZD05)the Shanghai Oriental Talent(Rural Revitalization)Top Talent Project(T2023102).
文摘In four rice genomes,85 ABC1-family genes were identified by comparative genomics,evolution,genetics,and physiology.One,OsABC1-13,was shown by knockdown and knockout experiments to affect plant height,grain size,and photosynthetic capability.
基金supported by the National Natural Science Foundation of China (Grant No.31972405)Graduate Student Innovation Cultivation Project of Shenyang Agricultural University (Grant No.2021YCXB16)。
文摘Leaf senescence is the final stage of leaf development, where the nutrients and energy of senescent leaves are redistributed to developing tissues or organs for plant growth, reproduction, and defense. Outer leaves are photosynthetic organs that usually senesce at the late heading stage in Chinese cabbage, and premature leaf senescence often reduces leafy head yield and quality. In this study, 11 premature leaf senescence mutants were screened from an ethyl methanesulfonate-mutagenized population of the double haploid line ‘FT' in Chinese cabbage. At the early heading stage, the mutants exhibited edge yellowing within its outer leaves, and at the mature stage, its leafy head weight decreased significantly. Genetic analysis revealed that the mutated trait of all 11 mutants corresponds to single gene recessive inheritance. Semi-diallel cross tests showed that 5 of the 11 were allelic mutants. MutMap and Kompetitive Allele Specific PCR genotyping revealed that BraA01g001400.3C was the candidate gene, which is orthologous of Arabidopsis SUPPRESSOR OF rps4-RLD 1, encoding an immune regulator, so we named it as BrSRFR1. All the BrSRFR1 in the five allelic mutants exhibited single nucleotide polymorphisms at different positions on their exons and led to premature translation termination, which confirmed that defect in BrSRFR1 led to premature leaf senescence. These results verify the role of Br SRFR1 on leaf senescence and provide a new insight into the mechanisms of leaf senescence in Chinese cabbage, which reveals a novel function of SRFR1 in plant development.
基金Science and Technology Key Project of Xuzhou Municipal Health Commission,Jiangsu Province,China(XWKYHT20210531)Pengcheng Yingcai-Medical Young Reserve Talent Programme(XWRCHT20220013).
文摘Objective:To investigate whether angiotensinⅡtype 1 receptor(AGTR1 A1166C)gene polymorphism was associated with the effectiveness of valsartan monotherapy in Chinese patients with essential hypertension.Methods:This retrospective analysis included 198 patients(≥18 years of age)who received valsartan monotherapy(80 mg/day)for newly developed essential hypertension at the authors’center between January 1,2020 and December 31,2023.Genotyping for AGTR1 A1166C gene polymorphism was done by polymerase chain reaction(PCR)-melting curve analysis of genomic DNA from peripheral blood samples.A dominant genetic model for AGTR1 A1166C(AA genotype versus AC+CC genotype)was used.Multivariate regression analysis of baseline variables and AGTR1 polymorphism was conducted to identify predictors of target blood pressure attainment(<140/90 mmHg)at the 4-week follow-up.Results:The median age of the 198 patients was(53.7±13.5)years,and 58%were men.Genotyping assays showed that 164 patients had the AA genotype,and 34 patients were of the AC/CC genotype,including 30 with the AC genotype and 4 with the CC genotype.Allele distribution was consistent with Hardy Weinberg equilibrium.109 Patients(55.1%)attained the blood pressure target.Multivariate analysis showed that smoking(versus no smoking,HR 0.314,95%CI 0.159-0.619,P=0.001)and AGTR1 A1166C AA genotype(versus AC/CC,HR 2.927,95%CI 1.296-6.611,P=0.023)were significant and independent predictors of target attainment.25 Patients(73.5%)with AGTR1 A1166C AC/CC genotype attained the target versus 51.2%(51/164)of patients with AGTR1 A1166C AA genotype(P=0.017).Patients with AGTR1 A1166C AC/CC genotype had a significantly greater reduction in systolic blood pressure[(33.1±10.8)mmHg versus(29.2±11.7)mmHg in AA carriers;(P=0.029)].Conclusions:Hypertensive patients carrying one or two C alleles of the AGTR1 A1166C gene were more responsive to valsartan treatment.
基金supported by grants from the National Key Research&Development Plan,China (Grant Nos.2021YFD1200201,2022YFD1200502)National Natural Science Foundation of China(31972426,31991182)+3 种基金Key Project of Hubei Hongshan Laboratory(Grant No.2021hszd007)Wuhan Major Project of Key Technologies in Biological Breeding (Grant No.2022021302024852)Fundamental Research Funds for the Central Universities,China (Grant No.2662022YLPY001)International Cooperation Promotion Plan of Shihezi University (Grant No.GJHZ202104)。
文摘High temperature stress is one of the major environmental factors that affect the growth and development of plants. Although WRKY transcription factors play a critical role in stress responses, there are few studies on the regulation of heat stress by WRKY transcription factors,especially in tomato. Here, we identified a group I WRKY transcription factor, SlWRKY3, involved in thermotolerance in tomato. First, SlWRKY3 was induced and upregulated under heat stress. Accordingly, overexpression of SlWRKY3 led to an increase, whereas knock-out of SlWRKY3 resulted in decreased tolerance to heat stress. Overexpression of SlWRKY3 accumulated less reactive oxygen species(ROS), whereas knock-out of SlWRKY3 accumulated more ROS under heat stress. This indicated that SlWRKY3 positively regulates heat stress in tomato. In addition,SlWRKY3 activated the expression of a range of abiotic stress-responsive genes involved in ROS scavenging, such as a SlGRXS1 gene cluster.Further analysis showed that SlWRKY3 can bind to the promoters of the SlGRXS1 gene cluster and activate their expression. Collectively, these results imply that SlWRKY3 is a positive regulator of thermotolerance through direct binding to the promoters of the SlGRXS1 gene cluster and activating their expression and ROS scavenging.
基金Supported by the National High-Level Hospital Clinical Research Fund,No.2022-PUMCH-A-020the Undergraduate Teaching Reform and Innovation Project,No.2022zlgc0108.
文摘Chronic enteropathy associated with the SLCO2A1 gene(CEAS)is a complex gastroenterological condition characterized by multiple ulcers in the small intestine with chronic bleeding and protein loss.This review explores the potential mechanisms underlying the pathogenesis of CEAS,focusing on the role of SLCO2A1-encoded prostaglandin transporter OATP2A1 and its impact on prostaglandin E2(PGE2)levels.Studies have suggested that elevated PGE2 levels contribute to mucosal damage,inflammation,and disruption of the intestinal barrier.The effects of PGE2 on macrophage activation and Maxi-Cl channel functionality,as well as its interaction with nonsteroidal anti-inflammatory drugs play crucial roles in the progression of CEAS.Understanding the balance between its protective and pro-inflammatory effects and the complex interactions within the gastrointestinal tract can shed light on potential therapeutic targets for CEAS and guide the development of novel,targeted therapies.
基金supported by the National Natural Science Foundation of China,Nos.82071008(to BL)and 82004001(to XJ)Medical Science and Technology Program of Health Commission of Henan Province,No.LHGJ20210072(to RQ)Science and Technology Department of Henan Province,No.212102310307(to XJ)。
文摘Retinitis pigmentosa is a group of inherited diseases that lead to retinal degeneration and photoreceptor cell death.However,there is no effective treatment for retinitis pigmentosa caused by PDE6B mutation.Adeno-associated virus(AAV)-mediated gene therapy is a promising strategy for treating retinitis pigmentosa.The aim of this study was to explore the molecular mechanisms by which AAV2-PDE6B rescues retinal function.To do this,we injected retinal degeneration 10(rd10)mice subretinally with AAV2-PDE6B and assessed the therapeutic effects on retinal function and structure using dark-and light-adapted electroretinogram,optical coherence tomography,and immunofluorescence.Data-independent acquisition-mass spectrometry-based proteomic analysis was conducted to investigate protein expression levels and pathway enrichment,and the results from this analysis were verified by real-time polymerase chain reaction and western blotting.AAV2-PDE6B injection significantly upregulated PDE6βexpression,preserved electroretinogram responses,and preserved outer nuclear layer thickness in rd10 mice.Differentially expressed proteins between wild-type and rd10 mice were closely related to visual perception,and treating rd10 mice with AAV2-PDE6B restored differentially expressed protein expression to levels similar to those seen in wild-type mice.Kyoto Encyclopedia of Genes and Genome analysis showed that the differentially expressed proteins whose expression was most significantly altered by AAV2-PDE6B injection were enriched in phototransduction pathways.Furthermore,the phototransductionrelated proteins Pde6α,Rom1,Rho,Aldh1a1,and Rbp1 exhibited opposite expression patterns in rd10 mice with or without AAV2-PDE6B treatment.Finally,Bax/Bcl-2,p-ERK/ERK,and p-c-Fos/c-Fos expression levels decreased in rd10 mice following AAV2-PDE6B treatment.Our data suggest that AAV2-PDE6B-mediated gene therapy promotes phototransduction and inhibits apoptosis by inhibiting the ERK signaling pathway and upregulating Bcl-2/Bax expression in retinitis pigmentosa.
基金supported by the Genomics Initiative of Agriculture and Agri-Food Canada。
文摘Clubroot disease is a severe threat to Brassica crops globally,particularly in western Canada.Genetic resistance,achieved through pyramiding clubroot resistance(CR)genes with different modes of action,is the most important strategy for managing the disease.However,studies on the CR gene functions are quite limited.In this study,we have conducted investigations into the temporal,structural,and interacting features of a newly cloned CR gene,Rcr1,using CRISPR/Cas9 technology.For temporal functionality,we developed a novel CRISPR/Cas9-based binary vector,pHHIGR-Hsp18.2,to deliver Rcr1 into a susceptible canola line(DH12075)and observed that early expression of Rcr1 is critical for conferring resistance.For structural functionality,several independent mutations in specific domains of Rcr1 resulted in loss-offunction,highlighting their importance for CR phenotype.In the study of the interacting features of Rcr1,a cysteine protease gene and its homologous allele in canola were successfully disrupted via CRISPR/Cas9 as an interacting component with Rcr1 protein,resulting in the conversion from clubroot resistant to susceptible in plants carrying intact Rcr1.These results indicated an indispensable role of these two cysteine proteases in Rcr1-mediated resistance response.This study,the first of its kind,provides valuable insights into the functionality of Rcr1.Further,the new vector p HHIGR-Hsp18.2 demonstrated an inducible feature on the removal of add-on traits,which should be useful for functional genomics and other similar research in brassica crops.