期刊文献+
共找到84篇文章
< 1 2 5 >
每页显示 20 50 100
Construction of Multi-Specific Antibody by Genetic Engineering and Its Progress in Tumor Therapy
1
作者 Zhenqi Xu Can Gao +1 位作者 Mengru Jian Wei Du 《Journal of Biosciences and Medicines》 CAS 2023年第3期127-135,共9页
Targeted treatment of cancer with monoclonal antibodies increases the benefit for patients. In order to improve the anti-tumor activity of monoclonal antibodies, multi-specific antibodies have entered the research fie... Targeted treatment of cancer with monoclonal antibodies increases the benefit for patients. In order to improve the anti-tumor activity of monoclonal antibodies, multi-specific antibodies have entered the research field. The emergence of various techniques to produce multi-specific recombinant antibody molecules has led to the selection of target combinations in various forms. To date, only a few multi-specific constructs have entered phase III clinical trials, in contrast to classical monoclonal antibodies. Some of the format options are outlined from a technical point of view. We focus on the achievements and prospects of the underlying technologies for generating biand multispecific antibodies. 展开更多
关键词 genetically Engineered Multi-Specific Antibody Tumor Therapy
下载PDF
Crop Resources Ethic in Plant Genetic Engineering and Fortune Transfer Between Generations 被引量:1
2
作者 WANG Xiaowei DING Guangzhou LIANG Xueqing 《Journal of Northeast Agricultural University(English Edition)》 CAS 2006年第2期169-173,共5页
The relation between human and crop resources belongs to the ethic of resources exploitation. The purposes of discussing the ethic of crop resources are to protect the ecology and safety of crops, to gain sustainable ... The relation between human and crop resources belongs to the ethic of resources exploitation. The purposes of discussing the ethic of crop resources are to protect the ecology and safety of crops, to gain sustainable development, furthermore, to choose and form the production structure that is favorable to saving crop resources and protecting the ecology of crops. Plant genetic engineering is the technology of molecule breeding of rearrangement of inheritance materials at the level of molecule directionally, of improving plant properties and of breeding high quality and yield varieties of crops. The prominent effects of the technology on the crop ecological system are human subjective factors increasing as well as violating the nature and intensifying the conflict between human being and nature. Therefore, in plant genetic engineering, crop resources exploitation should follow certain ethic principles. Under the theory of ethics of natural resources, by the means of biologinal-statistics, the author systematically analyzed the possible model of crop resources transfer between generations as well as the transfer mode of magnitude of real materials and magnitude of value. 展开更多
关键词 plant genetic engineering crop resources ETHIC fortune transfer between generations
下载PDF
Editor's Choice——Application of genetic engineering for the treatment of neurodegenerative diseases
3
《Neural Regeneration Research》 SCIE CAS CSCD 2011年第26期2012-2012,共1页
Gene therapy has been shown to be an effective method for protecting neural functions in the substantia nigra,
关键词 GENE Application of genetic engineering for the treatment of neurodegenerative diseases Editor’s Choice
下载PDF
Preparation of Conotoxin MrVIB by Genetic Engineering Technology
4
作者 Weiwei GUAN Jie HOU +3 位作者 Xia ZHONG Na WEI Junqing ZHANG Bingmiao GAO 《Agricultural Biotechnology》 CAS 2017年第4期28-31,37,共5页
[ Objective] The disulfide-rich conotoxin MrV1B was produced by simple and fast genetic engineering method, to find new efficient ways for the synthesis of natural active conotoxins. [Method] Primers of conotoxin gene... [ Objective] The disulfide-rich conotoxin MrV1B was produced by simple and fast genetic engineering method, to find new efficient ways for the synthesis of natural active conotoxins. [Method] Primers of conotoxin gene MrVIB were synthesized to construct expression vectors pET22b( + )/His-Xa-MrVIB and pET32a/Trx-EK-MrV1B, which were transformed into BL21 (DE3)pLysS and expressed under induction by IPTG. Recombinant proteins were purified by affinity chromatography using Ni-NTA agarose column, and the expression of the recombinant proteins was analyzed by Tricine-SDS-PAGE electrophoresis. [ Result] The recombinant conotoxins His-Xa-MrVIB and Trx-EK-MrVIB were effectively expressed in E. coli, and purified by one-step affinity chromatography, and the purity of the recombinant conotoxins was greater than 90%. [ Conclusion] The conotoxin MrVIB was effectively secreted and expressed by genetic engineering method, which could solve the problems in chemical synthesis of conotoxins including low yield, high cost and difficult purification. 展开更多
关键词 CONOTOXINS Escherichia coli genetic engineering Recombinant Expression Separation and Purification
下载PDF
Osmoregulation Mechanism of Drought Stress and Genetic Engineering Strategies for Improving Drought Resistance in Plants
5
作者 DuJinyou ChenXiaoyang LiWei GaoQiong 《Forestry Studies in China》 CAS 2004年第2期56-62,共7页
关键词 plant drought tolerance osmoregulation mechanism trees genetic engineering
下载PDF
Development Prospects of Genetic Engineering Pharmaceuticals
6
作者 Xiangming Kong Zengsiqi Zhang 《Journal of Integrative Medicine(双语)》 2020年第1期5-8,共4页
Human science and technology continue to advance over time.In the future,universal drugs will gradually fade out of our lives with the accumulation of time.With the advancement of genetic engineering,future genetic en... Human science and technology continue to advance over time.In the future,universal drugs will gradually fade out of our lives with the accumulation of time.With the advancement of genetic engineering,future genetic engineering drugs will be based on each difference and due to It differs from person to person,and the development of genetic engineering pharmaceuticals will make breakthroughs. 展开更多
关键词 genetic engineering Recombinant drugs Development prospects
下载PDF
Human a Type Genetic Engineering Interference Essence Injection
7
《China's Foreign Trade》 1995年第2期46-46,共1页
The highest-level interference essence against virus and turnour genetic engineering medicine is a new type created in the 1980s. Compared with chemical medicines, the interference essence has a special effect in the ... The highest-level interference essence against virus and turnour genetic engineering medicine is a new type created in the 1980s. Compared with chemical medicines, the interference essence has a special effect in the treatment of viruses and tumours. The human a, type genetic engineering interference essense is prepared by the Institute of Viruses of the Chinese Academy of Preventive Medical Sciences, the Shanghai Vaccine 展开更多
关键词 Human a Type genetic engineering Interference Essence Injection
下载PDF
ALGAL GENETIC ENGINEERING IN CHINA: PROGRESS AND COOPERATION
8
作者 曾呈奎 秦松 《Chinese Journal of Oceanology and Limnology》 SCIE CAS CSCD 1998年第S1期1-3,共3页
关键词 AIST ALGAL genetic engineering IN CHINA PROGRESS AND COOPERATION
全文增补中
Narrowing Down the Targets: Towards Successful Genetic Engineering of Drought-Tolerant Crops 被引量:50
9
作者 Shujun Yang Barbara Vanderbeld Jiangxin Wan Yafan Huang 《Molecular Plant》 SCIE CAS CSCD 2010年第3期469-490,共22页
Drought is the most important environmental stress affecting agriculture worldwide. Exploiting yield potential and maintaining yield stability of crops in water-limited environments are urgent tasks that must be under... Drought is the most important environmental stress affecting agriculture worldwide. Exploiting yield potential and maintaining yield stability of crops in water-limited environments are urgent tasks that must be undertaken in order to guarantee food supply for the increasing world population. Tremendous efforts have been devoted to identifying key regulators in plant drought response through genetic, molecular, and biochemical studies using, in most cases, the model species Arabidopsis thaliana. However, only a small portion of these regulators have been explored as potential candidate genes for their application in the improvement of drought tolerance in crops. Based on biological functions, these genes can be classified into the following three categories: (1) stress-responsive transcriptional regulation (e.g. DREB1, AREB, NF-YB); (2) post-transcriptional RNA or protein modifications such as phosphorylation/dephosphorylation (e.g. SnRK2, ABI1) and farnesylation (e.g. ERA1); and (3) osomoprotectant metabolism or molecular chaperones (e.g. CspB). While continuing down the path to discovery of new target genes, serious efforts are also focused on fine-tuning the expression of the known candidate genes for stress tolerance in specific temporal and spatial patterns to avoid negative effects in plant growth and development. These efforts are starting to bear fruit by showing yield improvements in several crops under a variety of water-deprivation conditions. As most such evaluations have been performed under controlled growth environments, a gap still remains between early success in the laboratory and the application of these techniques to the elite cultivars of staple crops in the field. Nevertheless, significant progress has been made in the identification of signaling pathways and master regulators for drought tolerance. The knowledge acquired will facilitate the genetic engineering of single or multiple targets and quantitative trait loci in key crops to create commercialrade cultivars with high-yielding potential under both optimal and suboptimal conditions. 展开更多
关键词 Abiotic stress drought tolerance gene expression genetic engineering crop yield potential field trials.
原文传递
Hairy Root and Its Application in Plant Genetic Engineering 被引量:18
10
作者 Zhi-Bi Hu Min Du 《Journal of Integrative Plant Biology》 SCIE CAS CSCD 2006年第2期121-127,共7页
Agrobacterium rhizogenes Conn. causes hairy root disease In plants. Hairy root-Infected A. rhizogenes Is characterlzed by a high growth rate and genetic stability. Hairy root cultures have been proven to be an efficie... Agrobacterium rhizogenes Conn. causes hairy root disease In plants. Hairy root-Infected A. rhizogenes Is characterlzed by a high growth rate and genetic stability. Hairy root cultures have been proven to be an efficient means of producing secondary metabolites that are normally biosyntheslzed In roots of differentiated plants. Furthermore, a transgenlc root system offers tremendous potential for introducing additional genes along with the RI plasmld, especially with modified genes, into medicinal plant cells with A. rhizogenes vector systems. The cultures have turned out to be a valuable tool with which to study the biochemical properties and the gene expression profile of metabolic pathways. Moreover, the cultures can be used to elucidate the Intermediates and key enzymes Involved In the biosynthesis of secondary metabolites. The present article discusses various appllcations of hairy root cultures in plant genetic engineering and potential problems aseoclsted with them. 展开更多
关键词 Agrobacterium rhizogenes hairy root plant genetic engineering Ri plasmid secondary metabolites.
原文传递
Study on genetic engineering of Acremonium chrysogenum, the cephalosporin C producer 被引量:5
11
作者 Youjia Hu Baoquan Zhu 《Synthetic and Systems Biotechnology》 SCIE 2016年第3期143-149,共7页
Acremonium chrysogenum is an important filamentous fungus which produces cephalosporin C in industry.This review summarized the study on genetic engineering of Acremonium chrysogenum,including biosynthesis and regulat... Acremonium chrysogenum is an important filamentous fungus which produces cephalosporin C in industry.This review summarized the study on genetic engineering of Acremonium chrysogenum,including biosynthesis and regulation for fermentation of cephalosporin C,molecular techniques,molecular breeding and transcriptomics of Acremonium chrysogenum.We believe with all the techniques available and full genomic sequence,the industrial strain of Acremonium chrysogenum can be genetically modified to better serve the pharmaceutical industry. 展开更多
关键词 Acremonium chrysogenum Cephalosporin C genetic engineering Molecular breeding
原文传递
CRISPR ribonucleoprotein-mediated genetic engineering in plants 被引量:2
12
作者 Yingxiao Zhang Brian Iaffaldano Yiping Qi 《Plant Communications》 2021年第2期38-50,共13页
CRISPR-derived biotechnologies have revolutionized the genetic engineering field and have been widely applied in basic plant research and crop improvement.Commonly used Agrobacterium-or particle bombardment-mediated t... CRISPR-derived biotechnologies have revolutionized the genetic engineering field and have been widely applied in basic plant research and crop improvement.Commonly used Agrobacterium-or particle bombardment-mediated transformation approaches for the delivery of plasmid-encoded CRISPR reagents can result in the integration of exogenous recombinant DNA and potential off-target mutagenesis.Editing efficiency is also highly dependent on the design of the expression cassette and its genomic insertion site.Genetic engineering using CRISPR ribonucleoproteins(RNPs)has become an attractive approach with many advantages:DNA/transgene-free editing,minimal off-target effects,and reduced toxicity due to the rapid degradation of RNPs and the ability to titrate their dosage while maintaining high editing efficiency.Although RNP-mediated genetic engineering has been demonstrated in many plant species,its editing efficiency remains modest,and its application in many species is limited by difficulties in plant regeneration and selection.In this review,we summarize current developments and challenges in RNPmediated genetic engineering of plants and provide future research directions to broaden the use of this technology. 展开更多
关键词 CRISPR RNP genetic engineering genome editing transgene free
原文传递
Ray Wu,Cornell's acclaimed pioneer of genetic engineering and developer of insect-resistant rice 被引量:3
13
《Science China(Life Sciences)》 SCIE CAS 2009年第2期99-100,共2页
ITHACA, N.Y. -- Ray J. Wu, Cornell University professor of molecular biology and genetics, who was widely recog-nized as one of the fathers of genetic engineering and who developed and sought to feed the world with a ... ITHACA, N.Y. -- Ray J. Wu, Cornell University professor of molecular biology and genetics, who was widely recog-nized as one of the fathers of genetic engineering and who developed and sought to feed the world with a higher yield-ing rice that resists insects and drought, died of cardiac arrest in Ithaca, Feb. 10. 展开更多
关键词 Ray Wu Cornell’s acclaimed pioneer of genetic engineering and developer of insect-resistant rice
原文传递
Advancing approach and toolbox in optimization of chloroplast genetic transformation technology
14
作者 LIU Yu-xin LI Fan +3 位作者 GAO Liang TU Zhang-li ZHOU Fei LIN Yong-jun 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2023年第7期1951-1966,共16页
Chloroplast is a discrete,highly structured,and semi-autonomous cellular organelle.The small genome of chloroplast makes it an up-and-coming platform for synthetic biology.As a special means of synthetic biology,chlor... Chloroplast is a discrete,highly structured,and semi-autonomous cellular organelle.The small genome of chloroplast makes it an up-and-coming platform for synthetic biology.As a special means of synthetic biology,chloroplast genetic engineering shows excellent potential in reconstructing various sophisticated metabolic pathways within the plants for specific purposes,such as improving crop photosynthetic capacity,enhancing plant stress resistance,and synthesizing new drugs and vaccines.However,many plant species exhibit limited efficiency or inability in chloroplast genetic transformation.Hence,new transformation technologies and tools are being constantly developed.In order to further expand and facilitate the application of chloroplast genetic engineering,this review summarizes the new technologies in chloroplast genetic transformation in recent years and discusses the choice of appropriate synthetic biological elements for the construction of efficient chloroplast transformation vectors. 展开更多
关键词 CHLOROPLAST genetic engineering new technology plasmid optimization NANOTECHNOLOGY
下载PDF
Rice-wheat comparative genomics:Gains and gaps
15
作者 Akila Wijerathna-Yapa Ruchi Bishnoi +11 位作者 Buddhini Ranawaka Manu Maya Magar Hafeez Ur Rehman Swati G.Bharad Michal T.Lorenc Vinita Ramtekey Sasha Gohar Charu Lata Md.Harun-Or-Rashid Maryam Razzaq Muhammad Sajjad Bhoja R.Basnet 《The Crop Journal》 SCIE CSCD 2024年第3期656-669,共14页
Rice and wheat provide nearly 40%of human calorie and protein requirements.They share a common ancestor and belong to the Poaceae(grass)family.Characterizing their genetic homology is crucial for developing new cultiv... Rice and wheat provide nearly 40%of human calorie and protein requirements.They share a common ancestor and belong to the Poaceae(grass)family.Characterizing their genetic homology is crucial for developing new cultivars with enhanced traits.Several wheat genes and gene families have been characterized based on their rice orthologs.Rice–wheat orthology can identify genetic regions that regulate similar traits in both crops.Rice–wheat comparative genomics can identify candidate wheat genes in a genomic region identified by association or QTL mapping,deduce their putative functions and biochemical pathways,and develop molecular markers for marker-assisted breeding.A knowledge of gene homology facilitates the transfer between crops of genes or genomic regions associated with desirable traits by genetic engineering,gene editing,or wide crossing. 展开更多
关键词 Comparative genomics ORTHOLOGS GENES SYNTENY genetic engineering Molecular breeding
下载PDF
Enemies atpeace:Recentprogressin Agrobacterium-mediated cereal transformation
16
作者 Shaoshuai Liu Ke Wang +5 位作者 Shuaifeng Geng Moammar Hossain Xingguo Ye Aili Li Long Mao Karl-Heinz Kogel 《The Crop Journal》 SCIE CSCD 2024年第2期321-329,共9页
Agrobacterium tumefaciens mediated plant transformation is a versatile tool for plant genetic engineering following its discovery nearly half a century ago.Numerous modifications were made in its application to increa... Agrobacterium tumefaciens mediated plant transformation is a versatile tool for plant genetic engineering following its discovery nearly half a century ago.Numerous modifications were made in its application to increase efficiency,especially in the recalcitrant major cereals plants.Recent breakthroughs in transformation efficiency continue its role as a mainstream technique in CRISPR/Cas-based genome editing and gene stacking.These modifications led to higher transformation frequency and lower but more stable transgene copies with the capability to revolutionize modern agriculture.In this review,we provide a brief overview of the history of Agrobacterium-mediated plant transformation and focus on the most recent progress to improve the system in both the Agrobacterium and the host recipient.A promising future for transformation in biotechnology and agriculture is predicted. 展开更多
关键词 Agrobacterium tumefaciens Cereal species Genome editing genetic engineering Plant breeding
下载PDF
Drought-Tolerant Rice at Molecular Breeding Eras:An Emerging Reality
17
作者 ZHU Chengqi YE Yuxuan +3 位作者 QIU Tian HUANG Yafan YING Jifeng SHEN Zhicheng 《Rice science》 SCIE CSCD 2024年第2期179-189,共11页
Rice(Oryza sativa L.)stands as the most significantly influential food crop in the developing world,with its total production and yield stability affected by environmental stress.Drought stress impacts about 45%of the... Rice(Oryza sativa L.)stands as the most significantly influential food crop in the developing world,with its total production and yield stability affected by environmental stress.Drought stress impacts about 45%of the world’s rice area,affecting plants at molecular,biochemical,physiological,and phenotypic levels.The conventional breeding method,predominantly employing single pedigree selection,has been widely utilized in breeding numerous drought-tolerant rice varieties since the Green Revolution.With rapid progress in plant molecular biology,hundreds of drought-tolerant QTLs/genes have been identified and tested in rice crops under both indoor and field conditions.Several genes have been introgressed into elite germplasm to develop commercially accepted drought-tolerant varieties,resulting in the development of several drought-tolerant rice varieties through marker-assisted selection and genetically engineered approaches.This review provides up-to-date information on proof-of-concept genes and breeding methods in the molecular breeding era,offering guidance for rice breeders to develop drought-tolerant rice varieties. 展开更多
关键词 conventional breeding drought stress drought tolerant rice genetic engineering marker-assisted selection breeding
下载PDF
Trehalose:A sugar molecule involved in temperature stress management in plants
18
作者 Ali Raza Savita Bhardwaj +7 位作者 Md Atikur Rahman Pedro García-Caparrós Madiha Habib Faisal Saeed Sidra Charagh Christine H.Foyer Kadambot H.M.Siddique Rajeev K.Varshney 《The Crop Journal》 SCIE CSCD 2024年第1期1-16,共16页
Trehalose(Tre)is a non-reducing disaccharide found in many species,including bacteria,fungi,invertebrates,yeast,and even plants,where it acts as an osmoprotectant,energy source,or protein/membrane protector.Despite re... Trehalose(Tre)is a non-reducing disaccharide found in many species,including bacteria,fungi,invertebrates,yeast,and even plants,where it acts as an osmoprotectant,energy source,or protein/membrane protector.Despite relatively small amounts in plants,Tre concentrations increase following exposure to abiotic stressors.Trehalose-6-phosphate,a precursor of Tre,has regulatory functions in sugar metabolism,crop production,and stress tolerance.Among the various abiotic stresses,temperature extremes(heat or cold stress)are anticipated to impact crop production worldwide due to ongoing climate changes.Applying small amounts of Tre can mitigate negative physiological,metabolic,and molecular responses triggered by temperature stress.Trehalose also interacts with other sugars,osmoprotectants,amino acids,and phytohormones to regulate metabolic reprogramming that underpins temperature stress adaptation.Transformed plants expressing Tre-synthesis genes accumulate Tre and show improved stress tolerance.Genome-wide studies of Tre-encoding genes suggest roles in plant growth,development,and stress tolerance.This review discusses the functions of Tre in mitigating temperature stress—highlighting genetic engineering approaches to modify Tre metabolism,crosstalk,and interactions with other molecules—and in-silico approaches for identifying novel Tre-encoding genes in diverse plant species.We consider how this knowledge can be used to develop temperature-resilient crops essential for sustainable agriculture. 展开更多
关键词 Abiotic stress Gene expression genetic engineering OSMOLYTE Trehalose-6-phosphate
下载PDF
Clinical trial perspective for adult and juvenile Huntington's disease using genetically-engineered mesenchymal stem cells 被引量:7
19
作者 Peter Deng Audrey Torrest +4 位作者 Kari Pollock Heather Dahlenburg Geralyn Annett Jan A.Nolta Kyle D.Fink 《Neural Regeneration Research》 SCIE CAS CSCD 2016年第5期702-705,共4页
Progress to date from our group and others indicate that using genetically-engineered mesenchymal stem cells(MSC) to secrete brain-derived neurotrophic factor(BDNF) supports our plan to submit an Investigational N... Progress to date from our group and others indicate that using genetically-engineered mesenchymal stem cells(MSC) to secrete brain-derived neurotrophic factor(BDNF) supports our plan to submit an Investigational New Drug application to the Food and Drug Administration for the future planned Phase 1 safety and tolerability trial of MSC/BDNF in patients with Huntington's disease(HD). There are also potential applications of this approach beyond HD. Our biological delivery system for BDNF sets the precedent for adult stem cell therapy in the brain and could potentially be modified for other neurodegenerative disorders such as amyotrophic lateral sclerosis(ALS), spinocerebellar ataxia(SCA), Alzheimer's disease, and some forms of Parkinson's disease. The MSC/BDNF product could also be considered for studies of regeneration in traumatic brain injury, spinal cord and peripheral nerve injury. This work also provides a platform for our future gene editing studies, since we will again use MSCs to deliver the needed molecules into the central nervous system. 展开更多
关键词 mesenchymal stem cells neurodegenerative disorders Huntington's disease genetic engineering brain derived neurotrophic factor
下载PDF
Overview of purple blotch disease and understanding its management through chemical, biological and genetic approaches 被引量:2
20
作者 Aejaz Ahmad DAR Susheel SHARMA +4 位作者 Reetika MAHAJAN Muntazir MUSHTAQ Ankila SALATHIA Shahid AHAMAD Jag Paul SHARMA 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2020年第12期3013-3024,共12页
Purple blotch disease of Allium spp. crops caused by Alternaria porri has remained a major concern in agriculture for both farmers and research fraternity as it severely damages the crops and drastically reduces the y... Purple blotch disease of Allium spp. crops caused by Alternaria porri has remained a major concern in agriculture for both farmers and research fraternity as it severely damages the crops and drastically reduces the yield. The symptoms appear after 1–4 days of infection and bulb rot begin, and eventually turn into dark reddish-purple and then brownish/black lesions. Many factors like season, time of sowing, humidity and temperature, stage of crop, and plant architecture have a huge impact on the progression of purple blotch disease. Many genic markers based on amplification of an Alta1 gene sequence have been designed for identification and differentiation of different Alternaria species groups. Among the most commonly used fungicides, mancozeb, tebuconazole, difenaconazole and azoxystrobin were found to be the ideal for the management of purple blotch disease and increased garlic yield. Many biological approaches such as plant extracts and bio-control agents were found partially effective for controlling the disease. A report on QTL mapping for purple blotch resistance discovered that purple blotch resistance is controlled by a single dominant gene ApR1. To completely understand the purple blotch disease resistance for crop improvement, a study is required at transcriptome level for hunting purple blotch resistant genes by gene annotation and mining. Genetic engineering and genome editing are other approaches that can be done for engineering disease resistance in Allium crops for genetic improvement. 展开更多
关键词 purple blotch Alternaria porri BREEDING QTL mapping genome editing genetic engineering transcriptome analysis
下载PDF
上一页 1 2 5 下一页 到第
使用帮助 返回顶部