Based on Hamiltonian formulation, this paper proposes a design approach to nonlinear feedback excitation control of synchronous generators with steam valve control, disturbances and unknown parameters. It is shown tha...Based on Hamiltonian formulation, this paper proposes a design approach to nonlinear feedback excitation control of synchronous generators with steam valve control, disturbances and unknown parameters. It is shown that the dynamics of the synchronous generators can be expressed as a dissipative Hamiltonian system, based on which an adaptive H-infinity controller is then designed for the systems by using the structure properties of dissipative Hamiltonian systems. Simulations show that the controller obtained in this paper is very effective.展开更多
Designed for planetary exploration,a spherical mobile robot BHQ-1 was briefly introduced.The mo-tion model of BHQ-1 was established and quasi-velocities were introduced to simplify some dynamic quan-tities.Based on th...Designed for planetary exploration,a spherical mobile robot BHQ-1 was briefly introduced.The mo-tion model of BHQ-1 was established and quasi-velocities were introduced to simplify some dynamic quan-tities.Based on the model,the time- and energy-based optimal trajectory of BHQ-1 was planned withHamiltonian function. The effects of three key coefficients on the shape and direction of the planned tra-jectory were discussed by simulations.Experimental result of the robot ability in avoiding an obstacle waspresented to validate the trajectory planning method.展开更多
Hamiltonian function is firstly constituted for solving optimal control. When character of controlled object is known,Hamiltonian function is determined by performance index. In this paper,by constituting Hamiltonian ...Hamiltonian function is firstly constituted for solving optimal control. When character of controlled object is known,Hamiltonian function is determined by performance index. In this paper,by constituting Hamiltonian function and solving optimal control of a sort of performance index,we can understand optimal control theory and apply optimal control method better.展开更多
The stabilization and H∞ control of nonlinear differential algebraic systems (NDAS) are investigated using the Hamiltonian function method. Firstly, we put forward a novel dissipative Hamiltonian realization (DHR...The stabilization and H∞ control of nonlinear differential algebraic systems (NDAS) are investigated using the Hamiltonian function method. Firstly, we put forward a novel dissipative Hamiltonian realization (DHR) structure and give the condition to complete the Hamiltonian realization. Then, based on the DHR, we present a criterion for the stability analysis of NDAS and construct a stabilization controller for NDAS in absence of disturbances. Finally, for NDAS in presence of disturbances, the L2 gain is analyzed via generalized Hamilton-Jacobi inequality and an H∞ control strategy is constructed. The proposed stabilization and robust controller can effectively take advantage of the structural characteristics of NDAS and is simple in form.展开更多
This paper studies simultaneous stabilization of a class of nonlinear descriptor systems via the Hamiltonian function method. Firstly, based on the Hamiltonian realization of the nonlinear descriptor systems and a sui...This paper studies simultaneous stabilization of a class of nonlinear descriptor systems via the Hamiltonian function method. Firstly, based on the Hamiltonian realization of the nonlinear descriptor systems and a suitable output feedback, two nonlinear descriptor systems are equivalently transformed into two nonlinear Hamiltonian differential-algebraic systems by a nonsingular transformation, and a sufficient condition for two closed-loop systems to be impulse-free is given. The two systems are then combined to generate an augmented dissipative Hamiltonian differential-algebraic system by using the system-augmentation technique, based on which a simultaneous stabilization controller and a robust simultaneous stabilization controller are designed for the two systems. Secondly, the case of more than two nonlinear descriptor systems is investigated, and two new results are proposed for the simultaneous stabilization and robust simultaneous stabilization, respectively. Finally, an illustrative example is studied by using the results proposed in this paper, and simulations show that the simultaneous stabilization controllers obtained in this paper work very well.展开更多
The 3-dimensional couple equations of magneto-electro-elastic structures are derived under Hamiltonian system based on the Hamilton principle. The problem of single sort of variables is converted into the problem of d...The 3-dimensional couple equations of magneto-electro-elastic structures are derived under Hamiltonian system based on the Hamilton principle. The problem of single sort of variables is converted into the problem of double sorts of variables, and the Hamilton canonical equations are established. The 3-dimensional problem of magneto-electro-elastic structure which is investigated in Euclidean space commonly is converted into symplectic system. At the same time the Lagrange system is converted into Hamiltonian system. As an example, the dynamic characteristics of the simply supported functionally graded magneto-electro-elastic material (FGMM) plate and pipe are investigated. Finally, the problem is solved by symplectic algorithm. The results show that the physical quantities of displacement, electric potential and magnetic potential etc. change continuously at the interfaces between layers under the transverse pressure while some other physical quantities such as the stress, electric and magnetic displacement are not continuous. The dynamic stiffness is increased by the piezoelectric effect while decreased by the piezomagnetic effect.展开更多
This paper deals with a class of quadratic Hamiltonian systems with quadratic perturbation. The authors prove that if the first order Melnikov function M1 (h) 0 and the second order Melnikov function M2(h) 0, then...This paper deals with a class of quadratic Hamiltonian systems with quadratic perturbation. The authors prove that if the first order Melnikov function M1 (h) 0 and the second order Melnikov function M2(h) 0, then the origin of the Hamiltonian system with small perturbation is a center.展开更多
This paper concerns the development and application of the Hamiltonian function which is the sum of kinetic energy and potential energy of the system. Two dimensional water wave equations for irrotational, incompressi...This paper concerns the development and application of the Hamiltonian function which is the sum of kinetic energy and potential energy of the system. Two dimensional water wave equations for irrotational, incompressible, inviscid fluid have been constructed in cartesian coordinates and also in cylindrical coordinates. Then Lagrangian function within a certain flow region is expanded under the assumption that the dispersion μ and the nonlinearity ε satisfied . Using Hamilton’s principle for water wave evolution Hamiltonian formulation is derived. It is obvious that the motion of the system is conservative. Then Hamilton’s canonical equation of motion is also derived.展开更多
In this paper, we investigate nonlinear Hamiltonian elliptic system {-△u+b(x)· u+(V(x)+τ)u=K(x)g(v) in R^N,-△u-b(x)· v+(V(x)+τ)v=K(x)f(u) in R^N,u(x)→ and v(x)→0 as |x|...In this paper, we investigate nonlinear Hamiltonian elliptic system {-△u+b(x)· u+(V(x)+τ)u=K(x)g(v) in R^N,-△u-b(x)· v+(V(x)+τ)v=K(x)f(u) in R^N,u(x)→ and v(x)→0 as |x|→∞2,where N ≥ 3, τ 〉 0 is a positive parameter and V, K are nonnegative continuous functions,f and g are both superlinear at 0 with a quasicritical growth at infinity. By establishing avariational setting, the existence of ground state solutions is obtained.展开更多
We derive a Hamiltonian formulation for two-dimensional nonlinear long waves between two bodies of immiscible fluid with a periodic bottom. From the formulation and using the Hamiltonian perturbation theory, we obtain...We derive a Hamiltonian formulation for two-dimensional nonlinear long waves between two bodies of immiscible fluid with a periodic bottom. From the formulation and using the Hamiltonian perturbation theory, we obtain effective Boussinesq equations that describe the motion of bidirectional long waves and unidirectional equations that are similar to the KdV equation for the case in which the bottom possesses short length scale. The computations for these results are performed in the framework of an asymptotic analysis of multiple scale operators.展开更多
An analytical method for predicting chaos in perturbed planar non Hamiltonian integrable systems with slowly varying parameters was developed. Based on the analysis of the geometric structure of unperturbed systems, ...An analytical method for predicting chaos in perturbed planar non Hamiltonian integrable systems with slowly varying parameters was developed. Based on the analysis of the geometric structure of unperturbed systems, the condition of transversely homoclinic intersection was given. The generalized Melnikov function of the perturbed system was found by applying the theorem on the differentiability of ordinary differential equation solutions with respect to parameters.展开更多
This paper addresses the problem of robust adaptive control for robotic systems with model uncertainty and input time-varying delay. The Hamiltonian method is applied to develop the stabilization results of the roboti...This paper addresses the problem of robust adaptive control for robotic systems with model uncertainty and input time-varying delay. The Hamiltonian method is applied to develop the stabilization results of the robotic systems. Firstly, with the idea of shaping potential energy and the pre-feedback skill, the n degree-of-freedom(DOF) uncertain robotic systems are realized as an augmented dissipative Hamiltonian formulation with delay.Secondly, based on the obtained Hamiltonian system formulation and by using of the Lyapunov-Krasovskii(L-K) functional method, an adaptive controller is designed to show that the robotic systems can be asymptotically stabilized depending on the input delay. Meanwhile, some sufficient conditions are spelt out to guarantee the rationality and validity of the proposed control law. Finally, study of an illustrative example with simulations shows that the controller obtained in this paper works very well in handling uncertainties and input delay in the robotic systems.展开更多
Economic development has caused a lot of environmental problems,in turn,environmental pollution restricts economic development.Considering the influence of wind direction and speed,temperature and humidity on pollutan...Economic development has caused a lot of environmental problems,in turn,environmental pollution restricts economic development.Considering the influence of wind direction and speed,temperature and humidity on pollutants,as well as the influence of epidemic,war and exchange rate on economic development.In this paper,we develop a stochastic economic-environment model with pollution control strategies.Furthermore,sufficient and necessary conditions for the near-optimality are established.Finally,we perform some numerical simulations to demonstrate the correctness of the theoretical results,which shows that some control strategies could decrease the environmental pollution,and therefore,could alleviate economic losses caused by environmental pollution.展开更多
Staring from a new spectral problem,a hierarchy of the generalized Kaup-Newell soliton equations is derived.By employing the trace identity their Hamiltonian structures are also generated.Then,the generalized Kaup-New...Staring from a new spectral problem,a hierarchy of the generalized Kaup-Newell soliton equations is derived.By employing the trace identity their Hamiltonian structures are also generated.Then,the generalized Kaup-Newell soliton equations are decomposed into two systems of ordinary differential equations.The Abel-Jacobi coordinates are introduced to straighten the flows,from which the algebro-geometric solutions of the generalized KaupNewell soliton equations are obtained in terms of the Riemann theta functions.展开更多
基金This work was supported by the National Natural Science Foundation of China (No.G60474001) the Research Fund for Doctoral Program of Chinese Higher Education (No.G20040422059).
文摘Based on Hamiltonian formulation, this paper proposes a design approach to nonlinear feedback excitation control of synchronous generators with steam valve control, disturbances and unknown parameters. It is shown that the dynamics of the synchronous generators can be expressed as a dissipative Hamiltonian system, based on which an adaptive H-infinity controller is then designed for the systems by using the structure properties of dissipative Hamiltonian systems. Simulations show that the controller obtained in this paper is very effective.
基金the National Natural Science Foundation of China(No.50705003)the National High Technology Research and Development Programme of China(No.2007AA04Z252)
文摘Designed for planetary exploration,a spherical mobile robot BHQ-1 was briefly introduced.The mo-tion model of BHQ-1 was established and quasi-velocities were introduced to simplify some dynamic quan-tities.Based on the model,the time- and energy-based optimal trajectory of BHQ-1 was planned withHamiltonian function. The effects of three key coefficients on the shape and direction of the planned tra-jectory were discussed by simulations.Experimental result of the robot ability in avoiding an obstacle waspresented to validate the trajectory planning method.
文摘Hamiltonian function is firstly constituted for solving optimal control. When character of controlled object is known,Hamiltonian function is determined by performance index. In this paper,by constituting Hamiltonian function and solving optimal control of a sort of performance index,we can understand optimal control theory and apply optimal control method better.
基金the National Natural Science Foundation of China (Grant Nos. 69774011 and 60433050).
文摘The stabilization and H∞ control of nonlinear differential algebraic systems (NDAS) are investigated using the Hamiltonian function method. Firstly, we put forward a novel dissipative Hamiltonian realization (DHR) structure and give the condition to complete the Hamiltonian realization. Then, based on the DHR, we present a criterion for the stability analysis of NDAS and construct a stabilization controller for NDAS in absence of disturbances. Finally, for NDAS in presence of disturbances, the L2 gain is analyzed via generalized Hamilton-Jacobi inequality and an H∞ control strategy is constructed. The proposed stabilization and robust controller can effectively take advantage of the structural characteristics of NDAS and is simple in form.
基金Supported by the National Natural Science Foundation of China (Grant No. 60774009)the Natural Science Foundation of Shandong Province(Grant No. Y2006G10)the Research Fund for the Doctoral Program of Chinese Higher Education (Grant No. 200804220028)
文摘This paper studies simultaneous stabilization of a class of nonlinear descriptor systems via the Hamiltonian function method. Firstly, based on the Hamiltonian realization of the nonlinear descriptor systems and a suitable output feedback, two nonlinear descriptor systems are equivalently transformed into two nonlinear Hamiltonian differential-algebraic systems by a nonsingular transformation, and a sufficient condition for two closed-loop systems to be impulse-free is given. The two systems are then combined to generate an augmented dissipative Hamiltonian differential-algebraic system by using the system-augmentation technique, based on which a simultaneous stabilization controller and a robust simultaneous stabilization controller are designed for the two systems. Secondly, the case of more than two nonlinear descriptor systems is investigated, and two new results are proposed for the simultaneous stabilization and robust simultaneous stabilization, respectively. Finally, an illustrative example is studied by using the results proposed in this paper, and simulations show that the simultaneous stabilization controllers obtained in this paper work very well.
文摘The 3-dimensional couple equations of magneto-electro-elastic structures are derived under Hamiltonian system based on the Hamilton principle. The problem of single sort of variables is converted into the problem of double sorts of variables, and the Hamilton canonical equations are established. The 3-dimensional problem of magneto-electro-elastic structure which is investigated in Euclidean space commonly is converted into symplectic system. At the same time the Lagrange system is converted into Hamiltonian system. As an example, the dynamic characteristics of the simply supported functionally graded magneto-electro-elastic material (FGMM) plate and pipe are investigated. Finally, the problem is solved by symplectic algorithm. The results show that the physical quantities of displacement, electric potential and magnetic potential etc. change continuously at the interfaces between layers under the transverse pressure while some other physical quantities such as the stress, electric and magnetic displacement are not continuous. The dynamic stiffness is increased by the piezoelectric effect while decreased by the piezomagnetic effect.
基金This work is supported by NNSF of China (19531070)
文摘This paper deals with a class of quadratic Hamiltonian systems with quadratic perturbation. The authors prove that if the first order Melnikov function M1 (h) 0 and the second order Melnikov function M2(h) 0, then the origin of the Hamiltonian system with small perturbation is a center.
文摘This paper concerns the development and application of the Hamiltonian function which is the sum of kinetic energy and potential energy of the system. Two dimensional water wave equations for irrotational, incompressible, inviscid fluid have been constructed in cartesian coordinates and also in cylindrical coordinates. Then Lagrangian function within a certain flow region is expanded under the assumption that the dispersion μ and the nonlinearity ε satisfied . Using Hamilton’s principle for water wave evolution Hamiltonian formulation is derived. It is obvious that the motion of the system is conservative. Then Hamilton’s canonical equation of motion is also derived.
基金partially supported by the Honghe University Doctoral Research Program(XJ17B11)Yunnan Province Applied Basic Research for Youthsthe Yunnan Province Local University(Part)Basic Research Joint Project(2017FH001-013)
文摘In this paper, we investigate nonlinear Hamiltonian elliptic system {-△u+b(x)· u+(V(x)+τ)u=K(x)g(v) in R^N,-△u-b(x)· v+(V(x)+τ)v=K(x)f(u) in R^N,u(x)→ and v(x)→0 as |x|→∞2,where N ≥ 3, τ 〉 0 is a positive parameter and V, K are nonnegative continuous functions,f and g are both superlinear at 0 with a quasicritical growth at infinity. By establishing avariational setting, the existence of ground state solutions is obtained.
文摘We derive a Hamiltonian formulation for two-dimensional nonlinear long waves between two bodies of immiscible fluid with a periodic bottom. From the formulation and using the Hamiltonian perturbation theory, we obtain effective Boussinesq equations that describe the motion of bidirectional long waves and unidirectional equations that are similar to the KdV equation for the case in which the bottom possesses short length scale. The computations for these results are performed in the framework of an asymptotic analysis of multiple scale operators.
文摘An analytical method for predicting chaos in perturbed planar non Hamiltonian integrable systems with slowly varying parameters was developed. Based on the analysis of the geometric structure of unperturbed systems, the condition of transversely homoclinic intersection was given. The generalized Melnikov function of the perturbed system was found by applying the theorem on the differentiability of ordinary differential equation solutions with respect to parameters.
基金supported by the National Natural Science Foundation of China(61703232)the Natural Science Foundation of Shandong Province(ZR2017MF068,ZR2017QF013)
文摘This paper addresses the problem of robust adaptive control for robotic systems with model uncertainty and input time-varying delay. The Hamiltonian method is applied to develop the stabilization results of the robotic systems. Firstly, with the idea of shaping potential energy and the pre-feedback skill, the n degree-of-freedom(DOF) uncertain robotic systems are realized as an augmented dissipative Hamiltonian formulation with delay.Secondly, based on the obtained Hamiltonian system formulation and by using of the Lyapunov-Krasovskii(L-K) functional method, an adaptive controller is designed to show that the robotic systems can be asymptotically stabilized depending on the input delay. Meanwhile, some sufficient conditions are spelt out to guarantee the rationality and validity of the proposed control law. Finally, study of an illustrative example with simulations shows that the controller obtained in this paper works very well in handling uncertainties and input delay in the robotic systems.
基金supported by the National Natural Science Foundation of China(12071407,12171193)the Natural Science Foundation of Hubei Province(2024AFB170)。
文摘Economic development has caused a lot of environmental problems,in turn,environmental pollution restricts economic development.Considering the influence of wind direction and speed,temperature and humidity on pollutants,as well as the influence of epidemic,war and exchange rate on economic development.In this paper,we develop a stochastic economic-environment model with pollution control strategies.Furthermore,sufficient and necessary conditions for the near-optimality are established.Finally,we perform some numerical simulations to demonstrate the correctness of the theoretical results,which shows that some control strategies could decrease the environmental pollution,and therefore,could alleviate economic losses caused by environmental pollution.
基金Supported by the Natural Science Foundation of China(Grant Nos.11547175,11271008)Supported by the Science and Technology Department of Henan Province(No.182102310978)Supported by the Aid Project for the Mainstay Young Teachers in Henan Provincial Institutions of Higher Education of China(Grant Nos.2017GGJS145,2014GGJS-195)
文摘Staring from a new spectral problem,a hierarchy of the generalized Kaup-Newell soliton equations is derived.By employing the trace identity their Hamiltonian structures are also generated.Then,the generalized Kaup-Newell soliton equations are decomposed into two systems of ordinary differential equations.The Abel-Jacobi coordinates are introduced to straighten the flows,from which the algebro-geometric solutions of the generalized KaupNewell soliton equations are obtained in terms of the Riemann theta functions.