Hydraulic rolling reshaper is an advanced reshaping tool to solve the problem of casing deformation,which has been widely used in recent years.When it is used for well repair operation,the reshaping force provided by ...Hydraulic rolling reshaper is an advanced reshaping tool to solve the problem of casing deformation,which has been widely used in recent years.When it is used for well repair operation,the reshaping force provided by ground devices is generally determined by experience.However,too large reshaping force may destroy the deformed casing,and too small reshaping force may also prolong the construction period and affect the repairing effect.In this paper,based on Hertz contact theory and elastic-plastic theory,combined with the process parameters of shaping,and considering the structural characteristics of the deformed casing and reshaper,we propose a mathematical model for calculating the reshaping force required for repairing deformed casing by hydraulic rolling reshaper.Meanwhile,the finite element model and numerical method of hydraulic rolling reshaper repairing deformed casing are established by using the finite element method,and the reliability of the mathematical model is verified by several examples.On this basis,the control variable method is used to investigate the influence of each parameter on the reshaping force,and the influence degree of each parameter is explored by orthogonal simulation test and Pearson correlation analysis.The research results not only provide an important theoretical basis for the prediction of reshaping force in on-site construction,but also provide a reference for the subsequent improvement of the shaping process.展开更多
In non-conforming rolling contact, the contact stress is highly concentrated in the contact area. However, there are some limitations of the special contact model and stress model used for the theoretical study of the...In non-conforming rolling contact, the contact stress is highly concentrated in the contact area. However, there are some limitations of the special contact model and stress model used for the theoretical study of the phenomenon, and this has prevented in-depth analysis of the associated friction, wear, and failure. This paper is particularly aimed at investigating the area of rolling contact between a sphere and a cone, for which purpose the boundary is determined by the Hertz theory and the geometries of the non-conforming surfaces. The phenomenon of stick-slip contact is observed to occur in the contact area under the condition of no-full-slip(Q 〈 μ·P). Using the two-dimensional rolling contact theory developed by CARTER, the relative positions of the stick and slip regions and the distribution of the tangential force over the contact area are analyzed. Furthermore, each stress component is calculated based on the Mc Ewen theory and the idea of narrow band. The stress equations for the three-dimensional rolling contact between the sphere and the cone are obtained by the principle of superposition, and are used to perform some numerical simulations. The results show that the stress components have a large gradient along the boundary between the stick and slip regions, and that the maximum stress is inversely proportional to the contact coefficient and proportional to the friction coefficient. A new method for investigating the stress during non-classical three-dimensional rolling contact is proposed as a theoretical foundation for the analysis of the associated friction, wear, and failure.展开更多
Based on Hertz theory of elastic contact and the design theory of ball bearings, a new type of rolling coupling was designed. The two halves of the rolling coupling can be moved relatively by a small axial force when ...Based on Hertz theory of elastic contact and the design theory of ball bearings, a new type of rolling coupling was designed. The two halves of the rolling coupling can be moved relatively by a small axial force when a great moment is exerted on it. The rolling coupling was used to connect the principal axis and the decelerator of continuous extrusion machine and it can greatly decrease the harmful axial forces on the continuous machine. The engineering formulas for the contact stress and distance of apporach of the rolling elements were deduced and the method for designing the rolling couplings was proposed. The formulas for the forces exerted on the rolling element were verified by the experiment.展开更多
Rolling bearing is widely used in mechanical support, its general components are the inner ring, outer ring, the ball, retainer etc.. Now many companies in developed countries and university in the rolling bearing as ...Rolling bearing is widely used in mechanical support, its general components are the inner ring, outer ring, the ball, retainer etc.. Now many companies in developed countries and university in the rolling bearing as the research object, and has made great progress in design theory, the experiment method and production technology etc. We will use the finite element ANSYS to establish the model of deep groove ball bearing. Through the contact analysis, we can get the contact stress between the rings and balls, strain, contact state, penetration, sliding distance and the friction stress distribution. These values are compared to the theoretical values with Hertz theory, and they have better consistency, provide the good theoretical basis for the optimization design of rolling bearings.展开更多
The aim of this work was to determine the effect of formulation of alginate beads on their mechanical behavior and stiffness when compressed at high speed. The alginate beads were formulated using different types and ...The aim of this work was to determine the effect of formulation of alginate beads on their mechanical behavior and stiffness when compressed at high speed. The alginate beads were formulated using different types and concentrations of alginate and gelling cations and were produced using an extrusiondripping method, Single wet beads were compressed at a speed of 40 mm/min, and their elastic limits were investigated, and the corresponding force versus displacement data were obtained. The Young's moduli of the beads were determined from the force versus displacement data using the Hertz's contact mechanics theory. The alginate beads were found to exhibit plastic behavior when they were compressed beyond 50% with the exception of copper-alginate beads for which yield occured at lower deformation, Alginate beads made of higher guluronic acid contents and gelling cations of higher chemical affinity were found to have greater stiffness. Increasing the concentration of alginate and gelling ions also generated a similar effect. At such a compression speed, the values of Young's modulus of the beads were found to be in the range between 250 and 900 kPa depending on the bead formulation.展开更多
The traditional Hertz contact theory has been widely used in solving contact problems.However,it is only applicable to the elastic contact,and cannot truly reflect the contact stress distribution and contact radius in...The traditional Hertz contact theory has been widely used in solving contact problems.However,it is only applicable to the elastic contact,and cannot truly reflect the contact stress distribution and contact radius in the elasto-plastic contact.In this work,based on the Hertz contact theory,a fast solving method is proposed to calculate the contact stress distribution and contact radius in the elasto-plastic contact between two spheres.It is assumed that the elastic contact only occurs at the outer edge of contact patch and its contact stress distribution satisfies the Hertz contact theory,and the contact stress distribution at the inner edge of contact patch can be superimposed by a constant contact stress and several small ellipsoidal contact stress distributions.Moreover,based on the equivalent relation between the resultant force of contact stress and the normal external load,the contact radius in the elasto-plastic contact can be solved.Finally,an elasto-plastic contact example of two spheres is given based on the power-law hardening material model,and the influences of material parameters,contact radii and normal external loads on the accuracy of the proposed method are discussed by comparing the differences between the numerical results by finite element method and the predicted ones by the proposed method.It is shown that the proposed method can accurately calculate the maximum contact stress and contact radius in the elasto-plastic contact,and the relative errors of both maximum contact stress and contact radius are within±5%.To sum up,the proposed fast solving method can be applied to perform the elasto-plastic contact analysis in engineering practice.展开更多
基金financially supported by the National Natural Science Foundation of China (51674088)Natural Science Foundation of Heilongjiang Province of China (LH 2021E011)。
文摘Hydraulic rolling reshaper is an advanced reshaping tool to solve the problem of casing deformation,which has been widely used in recent years.When it is used for well repair operation,the reshaping force provided by ground devices is generally determined by experience.However,too large reshaping force may destroy the deformed casing,and too small reshaping force may also prolong the construction period and affect the repairing effect.In this paper,based on Hertz contact theory and elastic-plastic theory,combined with the process parameters of shaping,and considering the structural characteristics of the deformed casing and reshaper,we propose a mathematical model for calculating the reshaping force required for repairing deformed casing by hydraulic rolling reshaper.Meanwhile,the finite element model and numerical method of hydraulic rolling reshaper repairing deformed casing are established by using the finite element method,and the reliability of the mathematical model is verified by several examples.On this basis,the control variable method is used to investigate the influence of each parameter on the reshaping force,and the influence degree of each parameter is explored by orthogonal simulation test and Pearson correlation analysis.The research results not only provide an important theoretical basis for the prediction of reshaping force in on-site construction,but also provide a reference for the subsequent improvement of the shaping process.
基金Supported by National Natural Science Foundation of China(Grant No.51275140)
文摘In non-conforming rolling contact, the contact stress is highly concentrated in the contact area. However, there are some limitations of the special contact model and stress model used for the theoretical study of the phenomenon, and this has prevented in-depth analysis of the associated friction, wear, and failure. This paper is particularly aimed at investigating the area of rolling contact between a sphere and a cone, for which purpose the boundary is determined by the Hertz theory and the geometries of the non-conforming surfaces. The phenomenon of stick-slip contact is observed to occur in the contact area under the condition of no-full-slip(Q 〈 μ·P). Using the two-dimensional rolling contact theory developed by CARTER, the relative positions of the stick and slip regions and the distribution of the tangential force over the contact area are analyzed. Furthermore, each stress component is calculated based on the Mc Ewen theory and the idea of narrow band. The stress equations for the three-dimensional rolling contact between the sphere and the cone are obtained by the principle of superposition, and are used to perform some numerical simulations. The results show that the stress components have a large gradient along the boundary between the stick and slip regions, and that the maximum stress is inversely proportional to the contact coefficient and proportional to the friction coefficient. A new method for investigating the stress during non-classical three-dimensional rolling contact is proposed as a theoretical foundation for the analysis of the associated friction, wear, and failure.
文摘Based on Hertz theory of elastic contact and the design theory of ball bearings, a new type of rolling coupling was designed. The two halves of the rolling coupling can be moved relatively by a small axial force when a great moment is exerted on it. The rolling coupling was used to connect the principal axis and the decelerator of continuous extrusion machine and it can greatly decrease the harmful axial forces on the continuous machine. The engineering formulas for the contact stress and distance of apporach of the rolling elements were deduced and the method for designing the rolling couplings was proposed. The formulas for the forces exerted on the rolling element were verified by the experiment.
基金Supported by Fundamental Research Funds for Central Universities(No.FRF-TP-12-067A)
文摘Rolling bearing is widely used in mechanical support, its general components are the inner ring, outer ring, the ball, retainer etc.. Now many companies in developed countries and university in the rolling bearing as the research object, and has made great progress in design theory, the experiment method and production technology etc. We will use the finite element ANSYS to establish the model of deep groove ball bearing. Through the contact analysis, we can get the contact stress between the rings and balls, strain, contact state, penetration, sliding distance and the friction stress distribution. These values are compared to the theoretical values with Hertz theory, and they have better consistency, provide the good theoretical basis for the optimization design of rolling bearings.
基金the Ministry of Higher Education (MOHE),Malaysia for providing financial support under Fundamental Research Grant Scheme
文摘The aim of this work was to determine the effect of formulation of alginate beads on their mechanical behavior and stiffness when compressed at high speed. The alginate beads were formulated using different types and concentrations of alginate and gelling cations and were produced using an extrusiondripping method, Single wet beads were compressed at a speed of 40 mm/min, and their elastic limits were investigated, and the corresponding force versus displacement data were obtained. The Young's moduli of the beads were determined from the force versus displacement data using the Hertz's contact mechanics theory. The alginate beads were found to exhibit plastic behavior when they were compressed beyond 50% with the exception of copper-alginate beads for which yield occured at lower deformation, Alginate beads made of higher guluronic acid contents and gelling cations of higher chemical affinity were found to have greater stiffness. Increasing the concentration of alginate and gelling ions also generated a similar effect. At such a compression speed, the values of Young's modulus of the beads were found to be in the range between 250 and 900 kPa depending on the bead formulation.
基金Financial supports by the Joint Fund for Basic Research of High-Speed Railways(U1734207)National Key Research and Development Plan(2017YFB0304500)+2 种基金National Natural Science Foundation of China(11572265)the Projects of Sichuan Province(Nos.2017JQ0019,2017HH0038)the Projects of Traction Power State Key Laboratory(Nos.TPL1606,2017TPL_T04)are acknowledged.
文摘The traditional Hertz contact theory has been widely used in solving contact problems.However,it is only applicable to the elastic contact,and cannot truly reflect the contact stress distribution and contact radius in the elasto-plastic contact.In this work,based on the Hertz contact theory,a fast solving method is proposed to calculate the contact stress distribution and contact radius in the elasto-plastic contact between two spheres.It is assumed that the elastic contact only occurs at the outer edge of contact patch and its contact stress distribution satisfies the Hertz contact theory,and the contact stress distribution at the inner edge of contact patch can be superimposed by a constant contact stress and several small ellipsoidal contact stress distributions.Moreover,based on the equivalent relation between the resultant force of contact stress and the normal external load,the contact radius in the elasto-plastic contact can be solved.Finally,an elasto-plastic contact example of two spheres is given based on the power-law hardening material model,and the influences of material parameters,contact radii and normal external loads on the accuracy of the proposed method are discussed by comparing the differences between the numerical results by finite element method and the predicted ones by the proposed method.It is shown that the proposed method can accurately calculate the maximum contact stress and contact radius in the elasto-plastic contact,and the relative errors of both maximum contact stress and contact radius are within±5%.To sum up,the proposed fast solving method can be applied to perform the elasto-plastic contact analysis in engineering practice.