[Objective]The aim was to analyze genetic diversity of SSR markers in Hordeum vulgare L.in Qinghai Province and lay a foundation for screening and protecting some excellent H.vulgare cultivars.[Method]SSR markers were...[Objective]The aim was to analyze genetic diversity of SSR markers in Hordeum vulgare L.in Qinghai Province and lay a foundation for screening and protecting some excellent H.vulgare cultivars.[Method]SSR markers were used to evaluate the genetic diversity of 42 cultivated H.vulgare from Qinghai Province.[Result]42 H.vulgare showed polymorphism in 7 SSR markers locus.A total of 24 alleles were identified,and the number of alleles per locus ranged from 1 to 6,with an average of 3.0.According to SSR markers polymorphism,42 H.vulgare could be divided into 4 groups,namely I,II,III and IV.[Result]The study indicated that cultivated H.vulgare from Qinghai Province is rich in genetic diversity,which will provide reference for selecting parent of H.vulgare breeding.展开更多
To understand genetic patterns of the morphological and physiological traits in flag leaf of barley, a double haploid (DH) population derived from the parents Yerong and Franklin was used to determine quantitative t...To understand genetic patterns of the morphological and physiological traits in flag leaf of barley, a double haploid (DH) population derived from the parents Yerong and Franklin was used to determine quantitative trait loci (QTL) controlling length, width, length/width, and chlorophyll content of flag leaves. A total of 9 QTLs showing significantly additive effect were detected in 8 intervals on 5 chromosomes. The variation of individual QTL ranged from 1.9% to 20.2%. For chlorophyll content expressed as SPAD value, 4 QTLs were identified on chromosomes 2H, 3H and 6H; for leaf length and width, 2 QTLs located on chromosomes 5H and 7H, and 2 QTLs located on chromosome 5H were detected; and for length/width, I QTL was detected on chromosome 7H. The identification of these QTLs associated with the properties of flag leaf is useful for barley improvement in breeding programs.展开更多
Hordeum bulbosum L., a wild relative of barley (Hordeum vulgare L.), has been considered as a valuable source of genetic diversity for barley improvement. Since the 1990s, a considerable number of barley/H, bulbosum...Hordeum bulbosum L., a wild relative of barley (Hordeum vulgare L.), has been considered as a valuable source of genetic diversity for barley improvement. Since the 1990s, a considerable number of barley/H, bulbosum introgression lines (IL)s has been generated, with segments introgressed from H. bulbosum harboring a diverse set of desirable traits. However, the efficient utilization of these ILs has been hampered, largely due to the lack of suitable molecular tools for their genetic characterization and highly reduced interspecific recombination frequencies in the region of the introgression. In the present study, we utilized genotyping-by-sequencing for the detailed molecular characterization of 145 ILs. Genotypic information allows the genetic diversity within the set of ILs to be determined and a strategy was outlined to tackle the obstacle of reduced recombination frequencies. Furthermore, we compiled exome capture re-sequencing information of barley and H. bulbosum and designed an integrated barley/ H. bulbosum sequence resource with polymorphism information on interspecific and intraspecific sequence variations of both species. The integrated sequence will be valuable for marker development in barley/H, bulbosum ILs derived from any barley and H. bulbosum donors. This study provides the tools for the widespread utilization of barley/H, bulbosum ILs in applied barley breeding and academic research.展开更多
Barley(Hordeum vulgare L.)grasses(BG)have attracted considerable interest due to their multiple physiological activities and health benefits.In this paper,eight BG at four different growth stages were collected:seedli...Barley(Hordeum vulgare L.)grasses(BG)have attracted considerable interest due to their multiple physiological activities and health benefits.In this paper,eight BG at four different growth stages were collected:seedling,tillering,stem elongation,and heading,and their product qualities and biological activities were examined and studied.Results demonstrated that harvest time obviously influenced proximate composition,surface color,and amino acid profile.Z21 and Z23 harvested at the seedling and early tillering stages,respectively,had higher total phenolic content(TPC)and total flavonoid content(TFC)than the other BG.Moreover,Z21 and Z23 possessed better DPPH radical-scavenging ability,antioxidant capacity,andα-glucosidase inhibitory activity,which were positively correlated with TPC,TFC,and protein and total amino acid contents.Our findings suggested that the early tillering stages were the preferable harvest times for BG with good product quality and biological properties.展开更多
Plant formation from in vitro-cultivated microspores involves a complex network of internal and environmental factors.Haploids/doubled haploids(DHs)derived from in vitro-cultured microspores are widely used in plant b...Plant formation from in vitro-cultivated microspores involves a complex network of internal and environmental factors.Haploids/doubled haploids(DHs)derived from in vitro-cultured microspores are widely used in plant breeding and genetic engineering.However,the mechanism underlying the developmental switch from regular pollen maturation towards microspore-derived plant regeneration remains poorly defined.Here,RNA-sequencing was employed to elucidate the transcriptional landscapes of four early stages of microspore embryogenesis(ME)in barley cultivars Golden Promise and Igri,which exhibit contrasting responsiveness to microspore-derived plant formation.Our experiments revealed fundamental regulatory networks,specific groups of genes,and transcription factor(TF)families potentially regulating the developmental switch.We identified a set of candidate genes crucial for genotype-dependent responsiveness/recalcitrance to ME.Our high-resolution temporal transcriptome atlas provides an important resource for future functional studies on the genetic control of microspore developmental transition.展开更多
Barley(Hordeum vulgare L.)is an important economic crop for food,feed and industrial raw materials.In the present research,112 barley landraces from the Shanghai region were genotyped using genotyping-by-sequencing(GB...Barley(Hordeum vulgare L.)is an important economic crop for food,feed and industrial raw materials.In the present research,112 barley landraces from the Shanghai region were genotyped using genotyping-by-sequencing(GBS),and the genetic diversity and population structure were analyzed.The results showed that 210,268 Single Nucleotide Polymorphisms(SNPs)were present in total,and the average poly-morphism information content(PIC)was 0.1642.Genetic diversity and population structure analyses suggested that these barley landraces were differentiated and could be divided into three sub-groups,with morphological traits of row-type and adherence of the hulls the main distinguishing factors between groups.Genotypes with similar or duplicated names were also investigated according to their genetic backgrounds and seed appearances.This study provided valuable information on barley landraces from the Shanghai region,and showed that all these barley landraces should be protected and used for future breeding programs.展开更多
Plant growth rate (GR), contents of free polyamines (fPAs) and bound polyamines (bPAs) and activities of some key enzymes involved in polyamine (PA) metabolism in the roots of two barley (Hordeum valgare L.) cultivars...Plant growth rate (GR), contents of free polyamines (fPAs) and bound polyamines (bPAs) and activities of some key enzymes involved in polyamine (PA) metabolism in the roots of two barley (Hordeum valgare L.) cultivars differing in salt sensitivity were investigated with 0-300 mmol/L NaCl treatments. With 0-200 mmol/L NaCl treatments, activities of arginine decarboxylase (ADC) and transglutaminase (TGase) and PA oxidase (PAO) in the roots of barley seedlings all increased, while TGase and PAO activities decreased slightly at 300 mmol/L NaCl. As a result, free Put (fPut) content increased continuously with increasing concentrations of NaCl, while levels of free Spd (fSpd) and an unknown PA (fPAx) and bPAs (bPut, bSpd and bPAx), as well as (fSpd + fPAx)/fPut ratio rose at 50-200 mmol/L NaCl and reduced at 300 mmol/L NaCl. However, no significant change in the tetra-amine spermine (Spin) content was observed. Statistical analysis showed that GR was very significantly positively correlated with (fSpd + fPAx)/fPut ratios and the contents of bPAs, whereas a significant inverse correlation existed between GR and the ratios of fPA contents to bPA levels. These results showed that, under salt stress, the balance between fSpd, fPAx and fPut levels and an equipoise between fPA and bPA contents in roots were important to salt tolerance of barley seedlings.展开更多
基金Supported by National Science and Technology Support Projects(2007BAD64B01)~~
文摘[Objective]The aim was to analyze genetic diversity of SSR markers in Hordeum vulgare L.in Qinghai Province and lay a foundation for screening and protecting some excellent H.vulgare cultivars.[Method]SSR markers were used to evaluate the genetic diversity of 42 cultivated H.vulgare from Qinghai Province.[Result]42 H.vulgare showed polymorphism in 7 SSR markers locus.A total of 24 alleles were identified,and the number of alleles per locus ranged from 1 to 6,with an average of 3.0.According to SSR markers polymorphism,42 H.vulgare could be divided into 4 groups,namely I,II,III and IV.[Result]The study indicated that cultivated H.vulgare from Qinghai Province is rich in genetic diversity,which will provide reference for selecting parent of H.vulgare breeding.
基金supported by the National Natural Science Foundation of China (No. 30630047) the Project on Absorption of Intellects by Institutions of Higher Education for Academic Disciplinary Innova-tions (the 111 Project) (No. B06014), China
文摘To understand genetic patterns of the morphological and physiological traits in flag leaf of barley, a double haploid (DH) population derived from the parents Yerong and Franklin was used to determine quantitative trait loci (QTL) controlling length, width, length/width, and chlorophyll content of flag leaves. A total of 9 QTLs showing significantly additive effect were detected in 8 intervals on 5 chromosomes. The variation of individual QTL ranged from 1.9% to 20.2%. For chlorophyll content expressed as SPAD value, 4 QTLs were identified on chromosomes 2H, 3H and 6H; for leaf length and width, 2 QTLs located on chromosomes 5H and 7H, and 2 QTLs located on chromosome 5H were detected; and for length/width, I QTL was detected on chromosome 7H. The identification of these QTLs associated with the properties of flag leaf is useful for barley improvement in breeding programs.
文摘Hordeum bulbosum L., a wild relative of barley (Hordeum vulgare L.), has been considered as a valuable source of genetic diversity for barley improvement. Since the 1990s, a considerable number of barley/H, bulbosum introgression lines (IL)s has been generated, with segments introgressed from H. bulbosum harboring a diverse set of desirable traits. However, the efficient utilization of these ILs has been hampered, largely due to the lack of suitable molecular tools for their genetic characterization and highly reduced interspecific recombination frequencies in the region of the introgression. In the present study, we utilized genotyping-by-sequencing for the detailed molecular characterization of 145 ILs. Genotypic information allows the genetic diversity within the set of ILs to be determined and a strategy was outlined to tackle the obstacle of reduced recombination frequencies. Furthermore, we compiled exome capture re-sequencing information of barley and H. bulbosum and designed an integrated barley/ H. bulbosum sequence resource with polymorphism information on interspecific and intraspecific sequence variations of both species. The integrated sequence will be valuable for marker development in barley/H, bulbosum ILs derived from any barley and H. bulbosum donors. This study provides the tools for the widespread utilization of barley/H, bulbosum ILs in applied barley breeding and academic research.
基金This work was supported financially by the National Natural Science Foundation of China(31671812)China Agriculture Research System of MOF and MARA(CARS-05-01A-02)the program from Institute of Science and Technology Innovation,DGUT(KCYCXPT2017007).Finally,the authors would like to extend thanks to Prof.Hang Xiao from University of Massachusetts for his continuous advice.
文摘Barley(Hordeum vulgare L.)grasses(BG)have attracted considerable interest due to their multiple physiological activities and health benefits.In this paper,eight BG at four different growth stages were collected:seedling,tillering,stem elongation,and heading,and their product qualities and biological activities were examined and studied.Results demonstrated that harvest time obviously influenced proximate composition,surface color,and amino acid profile.Z21 and Z23 harvested at the seedling and early tillering stages,respectively,had higher total phenolic content(TPC)and total flavonoid content(TFC)than the other BG.Moreover,Z21 and Z23 possessed better DPPH radical-scavenging ability,antioxidant capacity,andα-glucosidase inhibitory activity,which were positively correlated with TPC,TFC,and protein and total amino acid contents.Our findings suggested that the early tillering stages were the preferable harvest times for BG with good product quality and biological properties.
基金funded by National Science Center in Poland Grant (2015/18/M/NZ3/00348) to Iwona·Zursupported by Czech Science Foundation Grant (21-02929S) to Ales Pecinka+2 种基金European Regional Development Fund project TANGENC (CZ.02.01.01/00/ 22_008/0004581)funded by Ad Agri F (CZ.02.01.01/00/22_008/0004635)supplied by the project “e-Infrastruktura CZ” (e-INFRA CZ LM2018140) supported by the Ministry of Education, Youth and Sports of the Czech Republic
文摘Plant formation from in vitro-cultivated microspores involves a complex network of internal and environmental factors.Haploids/doubled haploids(DHs)derived from in vitro-cultured microspores are widely used in plant breeding and genetic engineering.However,the mechanism underlying the developmental switch from regular pollen maturation towards microspore-derived plant regeneration remains poorly defined.Here,RNA-sequencing was employed to elucidate the transcriptional landscapes of four early stages of microspore embryogenesis(ME)in barley cultivars Golden Promise and Igri,which exhibit contrasting responsiveness to microspore-derived plant formation.Our experiments revealed fundamental regulatory networks,specific groups of genes,and transcription factor(TF)families potentially regulating the developmental switch.We identified a set of candidate genes crucial for genotype-dependent responsiveness/recalcitrance to ME.Our high-resolution temporal transcriptome atlas provides an important resource for future functional studies on the genetic control of microspore developmental transition.
基金funded by the Shanghai Agriculture Applied Technology Development Program(Grant No.2019-02-08-00-08-F01109)the Climbing Plan(Grant No.PG22211)and the Ear-Marked Fund for CARS(Grant No.CARS-05-01A-02)N.G.H.is supported at Rothamsted Research by the Biotechnology and Biological Sciences Research Council(BBSRC)via the Designing Future Wheat Programme(BB/P016855/1).
文摘Barley(Hordeum vulgare L.)is an important economic crop for food,feed and industrial raw materials.In the present research,112 barley landraces from the Shanghai region were genotyped using genotyping-by-sequencing(GBS),and the genetic diversity and population structure were analyzed.The results showed that 210,268 Single Nucleotide Polymorphisms(SNPs)were present in total,and the average poly-morphism information content(PIC)was 0.1642.Genetic diversity and population structure analyses suggested that these barley landraces were differentiated and could be divided into three sub-groups,with morphological traits of row-type and adherence of the hulls the main distinguishing factors between groups.Genotypes with similar or duplicated names were also investigated according to their genetic backgrounds and seed appearances.This study provided valuable information on barley landraces from the Shanghai region,and showed that all these barley landraces should be protected and used for future breeding programs.
文摘Plant growth rate (GR), contents of free polyamines (fPAs) and bound polyamines (bPAs) and activities of some key enzymes involved in polyamine (PA) metabolism in the roots of two barley (Hordeum valgare L.) cultivars differing in salt sensitivity were investigated with 0-300 mmol/L NaCl treatments. With 0-200 mmol/L NaCl treatments, activities of arginine decarboxylase (ADC) and transglutaminase (TGase) and PA oxidase (PAO) in the roots of barley seedlings all increased, while TGase and PAO activities decreased slightly at 300 mmol/L NaCl. As a result, free Put (fPut) content increased continuously with increasing concentrations of NaCl, while levels of free Spd (fSpd) and an unknown PA (fPAx) and bPAs (bPut, bSpd and bPAx), as well as (fSpd + fPAx)/fPut ratio rose at 50-200 mmol/L NaCl and reduced at 300 mmol/L NaCl. However, no significant change in the tetra-amine spermine (Spin) content was observed. Statistical analysis showed that GR was very significantly positively correlated with (fSpd + fPAx)/fPut ratios and the contents of bPAs, whereas a significant inverse correlation existed between GR and the ratios of fPA contents to bPA levels. These results showed that, under salt stress, the balance between fSpd, fPAx and fPut levels and an equipoise between fPA and bPA contents in roots were important to salt tolerance of barley seedlings.