Approximately 1% of plant proteins are predicted to be post-translationally modified with a glycosylphospha- tidylinositol (GPI) anchor that tethers the polypeptide to the outer leaflet of the plasma membrane. Where...Approximately 1% of plant proteins are predicted to be post-translationally modified with a glycosylphospha- tidylinositol (GPI) anchor that tethers the polypeptide to the outer leaflet of the plasma membrane. Whereas the synthesis and structure of GPI anchors is largely conserved across eukaryotes, the repertoire of functional domains present in the GPl-anchored proteome has diverged substantially. In plants, this includes a large fraction of the GPl-anchored proteome being further modified with plant-specific arabinogalactan (AG) O-glycans. The impor- tance of the GPl-anchored proteome to plant development is underscored by the fact that GPI biosynthetic null mutants exhibit embryo lethality. Mutations in genes encoding specific GPl-anchored proteins (GAPs) further supports their contribution to diverse biological processes, occurring at the interface of the plasma membrane and cell wall, including signaling, cell wall metabolism, cell wall polymer cross-linking, and plasmodesmatal transport. Here, we review the literature concerning plant GPl-anchored proteins, in the context of their potential to act as molecular hubs that mediate interactions between the plasma membrane and the cell wall, and their potential to transduce the signal into the protoplast and, thereby, activate signal transduction pathways.展开更多
基金supported by the ARC Centre of Excellence in Plant Cell Walls grant (CE1101007)supported by a postdoctoral fellowship from the Philomathia Foundation
文摘Approximately 1% of plant proteins are predicted to be post-translationally modified with a glycosylphospha- tidylinositol (GPI) anchor that tethers the polypeptide to the outer leaflet of the plasma membrane. Whereas the synthesis and structure of GPI anchors is largely conserved across eukaryotes, the repertoire of functional domains present in the GPl-anchored proteome has diverged substantially. In plants, this includes a large fraction of the GPl-anchored proteome being further modified with plant-specific arabinogalactan (AG) O-glycans. The impor- tance of the GPl-anchored proteome to plant development is underscored by the fact that GPI biosynthetic null mutants exhibit embryo lethality. Mutations in genes encoding specific GPl-anchored proteins (GAPs) further supports their contribution to diverse biological processes, occurring at the interface of the plasma membrane and cell wall, including signaling, cell wall metabolism, cell wall polymer cross-linking, and plasmodesmatal transport. Here, we review the literature concerning plant GPl-anchored proteins, in the context of their potential to act as molecular hubs that mediate interactions between the plasma membrane and the cell wall, and their potential to transduce the signal into the protoplast and, thereby, activate signal transduction pathways.
文摘肿瘤血管生成是一个非常复杂的过程,涉及到多种因子的调节。目前,已发现多种糖基磷脂酰肌醇锚定蛋白质与肿瘤血管生成密切相关。尿激酶型纤溶酶原激活剂受体(urokinase plasminogen activator receptor,uPAR/CD87)、CD55、基质金属蛋白酶、T-钙黏着蛋白、RECK、Eph家族受体作用蛋白A(Eph family receptor interacting protein A,ephrin A)等均能调节肿瘤血管生成过程。本文对糖基磷脂酰肌醇锚定的调节因子如何影响肿瘤血管生成,以及它们作为肿瘤治疗的主要靶标研究进行综述,为肿瘤治疗的抗血管生成新靶标的设计提供信息。