We investigated the potential value of prostate-specific antigen half-life (PSAHL) and decreasing velocity (PSAVd) to predict progression-free survival (PFS) and overall survival (OS) in Chinese patients with ...We investigated the potential value of prostate-specific antigen half-life (PSAHL) and decreasing velocity (PSAVd) to predict progression-free survival (PFS) and overall survival (OS) in Chinese patients with prostate cancer. A total of 153 patients treated with hormonal therapy were included in the study. Of these, 78 patients progressed to hormone- refractory prostate cancer (HRPC) and 24 patients died by the end of follow-up. PSAHL was defined as the time during which prostate-specific antigen (PSA) concentration became half of the initial value during the first hormonal therapy. PSAVd reflected the decreasing velocity of PSA during the first hormonal therapy. PFS was defined as the interval from the beginning of hormonal therapy to HRPC. Cox proportional hazards regression analysis was used to evaluate whether PSAHL and PSAVd were significantly associated with PFS and OS. The median PSAHL and PSAVd were 0.50 months and 33.8 ng mL^-1 per month. The median PFS and OS were 22.7 months (95% confidence interval [CI], 22.0-29.6 months) and 43.5 months (95% CI, 37.9-48.4 months), respectively. On univariate and multivariate analysis, long PSAHL (〉 0.5 months), metastatic disease, high biopsy Gleason scores (〉 8) and high nadir PSA (〉 0.4 ng mL^-1) were all found to be significantly associated with short PFS. Long PSAHL, high nadir PSA and short PSA doubling time (PSADT 〈 2.0 months) were significantly associated with short OS. There were no significant relationships between PSAVd and either PFS or OS. Thus, PSAHL is a promising new independent predictor of survival. Patients with long PSAHL were identified as those at high risk for a relatively short PFS and OS.展开更多
Based on the newest experimentally extracted nuclear density distributions for double-magic nucleus208Pb(Tarbert et al. in Phys Rev Lett 112:242502, 2014),the sensitivity of α-decay half-life to nuclear skin thicknes...Based on the newest experimentally extracted nuclear density distributions for double-magic nucleus208Pb(Tarbert et al. in Phys Rev Lett 112:242502, 2014),the sensitivity of α-decay half-life to nuclear skin thickness is explored in the vicinity of the shell closure region around208 Pb, i.e., isotopes of Z ? 82 and isotones of N ? 126.With the two-parameter Fermi(2PF) density distributions and an analytically derived formula, the α-decay half-life is found to be closely related to the magnitude of nuclear skin thickness. For a decays to the Z ? 82 isotopes, the α-decay half-life is found to decrease with the increasing neutron skin thickness, while the opposite behavior is found for a decays to the N ? 126 isotones. Therefore, it could be a possible way to extract the nuclear skin thickness from measured α-decay half-lives.展开更多
Antibodies are currently the fastest growing class of therapeutic proteins. When antibody fragments are included, there are over thirty-five antibody-based medicines approved for human therapy. Many more antibody and ...Antibodies are currently the fastest growing class of therapeutic proteins. When antibody fragments are included, there are over thirty-five antibody-based medicines approved for human therapy. Many more antibody and antibody-like fragments are being evaluated clinically. Production of antibody fragments can be efficient and their compact size can allows for better tissue extravasation into solid tumors than full antibodies. Unfortunately, a key limitation of antibody fragments for systemic use is their short half-life in circulation. Prolonging their circulation half-life can be accomplished clinically by the covalent conjugation of the antibody fragment to the water-soluble polymer, poly(ethylene glycol) (PEG). Many polymers and strategies are also being pursued to increase antibody fragment half-life.展开更多
The neutrons have been captured by Erbium nuclei which were received by using clinical electron linear accelerator. In this experiment, the possibility of the neutron capture process has been observed because of emitt...The neutrons have been captured by Erbium nuclei which were received by using clinical electron linear accelerator. In this experiment, the possibility of the neutron capture process has been observed because of emitted neutrons appearing in the experimental area. In particular,neutron capture of ^(170)Er nucleus has been observed. After the neutron capture of ^(170)Er nucleus, the unstable ^(171)Er has been formed and decayed into the ^(171)Tm. By using this reaction path, some transition energies of ^(171)Tm obtained from the residual activity measurements and the half-life of ^(171)Er have been determined, and they are in agreement with adopted values in the literature.展开更多
The immune-stromal cell interactions play a key role in health and diseases. In periodontitis, the most prevalent infectious disease in humans, immune cells accumulate in the oral mucosa and promote bone destruction b...The immune-stromal cell interactions play a key role in health and diseases. In periodontitis, the most prevalent infectious disease in humans, immune cells accumulate in the oral mucosa and promote bone destruction by inducing receptor activator of nuclear factor-κB ligand (RANKL) expression in osteogenic cells such as osteoblasts and periodontal ligament cells. However, the detailed mechanism underlying immune–bone cell interactions in periodontitis is not fully understood. Here, we performed single-cell RNAsequencing analysis on mouse periodontal lesions and showed that neutrophil–osteogenic cell crosstalk is involved in periodontitis-induced bone loss. The periodontal lesions displayed marked infiltration of neutrophils, and in silico analyses suggested that the neutrophils interacted with osteogenic cells through cytokine production. Among the cytokines expressed in the periodontal neutrophils, oncostatin M (OSM) potently induced RANKL expression in the primary osteoblasts, and deletion of the OSM receptor in osteogenic cells significantly ameliorated periodontitis-induced bone loss. Epigenomic data analyses identified the OSM-regulated RANKL enhancer region in osteogenic cells, and mice lacking this enhancer showed decreased periodontal bone loss while maintaining physiological bone metabolism. These findings shed light on the role of neutrophils in bone regulation during bacterial infection, highlighting the novel mechanism underlying osteoimmune crosstalk.展开更多
BACKGROUND Glucagon-like peptide-1(GLP1)is an endogenous peptide that regulates blood glucose level.But its susceptibility to rapid metabolic degradation limits its therapeutic use.AIM To prepare GLP1-encapsulated nan...BACKGROUND Glucagon-like peptide-1(GLP1)is an endogenous peptide that regulates blood glucose level.But its susceptibility to rapid metabolic degradation limits its therapeutic use.AIM To prepare GLP1-encapsulated nanosize particle with controlled release property to improve the systemic half-life of GLP1.METHODS GLP1 nanoparticles were prepared by complexation of GLP1 with carbonate apatite nanoparticles(CA NPs).The physicochemical properties of the CA NPs,the effects of GLP1-loaded CA NPs on cell viability,and the systemic bioavailability of GLP1 after CA NPs administration were determined.RESULTS The GLP1-loaded CA NPs was within 200 nm in size and stable in fetal bovine serum.The formulation did not affect the viability of human cell lines suggesting that the accumulation of CA NPs in target tissues is safe.In Sprague Dawley rats,the plasma GLP1 Levels as measured from the GLP1-loaded CA NPs-treated rats,were significantly higher than that of the control rats and free GLP1-treated rats at 1 h post-treatment(P<0.05),and the level remained higher than the other two groups for at least 4 h.CONCLUSION The GLP1-loaded CA NPs improved the plasma half-life of GLP1.The systemic bioavailability of GLP1 is longer than other GLP1 nanoparticles reported to date.展开更多
Background Rumen bacterial groups can affect growth performance,such as average daily gain(ADG),feed intake,and efficiency.The study aimed to investigate the inter-relationship of rumen bacterial composition,rumen fer...Background Rumen bacterial groups can affect growth performance,such as average daily gain(ADG),feed intake,and efficiency.The study aimed to investigate the inter-relationship of rumen bacterial composition,rumen fermentation indicators,serum indicators,and growth performance of Holstein heifer calves with different ADG.Twelve calves were chosen from a trail with 60 calves and divided into higher ADG(HADG,high pre-and post-weaning ADG,n=6)and lower ADG(LADG,low pre-and post-weaning ADG,n=6)groups to investigate differences in bacterial composition and functions and host phenotype.Results During the preweaning period,the relative abundances of propionate producers,including g_norank_f_Butyricicoccaceae,g_Pyramidobacter,and g_norank_f_norank_o_Clostridia_vadin BB60_group,were higher in HADG calves(LDA>2,P<0.05).Enrichment of these bacteria resulted in increased levels of propionate,a gluconeogenic precursor,in preweaning HADG calves(adjusted P<0.05),which consequently raised serum glucose concentrations(adjusted P<0.05).In contrast,the relative abundances of rumen bacteria in post-weaning HADG calves did not exert this effect.Moreover,no significant differences were observed in rumen fermentation parameters and serum indices between the two groups.Conclusions The findings of this study revealed that the preweaning period is the window of opportunity for rumen bacteria to regulate the ADG of calves.展开更多
Femtosecond laser-induced periodic surface structures(LIPSS)have been extensively studied over the past few decades.In particular,the period and groove width of high-spatial-frequency LIPSS(HSFL)is much smaller than t...Femtosecond laser-induced periodic surface structures(LIPSS)have been extensively studied over the past few decades.In particular,the period and groove width of high-spatial-frequency LIPSS(HSFL)is much smaller than the diffraction limit,making it a useful method for efficient nanomanufacturing.However,compared with the low-spatial-frequency LIPSS(LSFL),the structure size of the HSFL is smaller,and it is more easily submerged.Therefore,the formation mechanism of HSFL is complex and has always been a research hotspot in this field.In this study,regular LSFL with a period of 760 nm was fabricated in advance on a silicon surface with two-beam interference using an 800 nm,50 fs femtosecond laser.The ultrafast dynamics of HSFL formation on the silicon surface of prefabricated LSFL under single femtosecond laser pulse irradiation were observed and analyzed for the first time using collinear pump-probe imaging method.In general,the evolution of the surface structure undergoes five sequential stages:the LSFL begins to split,becomes uniform HSFL,degenerates into an irregular LSFL,undergoes secondary splitting into a weakly uniform HSFL,and evolves into an irregular LSFL or is submerged.The results indicate that the local enhancement of the submerged nanocavity,or the nanoplasma,in the prefabricated LSFL ridge led to the splitting of the LSFL,and the thermodynamic effect drove the homogenization of the splitting LSFL,which evolved into HSFL.展开更多
A radioactive nucleus is characterized with an intrinsic half-life. However, for a nuclear species, the half-lives inneutral atoms could be very different from that in highly charged ions. The half-lives of some highl...A radioactive nucleus is characterized with an intrinsic half-life. However, for a nuclear species, the half-lives inneutral atoms could be very different from that in highly charged ions. The half-lives of some highly charged ionshave been directly measured at GSI for multiple motivations[1]. In the same case, the nuclear state(i:e the isomer)may be in the range of several tens of microseconds and their half-live can be measured using isochronous massspectrometry. The J = 8+ isomeric state in 94Ru was chosen to test this method. The half-life of this isomer is71 s [2] in neutral atoms, and the excitation energy is 2.64 MeV. The internal conversion coefficient of this decayin neutral atom is 0.335. So its half-life in the bare nucleus would be modified to be 94.78 s when the internalconversion channel is blocked.展开更多
In this paper,we address the stability of periodic solutions of piecewise smooth periodic differential equations.By studying the Poincarémap,we give a sufficient condition to judge the stability of a periodic sol...In this paper,we address the stability of periodic solutions of piecewise smooth periodic differential equations.By studying the Poincarémap,we give a sufficient condition to judge the stability of a periodic solution.We also present examples of some applications.展开更多
Periodontitis is a common chronic inflammatory disease that causes the periodontal bone destruction and may ultimately result in tooth loss.With the progression of periodontitis,the osteoimmunology microenvironment in...Periodontitis is a common chronic inflammatory disease that causes the periodontal bone destruction and may ultimately result in tooth loss.With the progression of periodontitis,the osteoimmunology microenvironment in periodontitis is damaged and leads to the formation of pathological alveolar bone resorption.CD301b^(+)macrophages are specific to the osteoimmunology microenvironment,and are emerging as vital booster for conducting bone regeneration.However,the key upstream targets of CD301b^(+)macrophages and their potential mechanism in periodontitis remain elusive.In this study,we concentrated on the role of Tim4,a latent upstream regulator of CD301b^(+)macrophages.We first demonstrated that the transcription level of Timd4(gene name of Tim4)in CD301b^(+)macrophages was significantly upregulated compared to CD301b^(-) macrophages via high-throughput RNA sequencing.Moreover,several Tim4-related functions such as apoptotic cell clearance,phagocytosis and engulfment were positively regulated by CD301b^(+)macrophages.The single-cell RNA sequencing analysis subsequently discovered that Cd301b and Timd4 were specifically co-expressed in macrophages.The following flow cytometric analysis indicated that Tim4 positive expression rates in total macrophages shared highly synchronized dynamic changes with the proportions of CD301b^(+)macrophages as periodontitis progressed.Furthermore,the deficiency of Tim4 in mice decreased CD301b^(+)macrophages and eventually magnified alveolar bone resorption in periodontitis.Additionally,Tim4 controlled the p38 MAPK signaling pathway to ultimately mediate CD301b^(+)macrophages phenotype.In a word,Tim4 might regulate CD301b^(+)macrophages through p38 MAPK signaling pathway in periodontitis,which provided new insights into periodontitis immunoregulation as well as help to develop innovative therapeutic targets and treatment strategies for periodontitis.展开更多
Floquet engineering has attracted considerable attention as a promising approach for tuning topological phase transitions.We investigate the effects of high-frequency time-periodic driving in a four-dimensional(4D)top...Floquet engineering has attracted considerable attention as a promising approach for tuning topological phase transitions.We investigate the effects of high-frequency time-periodic driving in a four-dimensional(4D)topological insulator,focusing on topological phase transitions at the off-resonant quasienergy gap.The 4D topological insulator hosts gapless three-dimensional boundary states,characterized by the second Chern number C_(2).We demonstrate that the second Chern number of 4D topological insulators can be modulated by tuning the amplitude of time-periodic driving.This includes transitions from a topological phase with C_(2)=±3 to another topological phase with C_(2)=±1,or to a topological phase with an even second Chern number C_(2)=±2,which is absent in the 4D static system.Finally,the approximation theory in the high-frequency limit further confirms the numerical conclusions.展开更多
The carbon black(CB)is introduced to manufacture CB/graphene oxide(GO)composite material to mitigate limitations of GO as a saturable absorber with the excellent performance in ultrafast fiber lasers.At a central wave...The carbon black(CB)is introduced to manufacture CB/graphene oxide(GO)composite material to mitigate limitations of GO as a saturable absorber with the excellent performance in ultrafast fiber lasers.At a central wavelength of 1555.5 nm,the stable mode-locked pulse with width of 656 fs,repetition rate of 20.16 MHz,and high signal-to-noise ratio of 82.07 dB is experimentally obtained.Additionally,experimental observations for pulsation phenomena of vector biperiodic solitons combining period-1 and period-17,period-2 and period-32,period-3 and period-36 are verified via simulations.展开更多
Periodontitis is a chronic inflammatory and immune reactive disease induced by the subgingival biofilm.The therapeutic effect for susceptible patients is often unsatisfactory due to excessive inflammatory response and...Periodontitis is a chronic inflammatory and immune reactive disease induced by the subgingival biofilm.The therapeutic effect for susceptible patients is often unsatisfactory due to excessive inflammatory response and oxidative stress.Sinensetin(Sin)is a nature polymethoxylated flavonoid with anti-inflammatory and antioxidant activities.Our study aimed to explore the beneficial effect of Sin on periodontitis and the specific molecular mechanisms.We found that Sin attenuated oxidative stress and inflammatory levels of periodontal ligament cells(PDLCs)under inflammatory conditions.Administered Sin to rats with ligation-induced periodontitis models exhibited a protective effect against periodontitis in vivo.By molecular docking,we identified Bach1 as a strong binding target of Sin,and this binding was further verified by cellular thermal displacement assay and immunofluorescence assays.Chromatin immunoprecipitation-quantitative polymerase chain reaction results also revealed that Sin obstructed the binding of Bach1 to the HMOX1 promoter,subsequently upregulating the expression of the key antioxidant factor HO-1.Further functional experiments with Bach1 knocked down and overexpressed verified Bach1 as a key target for Sin to exert its antioxidant effects.Additionally,we demonstrated that Sin prompted the reduction of Bach1 by potentiating the ubiquitination degradation of Bach1,thereby inducing HO-1 expression and inhibiting oxidative stress.Overall,Sin could be a promising drug candidate for the treatment of periodontitis by targeting binding to Bach1.展开更多
Objective To observe the value of cranial ultrasound for perioperative patients with acute severe traumatic brain injury(sTBI).Methods Data of 55 sTBI patients who underwent craniotomy were retrospectively analyzed.Th...Objective To observe the value of cranial ultrasound for perioperative patients with acute severe traumatic brain injury(sTBI).Methods Data of 55 sTBI patients who underwent craniotomy were retrospectively analyzed.The patients were divided into observation group(n=15)and control group(n=40)according to received perioperative cranial ultrasound or not.The general data and surgical data were compared between groups,and ultrasonic data of observation group were analyzed.Results The proportions of good prognosis 1 and 6 months after operation in observation group were both higher than those in control group,while the incidence of cerebral infarction in observation group was lower than that in control group(all P<0.05).No significant difference of general data nor other surgical data was found between groups(all P>0.05).Acute encephalocele occurred in 1 case in observation group during operation,and cranial ultrasound accurately showed the contralateral secondary epidural hematoma.Increased intracranial pressure in different degrees were found in all 15 cases(15/15,100%)in observation group after operation with transcranial color coded Doppler(TCCD)or transcranial Doppler(TCD),while cerebral vascular spasm was observed in 5 cases(5/15,33.33%),among them 4 cases(4/5,80.00%)were diagnosed cerebral infarction based on CT examination.Conclusion Cranial ultrasound could be used to evaluate changes of sTBI in perioperative period and guide adjusting treatment strategy in time,being valuable for reducing risk of postoperative cerebral infarction and improving prognosis.展开更多
Emission of matter-wave jets from a parametrically driven condensate has attracted significant experimental and theoretical attention due to the appealing visual effects and potential metrological applications.In this...Emission of matter-wave jets from a parametrically driven condensate has attracted significant experimental and theoretical attention due to the appealing visual effects and potential metrological applications.In this work,we investigate the collective particle emission from a Bose-Einstein condensate confined in a one-dimensional lattice with periodically modulated interparticle interactions.We give the regimes for discrete modes,and find that the emission can be distinctly suppressed.The configuration induces a broad band,but few particles are ejected due to the interference of the matter waves.We further qualitatively model the emission process and demonstrate the short-time behaviors.This engineering provides a way to manipulate the propagation of particles and the corresponding dynamics of condensates in lattices,and may find application in the dynamical excitation control of other nonequilibrium problems with time-periodic driving.展开更多
The English periodical of Contemporary Social Sciences is an English periodical founded by Sichuan Academy of Social Sciences and is published every two months.It was approved by the National Radio and Television Admi...The English periodical of Contemporary Social Sciences is an English periodical founded by Sichuan Academy of Social Sciences and is published every two months.It was approved by the National Radio and Television Administration of the People’s Republic of China(formerly the State Administration of Press,Publication,Radio,Film and Television of the People’s Republic of China)in March 2016.展开更多
文摘We investigated the potential value of prostate-specific antigen half-life (PSAHL) and decreasing velocity (PSAVd) to predict progression-free survival (PFS) and overall survival (OS) in Chinese patients with prostate cancer. A total of 153 patients treated with hormonal therapy were included in the study. Of these, 78 patients progressed to hormone- refractory prostate cancer (HRPC) and 24 patients died by the end of follow-up. PSAHL was defined as the time during which prostate-specific antigen (PSA) concentration became half of the initial value during the first hormonal therapy. PSAVd reflected the decreasing velocity of PSA during the first hormonal therapy. PFS was defined as the interval from the beginning of hormonal therapy to HRPC. Cox proportional hazards regression analysis was used to evaluate whether PSAHL and PSAVd were significantly associated with PFS and OS. The median PSAHL and PSAVd were 0.50 months and 33.8 ng mL^-1 per month. The median PFS and OS were 22.7 months (95% confidence interval [CI], 22.0-29.6 months) and 43.5 months (95% CI, 37.9-48.4 months), respectively. On univariate and multivariate analysis, long PSAHL (〉 0.5 months), metastatic disease, high biopsy Gleason scores (〉 8) and high nadir PSA (〉 0.4 ng mL^-1) were all found to be significantly associated with short PFS. Long PSAHL, high nadir PSA and short PSA doubling time (PSADT 〈 2.0 months) were significantly associated with short OS. There were no significant relationships between PSAVd and either PFS or OS. Thus, PSAHL is a promising new independent predictor of survival. Patients with long PSAHL were identified as those at high risk for a relatively short PFS and OS.
基金supported by the National Natural Science Foundation of China(Nos.11175085,11235001,11375086,and 11120101005)the 973 Program of China(No.2013CB834400)+1 种基金the Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)the Open Project Program of the State Key Laboratory of Theoretical Physics,Institute of Theoretical Physics,Chinese Academy of Sciences,China(No.Y5KF141CJ1)
文摘Based on the newest experimentally extracted nuclear density distributions for double-magic nucleus208Pb(Tarbert et al. in Phys Rev Lett 112:242502, 2014),the sensitivity of α-decay half-life to nuclear skin thickness is explored in the vicinity of the shell closure region around208 Pb, i.e., isotopes of Z ? 82 and isotones of N ? 126.With the two-parameter Fermi(2PF) density distributions and an analytically derived formula, the α-decay half-life is found to be closely related to the magnitude of nuclear skin thickness. For a decays to the Z ? 82 isotopes, the α-decay half-life is found to decrease with the increasing neutron skin thickness, while the opposite behavior is found for a decays to the N ? 126 isotones. Therefore, it could be a possible way to extract the nuclear skin thickness from measured α-decay half-lives.
文摘Antibodies are currently the fastest growing class of therapeutic proteins. When antibody fragments are included, there are over thirty-five antibody-based medicines approved for human therapy. Many more antibody and antibody-like fragments are being evaluated clinically. Production of antibody fragments can be efficient and their compact size can allows for better tissue extravasation into solid tumors than full antibodies. Unfortunately, a key limitation of antibody fragments for systemic use is their short half-life in circulation. Prolonging their circulation half-life can be accomplished clinically by the covalent conjugation of the antibody fragment to the water-soluble polymer, poly(ethylene glycol) (PEG). Many polymers and strategies are also being pursued to increase antibody fragment half-life.
基金supported by the Sinop University Scientific Research Projects Coordination Unit.Project Number:FEF-1901-14-04,2014
文摘The neutrons have been captured by Erbium nuclei which were received by using clinical electron linear accelerator. In this experiment, the possibility of the neutron capture process has been observed because of emitted neutrons appearing in the experimental area. In particular,neutron capture of ^(170)Er nucleus has been observed. After the neutron capture of ^(170)Er nucleus, the unstable ^(171)Er has been formed and decayed into the ^(171)Tm. By using this reaction path, some transition energies of ^(171)Tm obtained from the residual activity measurements and the half-life of ^(171)Er have been determined, and they are in agreement with adopted values in the literature.
基金supported in part by the Japan Agency for Medical Research and Development (AMED) under grant number JP20ek0410073, JP23ek0410108, JP22ek0410100, AMEDCREST under grant number JP19gm1210008 and AMED-PRIME under grant number JP21gm6310029, the AMED Japan Initiative for World leading Vaccine Research and Development Centers (JP223fa627001)Japan Society for the Promotion of Science (JSPS): Scientific Research S (21H05046), Scientific Research B (21H03104, 22H03195, and 22H02844) and Challenging Research (20K21515 and 21K18254)+3 种基金the JST FOREST Program (JPMJFR2261, JPMJFR205Z)Y.A. was supported by a JSPS Research Fellowship for Young Scientists (23KJ1949)Japanese Society for Immunology (JSI)Kibou Scholarship for Doctoral Students in Immunology。
文摘The immune-stromal cell interactions play a key role in health and diseases. In periodontitis, the most prevalent infectious disease in humans, immune cells accumulate in the oral mucosa and promote bone destruction by inducing receptor activator of nuclear factor-κB ligand (RANKL) expression in osteogenic cells such as osteoblasts and periodontal ligament cells. However, the detailed mechanism underlying immune–bone cell interactions in periodontitis is not fully understood. Here, we performed single-cell RNAsequencing analysis on mouse periodontal lesions and showed that neutrophil–osteogenic cell crosstalk is involved in periodontitis-induced bone loss. The periodontal lesions displayed marked infiltration of neutrophils, and in silico analyses suggested that the neutrophils interacted with osteogenic cells through cytokine production. Among the cytokines expressed in the periodontal neutrophils, oncostatin M (OSM) potently induced RANKL expression in the primary osteoblasts, and deletion of the OSM receptor in osteogenic cells significantly ameliorated periodontitis-induced bone loss. Epigenomic data analyses identified the OSM-regulated RANKL enhancer region in osteogenic cells, and mice lacking this enhancer showed decreased periodontal bone loss while maintaining physiological bone metabolism. These findings shed light on the role of neutrophils in bone regulation during bacterial infection, highlighting the novel mechanism underlying osteoimmune crosstalk.
基金Supported by an FRGS grant from the Ministry of Education,Malaysia,No.FRGS/2/2014/SG05/MUSM/03/1.
文摘BACKGROUND Glucagon-like peptide-1(GLP1)is an endogenous peptide that regulates blood glucose level.But its susceptibility to rapid metabolic degradation limits its therapeutic use.AIM To prepare GLP1-encapsulated nanosize particle with controlled release property to improve the systemic half-life of GLP1.METHODS GLP1 nanoparticles were prepared by complexation of GLP1 with carbonate apatite nanoparticles(CA NPs).The physicochemical properties of the CA NPs,the effects of GLP1-loaded CA NPs on cell viability,and the systemic bioavailability of GLP1 after CA NPs administration were determined.RESULTS The GLP1-loaded CA NPs was within 200 nm in size and stable in fetal bovine serum.The formulation did not affect the viability of human cell lines suggesting that the accumulation of CA NPs in target tissues is safe.In Sprague Dawley rats,the plasma GLP1 Levels as measured from the GLP1-loaded CA NPs-treated rats,were significantly higher than that of the control rats and free GLP1-treated rats at 1 h post-treatment(P<0.05),and the level remained higher than the other two groups for at least 4 h.CONCLUSION The GLP1-loaded CA NPs improved the plasma half-life of GLP1.The systemic bioavailability of GLP1 is longer than other GLP1 nanoparticles reported to date.
基金funded by National Key R&D Program of China(2022YFA1304204)Agricultural Science and Technology Innovation Program(CAAS-ASTIP-2017-FRI-04)Beijing Innovation Consortium of livestock Research System(BAIC05-2023)。
文摘Background Rumen bacterial groups can affect growth performance,such as average daily gain(ADG),feed intake,and efficiency.The study aimed to investigate the inter-relationship of rumen bacterial composition,rumen fermentation indicators,serum indicators,and growth performance of Holstein heifer calves with different ADG.Twelve calves were chosen from a trail with 60 calves and divided into higher ADG(HADG,high pre-and post-weaning ADG,n=6)and lower ADG(LADG,low pre-and post-weaning ADG,n=6)groups to investigate differences in bacterial composition and functions and host phenotype.Results During the preweaning period,the relative abundances of propionate producers,including g_norank_f_Butyricicoccaceae,g_Pyramidobacter,and g_norank_f_norank_o_Clostridia_vadin BB60_group,were higher in HADG calves(LDA>2,P<0.05).Enrichment of these bacteria resulted in increased levels of propionate,a gluconeogenic precursor,in preweaning HADG calves(adjusted P<0.05),which consequently raised serum glucose concentrations(adjusted P<0.05).In contrast,the relative abundances of rumen bacteria in post-weaning HADG calves did not exert this effect.Moreover,no significant differences were observed in rumen fermentation parameters and serum indices between the two groups.Conclusions The findings of this study revealed that the preweaning period is the window of opportunity for rumen bacteria to regulate the ADG of calves.
基金supports from the National Natural Science Foundation of China(12074123,12174108)the Foundation of‘Manufacturing beyond limits’of Shanghai‘Talent Program'of Henan Academy of Sciences.
文摘Femtosecond laser-induced periodic surface structures(LIPSS)have been extensively studied over the past few decades.In particular,the period and groove width of high-spatial-frequency LIPSS(HSFL)is much smaller than the diffraction limit,making it a useful method for efficient nanomanufacturing.However,compared with the low-spatial-frequency LIPSS(LSFL),the structure size of the HSFL is smaller,and it is more easily submerged.Therefore,the formation mechanism of HSFL is complex and has always been a research hotspot in this field.In this study,regular LSFL with a period of 760 nm was fabricated in advance on a silicon surface with two-beam interference using an 800 nm,50 fs femtosecond laser.The ultrafast dynamics of HSFL formation on the silicon surface of prefabricated LSFL under single femtosecond laser pulse irradiation were observed and analyzed for the first time using collinear pump-probe imaging method.In general,the evolution of the surface structure undergoes five sequential stages:the LSFL begins to split,becomes uniform HSFL,degenerates into an irregular LSFL,undergoes secondary splitting into a weakly uniform HSFL,and evolves into an irregular LSFL or is submerged.The results indicate that the local enhancement of the submerged nanocavity,or the nanoplasma,in the prefabricated LSFL ridge led to the splitting of the LSFL,and the thermodynamic effect drove the homogenization of the splitting LSFL,which evolved into HSFL.
文摘A radioactive nucleus is characterized with an intrinsic half-life. However, for a nuclear species, the half-lives inneutral atoms could be very different from that in highly charged ions. The half-lives of some highly charged ionshave been directly measured at GSI for multiple motivations[1]. In the same case, the nuclear state(i:e the isomer)may be in the range of several tens of microseconds and their half-live can be measured using isochronous massspectrometry. The J = 8+ isomeric state in 94Ru was chosen to test this method. The half-life of this isomer is71 s [2] in neutral atoms, and the excitation energy is 2.64 MeV. The internal conversion coefficient of this decayin neutral atom is 0.335. So its half-life in the bare nucleus would be modified to be 94.78 s when the internalconversion channel is blocked.
文摘In this paper,we address the stability of periodic solutions of piecewise smooth periodic differential equations.By studying the Poincarémap,we give a sufficient condition to judge the stability of a periodic solution.We also present examples of some applications.
基金supported by the National Natural Science Foundation of China(82025011,82220108018,82270981,82100975,82201078)the National Key R&D Program of China(2021YFC2400405)+1 种基金the Fundamental Research Funds for the Central Universities(2042023kfyq022042022dx0003).
文摘Periodontitis is a common chronic inflammatory disease that causes the periodontal bone destruction and may ultimately result in tooth loss.With the progression of periodontitis,the osteoimmunology microenvironment in periodontitis is damaged and leads to the formation of pathological alveolar bone resorption.CD301b^(+)macrophages are specific to the osteoimmunology microenvironment,and are emerging as vital booster for conducting bone regeneration.However,the key upstream targets of CD301b^(+)macrophages and their potential mechanism in periodontitis remain elusive.In this study,we concentrated on the role of Tim4,a latent upstream regulator of CD301b^(+)macrophages.We first demonstrated that the transcription level of Timd4(gene name of Tim4)in CD301b^(+)macrophages was significantly upregulated compared to CD301b^(-) macrophages via high-throughput RNA sequencing.Moreover,several Tim4-related functions such as apoptotic cell clearance,phagocytosis and engulfment were positively regulated by CD301b^(+)macrophages.The single-cell RNA sequencing analysis subsequently discovered that Cd301b and Timd4 were specifically co-expressed in macrophages.The following flow cytometric analysis indicated that Tim4 positive expression rates in total macrophages shared highly synchronized dynamic changes with the proportions of CD301b^(+)macrophages as periodontitis progressed.Furthermore,the deficiency of Tim4 in mice decreased CD301b^(+)macrophages and eventually magnified alveolar bone resorption in periodontitis.Additionally,Tim4 controlled the p38 MAPK signaling pathway to ultimately mediate CD301b^(+)macrophages phenotype.In a word,Tim4 might regulate CD301b^(+)macrophages through p38 MAPK signaling pathway in periodontitis,which provided new insights into periodontitis immunoregulation as well as help to develop innovative therapeutic targets and treatment strategies for periodontitis.
基金supported by the National Natural Science Foundation of China(Grant Nos.12074107 and 12304195)the Program of Outstanding Young and Middle-Aged Scientific and Technological Innovation Team of Colleges and Universities in Hubei Province(Grant No.T2020001)+2 种基金the Innovation Group Project of the Natural Science Foundation of Hubei Province of China(Grant No.2022CFA012)the Chutian Scholars Program in Hubei Province,the Postdoctoral Fellowship Program of CPSF(Grant No.GZC20230751)the Postdoctoral Innovation Research Program in Hubei Province(Grant No.351342)。
文摘Floquet engineering has attracted considerable attention as a promising approach for tuning topological phase transitions.We investigate the effects of high-frequency time-periodic driving in a four-dimensional(4D)topological insulator,focusing on topological phase transitions at the off-resonant quasienergy gap.The 4D topological insulator hosts gapless three-dimensional boundary states,characterized by the second Chern number C_(2).We demonstrate that the second Chern number of 4D topological insulators can be modulated by tuning the amplitude of time-periodic driving.This includes transitions from a topological phase with C_(2)=±3 to another topological phase with C_(2)=±1,or to a topological phase with an even second Chern number C_(2)=±2,which is absent in the 4D static system.Finally,the approximation theory in the high-frequency limit further confirms the numerical conclusions.
基金supported by the National Natural Science Foundation of China(Grant Nos.12261131495 and 12475008)the Scientific Research and Developed Fund of Zhejiang A&F University(Grant No.2021FR0009).
文摘The carbon black(CB)is introduced to manufacture CB/graphene oxide(GO)composite material to mitigate limitations of GO as a saturable absorber with the excellent performance in ultrafast fiber lasers.At a central wavelength of 1555.5 nm,the stable mode-locked pulse with width of 656 fs,repetition rate of 20.16 MHz,and high signal-to-noise ratio of 82.07 dB is experimentally obtained.Additionally,experimental observations for pulsation phenomena of vector biperiodic solitons combining period-1 and period-17,period-2 and period-32,period-3 and period-36 are verified via simulations.
基金supported by National Natural Science Foundation of China(82001050,82173871)Natural Science Foundation of Jiangsu Province(BK20190135)+2 种基金Fundamental Research Funds for the Central Universities(021414380503)“3456”Cultivation Program for Junior Talents of Nanjing Stomatological Hospital,Medical School of Nanjing University(0222R209)Jiangsu Provincial Medical Key Discipline Cultivation Unit(JSDW202246).
文摘Periodontitis is a chronic inflammatory and immune reactive disease induced by the subgingival biofilm.The therapeutic effect for susceptible patients is often unsatisfactory due to excessive inflammatory response and oxidative stress.Sinensetin(Sin)is a nature polymethoxylated flavonoid with anti-inflammatory and antioxidant activities.Our study aimed to explore the beneficial effect of Sin on periodontitis and the specific molecular mechanisms.We found that Sin attenuated oxidative stress and inflammatory levels of periodontal ligament cells(PDLCs)under inflammatory conditions.Administered Sin to rats with ligation-induced periodontitis models exhibited a protective effect against periodontitis in vivo.By molecular docking,we identified Bach1 as a strong binding target of Sin,and this binding was further verified by cellular thermal displacement assay and immunofluorescence assays.Chromatin immunoprecipitation-quantitative polymerase chain reaction results also revealed that Sin obstructed the binding of Bach1 to the HMOX1 promoter,subsequently upregulating the expression of the key antioxidant factor HO-1.Further functional experiments with Bach1 knocked down and overexpressed verified Bach1 as a key target for Sin to exert its antioxidant effects.Additionally,we demonstrated that Sin prompted the reduction of Bach1 by potentiating the ubiquitination degradation of Bach1,thereby inducing HO-1 expression and inhibiting oxidative stress.Overall,Sin could be a promising drug candidate for the treatment of periodontitis by targeting binding to Bach1.
文摘Objective To observe the value of cranial ultrasound for perioperative patients with acute severe traumatic brain injury(sTBI).Methods Data of 55 sTBI patients who underwent craniotomy were retrospectively analyzed.The patients were divided into observation group(n=15)and control group(n=40)according to received perioperative cranial ultrasound or not.The general data and surgical data were compared between groups,and ultrasonic data of observation group were analyzed.Results The proportions of good prognosis 1 and 6 months after operation in observation group were both higher than those in control group,while the incidence of cerebral infarction in observation group was lower than that in control group(all P<0.05).No significant difference of general data nor other surgical data was found between groups(all P>0.05).Acute encephalocele occurred in 1 case in observation group during operation,and cranial ultrasound accurately showed the contralateral secondary epidural hematoma.Increased intracranial pressure in different degrees were found in all 15 cases(15/15,100%)in observation group after operation with transcranial color coded Doppler(TCCD)or transcranial Doppler(TCD),while cerebral vascular spasm was observed in 5 cases(5/15,33.33%),among them 4 cases(4/5,80.00%)were diagnosed cerebral infarction based on CT examination.Conclusion Cranial ultrasound could be used to evaluate changes of sTBI in perioperative period and guide adjusting treatment strategy in time,being valuable for reducing risk of postoperative cerebral infarction and improving prognosis.
基金supported by the China Scholarship Council(Grant No.201906130092)the Natural Science Research Start-up Foundation of Recruiting Talents of Nanjing University of Posts and Telecommunications(Grant No.NY223065)the Natural Science Foundation of Sichuan Province(Grant No.2023NSFSC1330).
文摘Emission of matter-wave jets from a parametrically driven condensate has attracted significant experimental and theoretical attention due to the appealing visual effects and potential metrological applications.In this work,we investigate the collective particle emission from a Bose-Einstein condensate confined in a one-dimensional lattice with periodically modulated interparticle interactions.We give the regimes for discrete modes,and find that the emission can be distinctly suppressed.The configuration induces a broad band,but few particles are ejected due to the interference of the matter waves.We further qualitatively model the emission process and demonstrate the short-time behaviors.This engineering provides a way to manipulate the propagation of particles and the corresponding dynamics of condensates in lattices,and may find application in the dynamical excitation control of other nonequilibrium problems with time-periodic driving.
文摘The English periodical of Contemporary Social Sciences is an English periodical founded by Sichuan Academy of Social Sciences and is published every two months.It was approved by the National Radio and Television Administration of the People’s Republic of China(formerly the State Administration of Press,Publication,Radio,Film and Television of the People’s Republic of China)in March 2016.