Background: In Africa, hemophilia is underdiagnosed and carriers have long been considered free from bleeding symptoms. However, recent research has begun to reveal hemostatic abnormalities and bleeding manifestations...Background: In Africa, hemophilia is underdiagnosed and carriers have long been considered free from bleeding symptoms. However, recent research has begun to reveal hemostatic abnormalities and bleeding manifestations in carriers of hemophilia A, particularly due to excessive inactivation of normal X chromosomes. Objective: To describe the bleeding symptoms and hemostatic abnormalities in carriers of hemophilia A (HA) in Benin. Methods: This study was conducted as a prospective cross-sectional investigation between April 2021 to March 2022. The study population consisted of identified through pedigrees of persons with hemophilia A being treated in various hospitals in Benin. Data were collected through interviews conducted by trained physician and each carrier underwent a biological workup. Results: A total of 71 hemophilia A carriers were included and 38 of whom were obligatory carriers. Thirty-one carriers (43.7%) reported abnormal bleeding symptoms. Menorrhagia has (71%) being the most important manifestation, followed by bleeding during or after childbirth (45.2%). Among the 71 carriers, 45 were of reproductive age. Of whom 22 (48.8%) had a Higham score exceeding 100. Activated partial thromboplastin time was prolonged in 7 carriers (9.9%). The mean activity factor VIII:C (FVIII:C) levels were 68.8 ± 34.9 IU/dL. The average FVIII:C level in obligatory carriers was 56.9% and among potential carriers, the average FVIII:C level was higher at 80.4%. However twelve female carriers (16.9%) had FVIII:C levels < 40%. The FVIII:C/FvWAg ratio was below 0.7 in 73.2% of female drivers. Obligatory carriers (p = 0.00003) and FVIII;C/FvWAg ratio = 0.003) were statistically associated with abnormal bleeding symptoms, while blood group O (p = 0.0002) and FVIII/FvWAg ratio = 0.0016) were associated with a higher risk of menorrhagia. Conclusion: In Benin, carriers of haemophilia A present bleeding symptoms and haemostatic abnormalities. Further studies on a larger number of carriers are needed to better characterize and manage these patients.展开更多
BACKGROUND Acquired hemophilia A (AHA) is a rare and potentially severe bleeding disordercaused by circulating autoantibodies against factor Ⅷ (FⅧ). In approximately50% of the patients, the condition is associated w...BACKGROUND Acquired hemophilia A (AHA) is a rare and potentially severe bleeding disordercaused by circulating autoantibodies against factor Ⅷ (FⅧ). In approximately50% of the patients, the condition is associated with autoimmune diseases,cancers, medication use, pregnancy, and the post-partum period. Bullous pemphigoid(BP) is a chronic autoimmune subepidermal blistering disease associatedwith tissue-bound and circulating autoantibodies against BP antigens 180 (BP180)and 230 (BP230). AHA-associated BP has a high mortality rate;hence, the understandingof this disease must improve.CASE SUMMARY A 69-year-old man presented with erythema, blisters, blood blisters, and crustsaccompanied by severe pruritus for more than 20 days, and ecchymosis andswelling on his left upper arm for 3 days. Pathological examination revealed asubepidermal blister that contained eosinophils. Laboratory tests showed that theBP180 autoantibody levels had increased, isolated activated partial thromboplastintime was notably prolonged (115.6 s), and coagulation FⅧ activity wasextremely low (< 1.0%). Furthermore, the FⅧ inhibitor titer had greatlyincreased (59.2 Bethesda units). Therefore, the patient was diagnosed as having BP associated with AHA, prescribed 0.05% topical halometasone cream, and transferred to a higher-level hospitalfor effective treatment;however, he died after 2 days.CONCLUSION AHA associated BP is rare, dangerous, and has a high mortality rate. Therefore, its timely diagnosis and effectivetreatment are necessary.展开更多
Objective:Hemophilia carriers(HCs),who are heterozygous for mutations in the clotting factor VIII/clotting factor IX gene(F8 or F9),may have a wide range of clotting factor levels,from very low,similar to afflicted ma...Objective:Hemophilia carriers(HCs),who are heterozygous for mutations in the clotting factor VIII/clotting factor IX gene(F8 or F9),may have a wide range of clotting factor levels,from very low,similar to afflicted males,to the upper limit of normal,and may experience mental health issues.The purpose of this study was to provide genetic information on mothers of hemophilia patients and to understand the clotting factor activity and phenotype of HCs.Additionally,we aimed to investigate the mental health status of HCs in China.Methods:A total of 127 hemophilia mothers,including 93 hemophilia A(HA)mothers and 34 hemophilia B(HB)mothers,were enrolled in this study.Long distance PCR,multiplex PCR,and Sanger sequencing were used to analyze mutations in F8 or F9.Coagulation factor activity was detected by a one-stage clotting assay.The Symptom Checklist 90(SCL-90,China/Mandarin version)was given to HCs at the same time to assess their mental health.Results:A total of 90.6%of hemophilia mothers were diagnosed genetically as carriers,with inversion in intron 22 and missense mutations being the most common mutation types in HA and HB carriers,respectively.The median clotting factor level in carriers was 0.74 IU/mL(ranging from 0.09 to 1.74 IU/mL)compared with 1.49 IU/mL(ranging from 0.93 to 1.89 IU/mL)in noncarriers,of which 14.3%of HCs had clotting factor levels of 0.40 IU/mL or below.A total of 53.8%(7/13)of HA carriers with low clotting factor levels(less than 0.50 IU/mL)had a history of bleeding,while none of the HB carriers displayed a bleeding phenotype.The total mean score and the global severity index of the SCL-90 for surveyed HCs were 171.00(±60.37)and 1.78(±0.59),respectively.A total of 67.7%of the respondents had psychological symptoms,with obsessive-compulsive disorder being the most prevalent and severe.The pooled estimates of all nine factors were significantly higher than those in the general population(P<0.05).Conclusions:The detection rate of gene mutations in hemophilia mothers was 90.6%,with a median clotting factor level of 0.74 IU/mL,and 14.3%of HCs had a clotting factor level of 0.40 IU/mL or below.A history of bleeding was present in 41.2%of HCs with low clotting factor levels(less than 0.50 IU/mL).Additionally,given the fragile mental health status of HCs in China,it is critical to develop efficient strategies to improve psychological well-being.展开更多
Efficient and stable photocathodes with versatility are of significance in photoassisted lithium-ion batteries(PLIBs),while there is always a request on fast carrier transport in electrochemical active photocathodes.P...Efficient and stable photocathodes with versatility are of significance in photoassisted lithium-ion batteries(PLIBs),while there is always a request on fast carrier transport in electrochemical active photocathodes.Present work proposes a general approach of creating bulk heterojunction to boost the carrier mobility of photocathodes by simply laser assisted embedding of plasmonic nanocrystals.When employed in PLIBs,it was found effective for synchronously enhanced photocharge separation and transport in light charging process.Additionally,experimental photon spectroscopy,finite difference time domain method simulation and theoretical analyses demonstrate that the improved carrier dynamics are driven by the plasmonic-induced hot electron injection from metal to TiO_(2),as well as the enhanced conductivity in TiO2 matrix due to the formation of oxygen vacancies after Schottky contact.Benefiting from these merits,several benchmark values in performance of TiO2-based photocathode applied in PLIBs are set,including the capacity of 276 mAh g^(−1)at 0.2 A g^(−1)under illumination,photoconversion efficiency of 1.276%at 3 A g^(−1),less capacity and Columbic efficiency loss even through 200 cycles.These results exemplify the potential of the bulk heterojunction strategy in developing highly efficient and stable photoassisted energy storage systems.展开更多
Biomass,recognized as renewable green coal,is pivotal for energy conservation,emission reduction,and dualcarbon objectives.Chemical looping gasification,an innovative technology,aims to enhance biomass utilization eff...Biomass,recognized as renewable green coal,is pivotal for energy conservation,emission reduction,and dualcarbon objectives.Chemical looping gasification,an innovative technology,aims to enhance biomass utilization efficiency.Using metal oxides as oxygen carriers regulates the oxygen-to-fuel ratio to optimize synthesis product yields.This review examines various oxygen carriers and their roles in chemical looping biomass gasification,including natural iron ore types,industrial by-products,cerium oxide-based carriers,and core-shell structures.The catalytic,kinetic,and phase transfer properties of iron-based oxygen carriers are analyzed,and their catalytic cracking capabilities are explored.Molecular interactions are elucidated and system performance is optimized by providing insights into chemical looping reaction mechanisms and strategies to improve carrier efficiency,along with discussing advanced techniques such as density functional theory(DFT)and reactive force field(ReaxFF)molecular dynamics(MD).This paper serves as a roadmap for advancing chemical looping gasification towards sustainable energy goals.展开更多
The hybrid carrier(HC)system rooted in the carrier fusion concept is gradually garnering attention.In this paper,we study the extended hybrid carrier(EHC)multiple access scheme to ensure reliable wireless communicatio...The hybrid carrier(HC)system rooted in the carrier fusion concept is gradually garnering attention.In this paper,we study the extended hybrid carrier(EHC)multiple access scheme to ensure reliable wireless communication.By employing the EHC modulation,a power layered multiplexing framework is realized,which exhibits enhanced interference suppression capability owing to the more uniform energy distribution design.The implementation method and advantage mechanism are explicated respectively for the uplink and downlink,and the performance analysis under varying channel conditions is provided.In addition,considering the connectivity demand,we explore the non-orthogonal multiple access(NOMA)method of the EHC system and develop the EHC sparse code multiple access scheme.The proposed scheme melds the energy spread superiority of EHC with the access capacity of NOMA,facilitating superior support for massive connectivity in high mobility environments.Simulation results have verified the feasibility and advantages of the proposed scheme.Compared with existing HC multiple access schemes,the proposed scheme exhibits robust bit error rate performance and can better guarantee multiple access performance in complex scenarios of nextgeneration communications.展开更多
Herein,the co-pyrolysis reaction characteristics of corn straw(CS)and bituminous coal in the presence of ilmenite oxygen carriers(OCs)are investigated via thermogravimetry coupled with mass spectrometry.The results re...Herein,the co-pyrolysis reaction characteristics of corn straw(CS)and bituminous coal in the presence of ilmenite oxygen carriers(OCs)are investigated via thermogravimetry coupled with mass spectrometry.The results reveal that the participation of OCs weakens the devolatilization intensity of co-pyrolysis.When the CS blending ratio is<50%,the mixed fuel exhibits positive synergistic effects.The fitting results according to the Coats-Redfern integral method show that the solid-solid interaction between OCs and coke changes the reaction kinetics,enhancing the co-pyrolysis reactivity at the high-temperature zone(750-950C).The synergistic effect is most prominent at a 30%CS blending ratio,with copyrolysis activation energy in the range of 26.35-40.57 kJ·mol^(-1).展开更多
Perovskite oxides has been attracted much attention as high-performance oxygen carriers for chemical looping reforming of methane,but they are easily inactivated by the presence of trace H_(2)S.Here,we propose to modu...Perovskite oxides has been attracted much attention as high-performance oxygen carriers for chemical looping reforming of methane,but they are easily inactivated by the presence of trace H_(2)S.Here,we propose to modulate both the activity and resistance to sulfur poisoning by dual substitution of Mo and Ni ions with the Fe-sites of LaFeO_(3)perovskite.It is found that partial substitution of Ni for Fe substantially improves the activity of LaFeO_(3)perovskite,while Ni particles prefer to grow and react with H_(2)S during the long-term successive redox process,resulting in the deactivation of oxygen carriers.With the presence of Mo in LaNi_(0.05)Fe_(0.95)O_(3−σ)perovskite,H_(2)S preferentially reacts with Mo to generate MoS_(2),and then the CO_(2)oxidation can regenerate Mo via removing sulfur.In addition,Mo can inhibit the accumulation and growth of Ni,which helps to improve the redox stability of oxygen carriers.The LaNi_(0.05)Mo_(0.07)Fe_(0.88)O_(3−σ)oxygen carrier exhibits stable and excellent performance,with the CH_(4)conversion higher than 90%during the 50 redox cycles in the presence of 50 ppm H_(2)S at 800℃.This work highlights a synergistic effect in the perovskite oxides induced by dual substitution of different cations for the development of high-performance oxygen carriers with excellent sulfur tolerance.展开更多
Ethane chemical looping oxidative dehydrogenation(CL-ODH)to ethylene is a new technology for converting ethane to ethylene.In the current study MeO/LaCoO_(3)(MeO=Fe_(2)O_(3),NiO or Co_(2)O_(3))composite metal oxides w...Ethane chemical looping oxidative dehydrogenation(CL-ODH)to ethylene is a new technology for converting ethane to ethylene.In the current study MeO/LaCoO_(3)(MeO=Fe_(2)O_(3),NiO or Co_(2)O_(3))composite metal oxides were prepared via citrate gel and impregnation methods,and used as oxygen carriers for CL-ODH.X-ray diffraction results indicated that all oxygen carriers had a perovskite structure even after eight redox cycles.Under a reaction temperature of 650°C,a reaction pressure of 0.1 MPa,and a weight hourly space velocity(WHSV)of 7500 mL/(g·h),ethane conversion over Co_(2)O_(3)/LaCoO_(3) reached 100%and ethylene selectivity reached 60%,both of which were better than corresponding values attained over Fe_(2)O_(3)/LaCoO_(3) and NiO/LaCoO_(3).Ethylene selectivity remained stable for 80 cycles over Co_(2)O_(3)/LaCoO_(3),then decreased gradually after 80 cycles.X-ray photoelectron spectroscopy results and evaluation results indicated that lattice oxygen and O_(2)2-had a direct relationship with ethane conversion and ethylene selectivity.Co_(2)O_(3)/LaCoO_(3) exhibited a strong capacity to release and absorb oxygen,mainly due to interaction between Co_(2)O_(3) and LaCoO_(3).展开更多
A Diesel Particulate Filter(DPF)is a critical device for diesel engine exhaust products treatment.When using active-regeneration purification methods,on the one hand,a spatially irregular gas flow can produce relative...A Diesel Particulate Filter(DPF)is a critical device for diesel engine exhaust products treatment.When using active-regeneration purification methods,on the one hand,a spatially irregular gas flow can produce relatively high local temperatures,potentially resulting in damage to the carrier;On the other hand,the internal temperature field can also undergo significant changes contributing to increase this risk.This study explores the gas flow uniformity in a DPF carrier and the related temperature behavior under drop-to-idle(DTI)condition by means of bench tests.It is shown that the considered silicon carbide carrier exhibits good flow uniformity,with a temperature deviation of no more than 2%with respect to the same radius measurement point at the outlet during the regeneration stage.In the DTI test,the temperature is relatively high within r/2 near the outlet end,where the maximum temperature peak occurs,and the maximum radial temperature gradient is located between r/2 and the edge.Both these quantities grow as the soot load increases,thereby making the risk of carrier burnout greater.Finally,it is shown that the soot load limit of the silicon carbide DPF can be extended to 11 g/L,which reduces the frequency of active regeneration by approximately 40%compared to a cordierite DPF.展开更多
The next-generation hot-carrier solar cells,which can overcome the Shockley-Queisser limit by harvesting excessenergy from hot carriers,are receiving increasing attention.Lead halide perovskite(LHP)materials are consi...The next-generation hot-carrier solar cells,which can overcome the Shockley-Queisser limit by harvesting excessenergy from hot carriers,are receiving increasing attention.Lead halide perovskite(LHP)materials are considered aspromising candidates due to their exceptional photovoltaic properties,good stability and low cost.The cooling rate of hotcarriers is a key parameter influencing the performance of hot-carrier solar cells.In this work,we successfully detected hotcarrier dynamics in operando LHP devices using the two-pulse photovoltage correlation technique.To enhance the signalto-noise ratio,we applied the delay-time modulation method instead of the traditional power modulation.This advancementallowed us to detect the intraband hot carrier cooling time for the organic LHP CH_(3)NH_(3)PbBr_(3),which is as short as 0.21 ps.In comparison,the inorganic Cs-based LHP CsPbBr_(3)exhibited a longer cooling time of around 0.59 ps due to differentphonon contributions.These results provide us new insights into the optimal design of hot-carrier solar cells and highlightthe potential of LHP materials in advancing solar cell technology.展开更多
In order to understand the influence of bow shape on ice resistance and provide guidelines for hull line design in the early design stage,an investigation of the impact of bow shape on ice resistance for the Arctic LN...In order to understand the influence of bow shape on ice resistance and provide guidelines for hull line design in the early design stage,an investigation of the impact of bow shape on ice resistance for the Arctic LNG carriers is carried out based on semi-empirical methods.Firstly,some typical semi-empirical formulas developed for ice resistance estimation of cargo carriers in different ice conditions are summarized.Then,formulas appropriate for ice resistance estimation of Arctic LNG carriers under different ice conditions are verified according to the result comparison between semi-empirical formulas and experimental tests.The comparison result indicates that the Lindqvist formula is appropriate for ice resistance estimation in level ice conditions,Zuev and Dobrodeev formula for ice resistance estimation in broken ice conditions,and Dobrodeev formula for ice resistance estimation in brash ice conditions.After that,the parameters considered in the selected formulas are summarized,and the influence of critical parameters on ice resistance is analyzed.Some parameters describing the ship's bow shape characteristic like ship breadth,waterline angle and stem angle greatly influence the ice resistance.Ice resistance increases with both the growth of ship breadth under all ice conditions and the growth of stem angle in level ice and broken ice conditions while ice resistance decreases with the development of waterline angle under all ice conditions.Finally,the optimization of the bow shape is discussed,and an optimized bow shape with both a large waterline angle and low stem angle is proposed.The optimized bow shape can decrease ice resistance by 9.9%in the level ice condition and reduce ice resistance by 11.3%in the brash ice condition.展开更多
Chemical looping combustion has the potential to be an efficient and low-cost technology capable of contributing to the reduction of the atmospheric concentration of CO_(2) in order to reach the 1.5/2°C goal and ...Chemical looping combustion has the potential to be an efficient and low-cost technology capable of contributing to the reduction of the atmospheric concentration of CO_(2) in order to reach the 1.5/2°C goal and mitigate climate change.In this process,a metal oxide is used as oxygen carrier in a dual fluidized bed to generate clean CO_(2) via combustion of biomass.Most commonly,natural ores or synthetic materials are used as oxygen carrier whereas both must meet special requirements for the conversion of solid fuels.Synthetic oxygen carriers are characterized by higher reactivity at the expense of higher costs versus the lower-cost natural ores.To determine the viability of both possibilities,a techno-economic comparison of a synthetic material based on manganese,iron,and copper to the natural ore ilmenite was conducted.The synthetic oxygen carrier was characterized and tested in a pilot plant,where high combustion efficiencies up to 98.4%and carbon capture rates up to 98.5%were reached.The techno-economic assessment resulted in CO_(2) capture costs of 75 and 40€/tCO_(2) for the synthetic and natural ore route respectively,whereas a sensitivity analysis showed the high impact of production costs and attrition rates of the synthetic material.The synthetic oxygen carrier could break even with the natural ore in case of lower production costs and attrition rates,which could be reached by adapting the production process and recycling material.By comparison to state-of-the-art technologies,it is demonstrated that both routes are viable and the capture cost of CO_(2) could be reduced by implementing the chemical looping combustion technology.展开更多
BACKGROUND The precise role of mitochondrial carrier homolog 2(MTCH2)in promoting malignancy in gastric mucosal cells and its involvement in gastric cancer cell metastasis have not been fully elucidated.AIM To determi...BACKGROUND The precise role of mitochondrial carrier homolog 2(MTCH2)in promoting malignancy in gastric mucosal cells and its involvement in gastric cancer cell metastasis have not been fully elucidated.AIM To determine the role of MTCH2 in gastric cancer.METHODS We collected 65 samples of poorly differentiated gastric cancer tissue and adjacent tissues,constructed MTCH2-overexpressing and MTCH2-knockdown cell models,and evaluated the proliferation,migration,and invasion of human gastric epithelial cells(GES-1)and human gastric cancer cells(AGS)cells.The mito-chondrial membrane potential(MMP),mitochondrial permeability transformation pore(mPTP)and ATP fluorescence probe were used to detect mitochondrial function.Mitochondrial function and ATP synthase protein levels were detected via Western blotting.RESULTS The expression of MTCH2 and ATP2A2 in gastric cancer tissues was significantly greater than that in adjacent tissues.Overexpression of MTCH2 promoted colony formation,invasion,migration,MMP expression and ATP production in GES-1 and AGS cells while upregulating ATP2A2 expression and inhibiting cell apoptosis;knockdown of MTCH2 had the opposite effect,promoting overactivation of the mPTP and promoting apoptosis.CONCLUSION MTCH2 can increase the malignant phenotype of GES-1 cells and promote the proliferation,invasion,and migration of gastric cancer cells by regulating mitochondrial function,providing a basis for targeted therapy for gastric cancer cells.展开更多
Chalcogenide superlattices Sb_(2)Te_(3)-GeTe is a candidate for interfacial phase-change memory(iPCM) data storage devices.By employing terahertz emission spectroscopy and the transient reflectance spectroscopy togeth...Chalcogenide superlattices Sb_(2)Te_(3)-GeTe is a candidate for interfacial phase-change memory(iPCM) data storage devices.By employing terahertz emission spectroscopy and the transient reflectance spectroscopy together,we investigate the ultrafast photoexcited carrier dynamics and current transients in Sb_(2)Te_(3)-GeTe superlattices.Sample orientation and excitation polarization dependences of the THz emission confirm that ultrafast thermo-electric,shift and injection currents contribute to the THz generation in Sb_(2)Te_(3)-GeTe superlattices.By decreasing the thickness and increasing the number of GeTe and Sb_(2)Te_(3) layer,the interlayer coupling can be enhanced,which significantly reduces the contribution from circular photo-galvanic effect(CPGE).A photo-induced bleaching in the transient reflectance spectroscopy probed in the range of~1100 nm to~1400 nm further demonstrates a gapped state resulting from the interlayer coupling.These demonstrates play an important role in the development of iPCM-based high-speed optoelectronic devices.展开更多
Quasi-2D Dion-Jacobson(DJ)tin halide perovskite has attracted much attention due to its elimination of Van der Waals gap and enhanced environmental stability.However,the bulky organic spacers usually form a natural qu...Quasi-2D Dion-Jacobson(DJ)tin halide perovskite has attracted much attention due to its elimination of Van der Waals gap and enhanced environmental stability.However,the bulky organic spacers usually form a natural quantum well structure,which brings a large quantum barrier and poor film quality,further limiting the carrier transport and device performance.Here,we designed three organic spacers with different chain lengths(ethylenediamine(EDA),1,3-propanediamine(PDA),and 1,4-butanediamine(BDA))to investigate the quantum barrier dependence.Theoretical and experimental characterizations indicate that EDA with short chain can reduce the lattice distortion and dielectric confinement effect,which is beneficial to the effective dissociation of excitons and the inhibition of trap-free non-radiative relaxation.In addition,EDA cation shows strong interaction with the inorganic octahedron,realizing large aggregates in precursor solution and high-quality films with improved structural stability.Furthermore,femtosecond transient absorption proves that EDA cations can also weaken the formation of small n-phases with large quantum barrier to achieve effective carrier transport between different nphases.Finally,the quasi-2D DJ(EDA)FA_(9)Sn_(10)I_(31)solar cells achieves a 7.07%power conversion efficiency with good environment stability.Therefore,this work sheds light on the regulation of the quantum barrier and carrier transport through the chain length of organic spacer for qua si-2D DJ lead-free perovskites.展开更多
Cu2ZnSn(S,Se)4(CZTSSe)solar cells have resource distribution and economic advantages.The main cause of their low efficiency is carrier loss resulting from recombination of photo-generated electron and hole.To overcome...Cu2ZnSn(S,Se)4(CZTSSe)solar cells have resource distribution and economic advantages.The main cause of their low efficiency is carrier loss resulting from recombination of photo-generated electron and hole.To overcome this,it is important to understand their electron-hole behavior characteristics.To determine the carrier separation characteristics,we measured the surface potential and the local current in terms of the absorber depth.The elemental variation in the intragrains(IGs)and at the grain boundaries(GBs)caused a band edge shift and bandgap(Eg)change.At the absorber surface and subsurface,an upward Ec and Ev band bending structure was observed at the GBs,and the carrier separation was improved.At the absorber center,both upward Ec and Ev and downward Ec-upward Ev band bending structures were observed at the GBs,and the carrier separation was degraded.To improve the carrier separation and suppress carrier recombination,an upward Ec and Ev band bending structure at the GBs is desirable.展开更多
We measure the time-resolved terahertz spectroscopy of GeSn thin film and studied the ultrafast dynamics of its photo-generated carriers.The experimental results show that there are photo-generated carriers in GeSn un...We measure the time-resolved terahertz spectroscopy of GeSn thin film and studied the ultrafast dynamics of its photo-generated carriers.The experimental results show that there are photo-generated carriers in GeSn under femtosecond laser excitation at 2500 nm,and its pump-induced photoconductivity can be explained by the Drude–Smith model.The carrier recombination process is mainly dominated by defect-assisted Auger processes and defect capture.The firstand second-order recombination rates are obtained by the rate equation fitting,which are(2.6±1.1)×10^(-2)ps^(-1)and(6.6±1.8)×10^(-19)cm^(3)·ps^(-1),respectively.Meanwhile,we also obtain the diffusion length of photo-generated carriers in GeSn,which is about 0.4μm,and it changes with the pump delay time.These results are important for the GeSn-based infrared optoelectronic devices,and demonstrate that Ge Sn materials can be applied to high-speed optoelectronic detectors and other applications.展开更多
The influence of oxygen vacancy-dominated carrier mobility on the performance of memristors has attractedconsiderable attention.The device’s carrier mobility can be significantly improved by forming a nano-multilayer...The influence of oxygen vacancy-dominated carrier mobility on the performance of memristors has attractedconsiderable attention.The device’s carrier mobility can be significantly improved by forming a nano-multilayeredheterostructure when the individual layer thickness is below a critical value.In this work,Pt/[ZrO_(2):Y_(2)O_(3)(YSZ)/SrTiO_(3)(STO)]n/Nb:SrTiO_(3)(NSTO)memristive devices were configurated through laser pulse deposited YSZ/STO nanomultilayeredactive layer with both Pt and NSTO acting as top and counter electrodes.Specifically,the Pt/[YSZ/STO]5/NSTO device with five consecutive layers of YSZ/STO thin film shows superior memristor performance,and itscorresponding carrier mobility presents a significantly enhanced value compared to that of other periodic numbers ofYSZ/STO composed memristive devices.This can be attributed to the increase of oxygen vacancy concentration in thedevice,as evidenced by both experimental results and theoretical analysis.This work provides a significant approach inimproving the performance of memristor dominated by oxygen vacancy transporting mechanism.展开更多
It is a challenge to coordinate carrier-kinetics performance and the redox capacity of photogenerated charges synchronously at the atomic level for boosting photocatalytic activity.Herein,the atomic Ni was introduced ...It is a challenge to coordinate carrier-kinetics performance and the redox capacity of photogenerated charges synchronously at the atomic level for boosting photocatalytic activity.Herein,the atomic Ni was introduced into the lattice of hexagonal ZnIn_(2)S_(4) nanosheets(Ni/ZnIn_(2)S_(4))via directionalsubstituting Zn atom with the facile hydrothermal method.The electronic structure calculations indicate that the introduction of Ni atom effectively extracts more electrons and acts as active site for subsequent reduction reaction.Besides the optimized light absorption range,the elevation of Efand ECBendows Ni/ZnIn_(2)S_(4) photocatalyst with the increased electron concentration and the enhanced reduction ability for surface reaction.Moreover,ultrafast transient absorption spectroscopy,as well as a series of electrochemical tests,demonstrates that Ni/ZnIn_(2)S_(4) possesses 2.15 times longer lifetime of the excited charge carriers and an order of magnitude increase for carrier mobility and separation efficiency compared with pristine ZnIn_(2)S_(4).These efficient kinetics performances of charge carriers and enhanced redox capacity synergistically boost photocatalytic activity,in which a 3-times higher conversion efficiency of nitrobenzene reduction was achieved upon Ni/ZnIn_(2)S_(4).Our study not only provides in-depth insights into the effect of atomic directional-substitution on the kinetic behavior of photogenerated charges,but also opens an avenue to the synchronous optimization of redox capacity and carrier-kinetics performance for efficient solar energy conversion.展开更多
文摘Background: In Africa, hemophilia is underdiagnosed and carriers have long been considered free from bleeding symptoms. However, recent research has begun to reveal hemostatic abnormalities and bleeding manifestations in carriers of hemophilia A, particularly due to excessive inactivation of normal X chromosomes. Objective: To describe the bleeding symptoms and hemostatic abnormalities in carriers of hemophilia A (HA) in Benin. Methods: This study was conducted as a prospective cross-sectional investigation between April 2021 to March 2022. The study population consisted of identified through pedigrees of persons with hemophilia A being treated in various hospitals in Benin. Data were collected through interviews conducted by trained physician and each carrier underwent a biological workup. Results: A total of 71 hemophilia A carriers were included and 38 of whom were obligatory carriers. Thirty-one carriers (43.7%) reported abnormal bleeding symptoms. Menorrhagia has (71%) being the most important manifestation, followed by bleeding during or after childbirth (45.2%). Among the 71 carriers, 45 were of reproductive age. Of whom 22 (48.8%) had a Higham score exceeding 100. Activated partial thromboplastin time was prolonged in 7 carriers (9.9%). The mean activity factor VIII:C (FVIII:C) levels were 68.8 ± 34.9 IU/dL. The average FVIII:C level in obligatory carriers was 56.9% and among potential carriers, the average FVIII:C level was higher at 80.4%. However twelve female carriers (16.9%) had FVIII:C levels < 40%. The FVIII:C/FvWAg ratio was below 0.7 in 73.2% of female drivers. Obligatory carriers (p = 0.00003) and FVIII;C/FvWAg ratio = 0.003) were statistically associated with abnormal bleeding symptoms, while blood group O (p = 0.0002) and FVIII/FvWAg ratio = 0.0016) were associated with a higher risk of menorrhagia. Conclusion: In Benin, carriers of haemophilia A present bleeding symptoms and haemostatic abnormalities. Further studies on a larger number of carriers are needed to better characterize and manage these patients.
基金Supported by Traditional Chinese Medicine Research Program of Hebei Provincial Administration of Traditional Chinese Medicine,No.2025313 and No.2025448.
文摘BACKGROUND Acquired hemophilia A (AHA) is a rare and potentially severe bleeding disordercaused by circulating autoantibodies against factor Ⅷ (FⅧ). In approximately50% of the patients, the condition is associated with autoimmune diseases,cancers, medication use, pregnancy, and the post-partum period. Bullous pemphigoid(BP) is a chronic autoimmune subepidermal blistering disease associatedwith tissue-bound and circulating autoantibodies against BP antigens 180 (BP180)and 230 (BP230). AHA-associated BP has a high mortality rate;hence, the understandingof this disease must improve.CASE SUMMARY A 69-year-old man presented with erythema, blisters, blood blisters, and crustsaccompanied by severe pruritus for more than 20 days, and ecchymosis andswelling on his left upper arm for 3 days. Pathological examination revealed asubepidermal blister that contained eosinophils. Laboratory tests showed that theBP180 autoantibody levels had increased, isolated activated partial thromboplastintime was notably prolonged (115.6 s), and coagulation FⅧ activity wasextremely low (< 1.0%). Furthermore, the FⅧ inhibitor titer had greatlyincreased (59.2 Bethesda units). Therefore, the patient was diagnosed as having BP associated with AHA, prescribed 0.05% topical halometasone cream, and transferred to a higher-level hospitalfor effective treatment;however, he died after 2 days.CONCLUSION AHA associated BP is rare, dangerous, and has a high mortality rate. Therefore, its timely diagnosis and effectivetreatment are necessary.
基金supported by Pfizer and the Haemophilia,Experience,Results,and Opportunities(HERO)Research Grant(Novo Nordisk).
文摘Objective:Hemophilia carriers(HCs),who are heterozygous for mutations in the clotting factor VIII/clotting factor IX gene(F8 or F9),may have a wide range of clotting factor levels,from very low,similar to afflicted males,to the upper limit of normal,and may experience mental health issues.The purpose of this study was to provide genetic information on mothers of hemophilia patients and to understand the clotting factor activity and phenotype of HCs.Additionally,we aimed to investigate the mental health status of HCs in China.Methods:A total of 127 hemophilia mothers,including 93 hemophilia A(HA)mothers and 34 hemophilia B(HB)mothers,were enrolled in this study.Long distance PCR,multiplex PCR,and Sanger sequencing were used to analyze mutations in F8 or F9.Coagulation factor activity was detected by a one-stage clotting assay.The Symptom Checklist 90(SCL-90,China/Mandarin version)was given to HCs at the same time to assess their mental health.Results:A total of 90.6%of hemophilia mothers were diagnosed genetically as carriers,with inversion in intron 22 and missense mutations being the most common mutation types in HA and HB carriers,respectively.The median clotting factor level in carriers was 0.74 IU/mL(ranging from 0.09 to 1.74 IU/mL)compared with 1.49 IU/mL(ranging from 0.93 to 1.89 IU/mL)in noncarriers,of which 14.3%of HCs had clotting factor levels of 0.40 IU/mL or below.A total of 53.8%(7/13)of HA carriers with low clotting factor levels(less than 0.50 IU/mL)had a history of bleeding,while none of the HB carriers displayed a bleeding phenotype.The total mean score and the global severity index of the SCL-90 for surveyed HCs were 171.00(±60.37)and 1.78(±0.59),respectively.A total of 67.7%of the respondents had psychological symptoms,with obsessive-compulsive disorder being the most prevalent and severe.The pooled estimates of all nine factors were significantly higher than those in the general population(P<0.05).Conclusions:The detection rate of gene mutations in hemophilia mothers was 90.6%,with a median clotting factor level of 0.74 IU/mL,and 14.3%of HCs had a clotting factor level of 0.40 IU/mL or below.A history of bleeding was present in 41.2%of HCs with low clotting factor levels(less than 0.50 IU/mL).Additionally,given the fragile mental health status of HCs in China,it is critical to develop efficient strategies to improve psychological well-being.
基金supported by the project of the National Natural Science Foundation of China(52202115 and 52172101)Guangdong Basic and Applied Basic Research Foundation(2024A1515012325)+2 种基金the Natural Science Foundation of Chongqing,China(CSTB2022NSCQ-MSX1085)the Shaanxi Science and Technology Innovation Team(2023-CXTD-44)the Fundamental Research Funds for the Central Universities(G2022KY0604).
文摘Efficient and stable photocathodes with versatility are of significance in photoassisted lithium-ion batteries(PLIBs),while there is always a request on fast carrier transport in electrochemical active photocathodes.Present work proposes a general approach of creating bulk heterojunction to boost the carrier mobility of photocathodes by simply laser assisted embedding of plasmonic nanocrystals.When employed in PLIBs,it was found effective for synchronously enhanced photocharge separation and transport in light charging process.Additionally,experimental photon spectroscopy,finite difference time domain method simulation and theoretical analyses demonstrate that the improved carrier dynamics are driven by the plasmonic-induced hot electron injection from metal to TiO_(2),as well as the enhanced conductivity in TiO2 matrix due to the formation of oxygen vacancies after Schottky contact.Benefiting from these merits,several benchmark values in performance of TiO2-based photocathode applied in PLIBs are set,including the capacity of 276 mAh g^(−1)at 0.2 A g^(−1)under illumination,photoconversion efficiency of 1.276%at 3 A g^(−1),less capacity and Columbic efficiency loss even through 200 cycles.These results exemplify the potential of the bulk heterojunction strategy in developing highly efficient and stable photoassisted energy storage systems.
基金supported by the National Natural Science Foundation of China(52160013,51768054)Inner Mongolia Autonomous Region“Grassland Talent”Science Fund Program(CYY012057)+2 种基金Program for Young Talents of Science and Technology in Universities of Inner Mongolia Autonomous Region(NJYT22062)Inner Mongolia Natural Science Foundation(2021LHMS05026)Inner Mongolia University Research Program(2023RCTD018,2023YXX8023,2024YXX5027,2023YXX8023,2024YXX5027).
文摘Biomass,recognized as renewable green coal,is pivotal for energy conservation,emission reduction,and dualcarbon objectives.Chemical looping gasification,an innovative technology,aims to enhance biomass utilization efficiency.Using metal oxides as oxygen carriers regulates the oxygen-to-fuel ratio to optimize synthesis product yields.This review examines various oxygen carriers and their roles in chemical looping biomass gasification,including natural iron ore types,industrial by-products,cerium oxide-based carriers,and core-shell structures.The catalytic,kinetic,and phase transfer properties of iron-based oxygen carriers are analyzed,and their catalytic cracking capabilities are explored.Molecular interactions are elucidated and system performance is optimized by providing insights into chemical looping reaction mechanisms and strategies to improve carrier efficiency,along with discussing advanced techniques such as density functional theory(DFT)and reactive force field(ReaxFF)molecular dynamics(MD).This paper serves as a roadmap for advancing chemical looping gasification towards sustainable energy goals.
基金supported in part by the National Natural Science Foundation of China under Grant U23A20278in part by the National Natural Science Foundation of China under Grant 62171151in part by the Fundamental Research Funds for the Central Universities under Grant HIT.OCEF.2021012。
文摘The hybrid carrier(HC)system rooted in the carrier fusion concept is gradually garnering attention.In this paper,we study the extended hybrid carrier(EHC)multiple access scheme to ensure reliable wireless communication.By employing the EHC modulation,a power layered multiplexing framework is realized,which exhibits enhanced interference suppression capability owing to the more uniform energy distribution design.The implementation method and advantage mechanism are explicated respectively for the uplink and downlink,and the performance analysis under varying channel conditions is provided.In addition,considering the connectivity demand,we explore the non-orthogonal multiple access(NOMA)method of the EHC system and develop the EHC sparse code multiple access scheme.The proposed scheme melds the energy spread superiority of EHC with the access capacity of NOMA,facilitating superior support for massive connectivity in high mobility environments.Simulation results have verified the feasibility and advantages of the proposed scheme.Compared with existing HC multiple access schemes,the proposed scheme exhibits robust bit error rate performance and can better guarantee multiple access performance in complex scenarios of nextgeneration communications.
基金support by the Key Research and Development Program of Ningxia Province of China(2018BCE01002)funded by the Joint Funds of the National Natural Science Foundation of China(U20A20124)the Natural Science Foundation Project of Ningxia(2022AAC01001).
文摘Herein,the co-pyrolysis reaction characteristics of corn straw(CS)and bituminous coal in the presence of ilmenite oxygen carriers(OCs)are investigated via thermogravimetry coupled with mass spectrometry.The results reveal that the participation of OCs weakens the devolatilization intensity of co-pyrolysis.When the CS blending ratio is<50%,the mixed fuel exhibits positive synergistic effects.The fitting results according to the Coats-Redfern integral method show that the solid-solid interaction between OCs and coke changes the reaction kinetics,enhancing the co-pyrolysis reactivity at the high-temperature zone(750-950C).The synergistic effect is most prominent at a 30%CS blending ratio,with copyrolysis activation energy in the range of 26.35-40.57 kJ·mol^(-1).
基金financially supported by the National Natural Science Foundation of China (Nos. 52174279, U2202251, and 52266008)Applied Basic Research Program of Yunnan Province for Distinguished Young Scholars (No. 202201AV070004)+1 种基金Central Guiding Local Science and Technology Development Fund (No. 202207AA110001)the Yunnan Fundamental Research Projects (No. 202301AU070027, 202401AT070388)
文摘Perovskite oxides has been attracted much attention as high-performance oxygen carriers for chemical looping reforming of methane,but they are easily inactivated by the presence of trace H_(2)S.Here,we propose to modulate both the activity and resistance to sulfur poisoning by dual substitution of Mo and Ni ions with the Fe-sites of LaFeO_(3)perovskite.It is found that partial substitution of Ni for Fe substantially improves the activity of LaFeO_(3)perovskite,while Ni particles prefer to grow and react with H_(2)S during the long-term successive redox process,resulting in the deactivation of oxygen carriers.With the presence of Mo in LaNi_(0.05)Fe_(0.95)O_(3−σ)perovskite,H_(2)S preferentially reacts with Mo to generate MoS_(2),and then the CO_(2)oxidation can regenerate Mo via removing sulfur.In addition,Mo can inhibit the accumulation and growth of Ni,which helps to improve the redox stability of oxygen carriers.The LaNi_(0.05)Mo_(0.07)Fe_(0.88)O_(3−σ)oxygen carrier exhibits stable and excellent performance,with the CH_(4)conversion higher than 90%during the 50 redox cycles in the presence of 50 ppm H_(2)S at 800℃.This work highlights a synergistic effect in the perovskite oxides induced by dual substitution of different cations for the development of high-performance oxygen carriers with excellent sulfur tolerance.
文摘Ethane chemical looping oxidative dehydrogenation(CL-ODH)to ethylene is a new technology for converting ethane to ethylene.In the current study MeO/LaCoO_(3)(MeO=Fe_(2)O_(3),NiO or Co_(2)O_(3))composite metal oxides were prepared via citrate gel and impregnation methods,and used as oxygen carriers for CL-ODH.X-ray diffraction results indicated that all oxygen carriers had a perovskite structure even after eight redox cycles.Under a reaction temperature of 650°C,a reaction pressure of 0.1 MPa,and a weight hourly space velocity(WHSV)of 7500 mL/(g·h),ethane conversion over Co_(2)O_(3)/LaCoO_(3) reached 100%and ethylene selectivity reached 60%,both of which were better than corresponding values attained over Fe_(2)O_(3)/LaCoO_(3) and NiO/LaCoO_(3).Ethylene selectivity remained stable for 80 cycles over Co_(2)O_(3)/LaCoO_(3),then decreased gradually after 80 cycles.X-ray photoelectron spectroscopy results and evaluation results indicated that lattice oxygen and O_(2)2-had a direct relationship with ethane conversion and ethylene selectivity.Co_(2)O_(3)/LaCoO_(3) exhibited a strong capacity to release and absorb oxygen,mainly due to interaction between Co_(2)O_(3) and LaCoO_(3).
基金This work was supported by National Key R&D Program Project[Grant Number 2020YFB0106603]Provincial Major Scientific and Technological Innovation Project[Grant Number 2021CXGC010207-1]+2 种基金Shantui Engineering Machinery Intelligent Equipment Innovation and Entrepreneurship Community Innovation Project[Grant Number GTT2021105]Shandong Provincial Science and Technology SMEs Innovation Capacity Improvement Project[Grant Numbers 2021TSGC1334]Undergraduate School of Shandong University,China[Grant Number 2022Y155].
文摘A Diesel Particulate Filter(DPF)is a critical device for diesel engine exhaust products treatment.When using active-regeneration purification methods,on the one hand,a spatially irregular gas flow can produce relatively high local temperatures,potentially resulting in damage to the carrier;On the other hand,the internal temperature field can also undergo significant changes contributing to increase this risk.This study explores the gas flow uniformity in a DPF carrier and the related temperature behavior under drop-to-idle(DTI)condition by means of bench tests.It is shown that the considered silicon carbide carrier exhibits good flow uniformity,with a temperature deviation of no more than 2%with respect to the same radius measurement point at the outlet during the regeneration stage.In the DTI test,the temperature is relatively high within r/2 near the outlet end,where the maximum temperature peak occurs,and the maximum radial temperature gradient is located between r/2 and the edge.Both these quantities grow as the soot load increases,thereby making the risk of carrier burnout greater.Finally,it is shown that the soot load limit of the silicon carbide DPF can be extended to 11 g/L,which reduces the frequency of active regeneration by approximately 40%compared to a cordierite DPF.
基金supported by the National Key R&D Program of China(Grant No.2021YFA1400500)New Cornerstone Science Foundation through the New Cornerstone Investigator Program,and the XPLORER Prize.
文摘The next-generation hot-carrier solar cells,which can overcome the Shockley-Queisser limit by harvesting excessenergy from hot carriers,are receiving increasing attention.Lead halide perovskite(LHP)materials are considered aspromising candidates due to their exceptional photovoltaic properties,good stability and low cost.The cooling rate of hotcarriers is a key parameter influencing the performance of hot-carrier solar cells.In this work,we successfully detected hotcarrier dynamics in operando LHP devices using the two-pulse photovoltage correlation technique.To enhance the signalto-noise ratio,we applied the delay-time modulation method instead of the traditional power modulation.This advancementallowed us to detect the intraband hot carrier cooling time for the organic LHP CH_(3)NH_(3)PbBr_(3),which is as short as 0.21 ps.In comparison,the inorganic Cs-based LHP CsPbBr_(3)exhibited a longer cooling time of around 0.59 ps due to differentphonon contributions.These results provide us new insights into the optimal design of hot-carrier solar cells and highlightthe potential of LHP materials in advancing solar cell technology.
文摘In order to understand the influence of bow shape on ice resistance and provide guidelines for hull line design in the early design stage,an investigation of the impact of bow shape on ice resistance for the Arctic LNG carriers is carried out based on semi-empirical methods.Firstly,some typical semi-empirical formulas developed for ice resistance estimation of cargo carriers in different ice conditions are summarized.Then,formulas appropriate for ice resistance estimation of Arctic LNG carriers under different ice conditions are verified according to the result comparison between semi-empirical formulas and experimental tests.The comparison result indicates that the Lindqvist formula is appropriate for ice resistance estimation in level ice conditions,Zuev and Dobrodeev formula for ice resistance estimation in broken ice conditions,and Dobrodeev formula for ice resistance estimation in brash ice conditions.After that,the parameters considered in the selected formulas are summarized,and the influence of critical parameters on ice resistance is analyzed.Some parameters describing the ship's bow shape characteristic like ship breadth,waterline angle and stem angle greatly influence the ice resistance.Ice resistance increases with both the growth of ship breadth under all ice conditions and the growth of stem angle in level ice and broken ice conditions while ice resistance decreases with the development of waterline angle under all ice conditions.Finally,the optimization of the bow shape is discussed,and an optimized bow shape with both a large waterline angle and low stem angle is proposed.The optimized bow shape can decrease ice resistance by 9.9%in the level ice condition and reduce ice resistance by 11.3%in the brash ice condition.
文摘Chemical looping combustion has the potential to be an efficient and low-cost technology capable of contributing to the reduction of the atmospheric concentration of CO_(2) in order to reach the 1.5/2°C goal and mitigate climate change.In this process,a metal oxide is used as oxygen carrier in a dual fluidized bed to generate clean CO_(2) via combustion of biomass.Most commonly,natural ores or synthetic materials are used as oxygen carrier whereas both must meet special requirements for the conversion of solid fuels.Synthetic oxygen carriers are characterized by higher reactivity at the expense of higher costs versus the lower-cost natural ores.To determine the viability of both possibilities,a techno-economic comparison of a synthetic material based on manganese,iron,and copper to the natural ore ilmenite was conducted.The synthetic oxygen carrier was characterized and tested in a pilot plant,where high combustion efficiencies up to 98.4%and carbon capture rates up to 98.5%were reached.The techno-economic assessment resulted in CO_(2) capture costs of 75 and 40€/tCO_(2) for the synthetic and natural ore route respectively,whereas a sensitivity analysis showed the high impact of production costs and attrition rates of the synthetic material.The synthetic oxygen carrier could break even with the natural ore in case of lower production costs and attrition rates,which could be reached by adapting the production process and recycling material.By comparison to state-of-the-art technologies,it is demonstrated that both routes are viable and the capture cost of CO_(2) could be reduced by implementing the chemical looping combustion technology.
基金the Medical Science Research Projects in Hebei Province,No.20221526and Natural Science Foundation,No.2022-271.
文摘BACKGROUND The precise role of mitochondrial carrier homolog 2(MTCH2)in promoting malignancy in gastric mucosal cells and its involvement in gastric cancer cell metastasis have not been fully elucidated.AIM To determine the role of MTCH2 in gastric cancer.METHODS We collected 65 samples of poorly differentiated gastric cancer tissue and adjacent tissues,constructed MTCH2-overexpressing and MTCH2-knockdown cell models,and evaluated the proliferation,migration,and invasion of human gastric epithelial cells(GES-1)and human gastric cancer cells(AGS)cells.The mito-chondrial membrane potential(MMP),mitochondrial permeability transformation pore(mPTP)and ATP fluorescence probe were used to detect mitochondrial function.Mitochondrial function and ATP synthase protein levels were detected via Western blotting.RESULTS The expression of MTCH2 and ATP2A2 in gastric cancer tissues was significantly greater than that in adjacent tissues.Overexpression of MTCH2 promoted colony formation,invasion,migration,MMP expression and ATP production in GES-1 and AGS cells while upregulating ATP2A2 expression and inhibiting cell apoptosis;knockdown of MTCH2 had the opposite effect,promoting overactivation of the mPTP and promoting apoptosis.CONCLUSION MTCH2 can increase the malignant phenotype of GES-1 cells and promote the proliferation,invasion,and migration of gastric cancer cells by regulating mitochondrial function,providing a basis for targeted therapy for gastric cancer cells.
基金Project supported by the National Key Research and Development Program of China(Grant Nos.2023YFF0719200 and 2022YFA1404004)the National Natural Science Foundation of China(Grant Nos.62322115,61988102,61975110,62335012,and 12074248)+3 种基金111 Project(Grant No.D18014)the Key Project supported by Science and Technology Commission Shanghai Municipality(Grant No.YDZX20193100004960)Science and Technology Commission of Shanghai Municipality(Grant Nos.22JC1400200 and 21S31907400)General Administration of Customs People’s Republic of China(Grant No.2019HK006)。
文摘Chalcogenide superlattices Sb_(2)Te_(3)-GeTe is a candidate for interfacial phase-change memory(iPCM) data storage devices.By employing terahertz emission spectroscopy and the transient reflectance spectroscopy together,we investigate the ultrafast photoexcited carrier dynamics and current transients in Sb_(2)Te_(3)-GeTe superlattices.Sample orientation and excitation polarization dependences of the THz emission confirm that ultrafast thermo-electric,shift and injection currents contribute to the THz generation in Sb_(2)Te_(3)-GeTe superlattices.By decreasing the thickness and increasing the number of GeTe and Sb_(2)Te_(3) layer,the interlayer coupling can be enhanced,which significantly reduces the contribution from circular photo-galvanic effect(CPGE).A photo-induced bleaching in the transient reflectance spectroscopy probed in the range of~1100 nm to~1400 nm further demonstrates a gapped state resulting from the interlayer coupling.These demonstrates play an important role in the development of iPCM-based high-speed optoelectronic devices.
基金financially supported by the National Key Research and Development Program of China(2022YFE0118400)the National Natural Science Foundation of China(51702038)+1 种基金the Science&Technology Department of Sichuan Province(2020YFG0061)the Recruitment Program for Young Professionals。
文摘Quasi-2D Dion-Jacobson(DJ)tin halide perovskite has attracted much attention due to its elimination of Van der Waals gap and enhanced environmental stability.However,the bulky organic spacers usually form a natural quantum well structure,which brings a large quantum barrier and poor film quality,further limiting the carrier transport and device performance.Here,we designed three organic spacers with different chain lengths(ethylenediamine(EDA),1,3-propanediamine(PDA),and 1,4-butanediamine(BDA))to investigate the quantum barrier dependence.Theoretical and experimental characterizations indicate that EDA with short chain can reduce the lattice distortion and dielectric confinement effect,which is beneficial to the effective dissociation of excitons and the inhibition of trap-free non-radiative relaxation.In addition,EDA cation shows strong interaction with the inorganic octahedron,realizing large aggregates in precursor solution and high-quality films with improved structural stability.Furthermore,femtosecond transient absorption proves that EDA cations can also weaken the formation of small n-phases with large quantum barrier to achieve effective carrier transport between different nphases.Finally,the quasi-2D DJ(EDA)FA_(9)Sn_(10)I_(31)solar cells achieves a 7.07%power conversion efficiency with good environment stability.Therefore,this work sheds light on the regulation of the quantum barrier and carrier transport through the chain length of organic spacer for qua si-2D DJ lead-free perovskites.
基金supported by the National Research Foundation of Korea(NRF)grant funded by the Ministry of Science and ICT(No.2022M3J1A1085371)by the DGIST R&D programs of the Ministry of Science and ICT(23-ET-08 and 23-CoE-ET-01)supported by the Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education(NRF-2018R1A6A1A03025340).
文摘Cu2ZnSn(S,Se)4(CZTSSe)solar cells have resource distribution and economic advantages.The main cause of their low efficiency is carrier loss resulting from recombination of photo-generated electron and hole.To overcome this,it is important to understand their electron-hole behavior characteristics.To determine the carrier separation characteristics,we measured the surface potential and the local current in terms of the absorber depth.The elemental variation in the intragrains(IGs)and at the grain boundaries(GBs)caused a band edge shift and bandgap(Eg)change.At the absorber surface and subsurface,an upward Ec and Ev band bending structure was observed at the GBs,and the carrier separation was improved.At the absorber center,both upward Ec and Ev and downward Ec-upward Ev band bending structures were observed at the GBs,and the carrier separation was degraded.To improve the carrier separation and suppress carrier recombination,an upward Ec and Ev band bending structure at the GBs is desirable.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12004067,11974070,62027807,and 52272137)the National Key R&D Program of China(Grant No.2022YFA1403000)。
文摘We measure the time-resolved terahertz spectroscopy of GeSn thin film and studied the ultrafast dynamics of its photo-generated carriers.The experimental results show that there are photo-generated carriers in GeSn under femtosecond laser excitation at 2500 nm,and its pump-induced photoconductivity can be explained by the Drude–Smith model.The carrier recombination process is mainly dominated by defect-assisted Auger processes and defect capture.The firstand second-order recombination rates are obtained by the rate equation fitting,which are(2.6±1.1)×10^(-2)ps^(-1)and(6.6±1.8)×10^(-19)cm^(3)·ps^(-1),respectively.Meanwhile,we also obtain the diffusion length of photo-generated carriers in GeSn,which is about 0.4μm,and it changes with the pump delay time.These results are important for the GeSn-based infrared optoelectronic devices,and demonstrate that Ge Sn materials can be applied to high-speed optoelectronic detectors and other applications.
基金Projects(2023JJ30690,2022JJ30722)supported by the Natural Science Foundation of Hunan Province,ChinaProject(kq2202093)supported by the Natural Science Foundation of Changsha,ChinaProject(SKL202202SIC)supported by the Opening Project of State Key Laboratory of High Performance Ceramics and Superfine Microstructure,China。
文摘The influence of oxygen vacancy-dominated carrier mobility on the performance of memristors has attractedconsiderable attention.The device’s carrier mobility can be significantly improved by forming a nano-multilayeredheterostructure when the individual layer thickness is below a critical value.In this work,Pt/[ZrO_(2):Y_(2)O_(3)(YSZ)/SrTiO_(3)(STO)]n/Nb:SrTiO_(3)(NSTO)memristive devices were configurated through laser pulse deposited YSZ/STO nanomultilayeredactive layer with both Pt and NSTO acting as top and counter electrodes.Specifically,the Pt/[YSZ/STO]5/NSTO device with five consecutive layers of YSZ/STO thin film shows superior memristor performance,and itscorresponding carrier mobility presents a significantly enhanced value compared to that of other periodic numbers ofYSZ/STO composed memristive devices.This can be attributed to the increase of oxygen vacancy concentration in thedevice,as evidenced by both experimental results and theoretical analysis.This work provides a significant approach inimproving the performance of memristor dominated by oxygen vacancy transporting mechanism.
基金the National Natural Science Foundation of China (22209091)the Natural Science Foundation of Shandong Province (ZR2020QB057)+1 种基金the Key Program of National Natural Science Foundation of China (22133006)the Yankuang Group 2019 Science and Technology Program (YKKJ2019AJ05JG-R60)。
文摘It is a challenge to coordinate carrier-kinetics performance and the redox capacity of photogenerated charges synchronously at the atomic level for boosting photocatalytic activity.Herein,the atomic Ni was introduced into the lattice of hexagonal ZnIn_(2)S_(4) nanosheets(Ni/ZnIn_(2)S_(4))via directionalsubstituting Zn atom with the facile hydrothermal method.The electronic structure calculations indicate that the introduction of Ni atom effectively extracts more electrons and acts as active site for subsequent reduction reaction.Besides the optimized light absorption range,the elevation of Efand ECBendows Ni/ZnIn_(2)S_(4) photocatalyst with the increased electron concentration and the enhanced reduction ability for surface reaction.Moreover,ultrafast transient absorption spectroscopy,as well as a series of electrochemical tests,demonstrates that Ni/ZnIn_(2)S_(4) possesses 2.15 times longer lifetime of the excited charge carriers and an order of magnitude increase for carrier mobility and separation efficiency compared with pristine ZnIn_(2)S_(4).These efficient kinetics performances of charge carriers and enhanced redox capacity synergistically boost photocatalytic activity,in which a 3-times higher conversion efficiency of nitrobenzene reduction was achieved upon Ni/ZnIn_(2)S_(4).Our study not only provides in-depth insights into the effect of atomic directional-substitution on the kinetic behavior of photogenerated charges,but also opens an avenue to the synchronous optimization of redox capacity and carrier-kinetics performance for efficient solar energy conversion.