Based on the theory of grain boundary segregation, a kinetics model of temper em-brittlement caused by long-term service for hot-wall hydrofining reactors was studied.The kinetics model was applied to phosphorus (P) s...Based on the theory of grain boundary segregation, a kinetics model of temper em-brittlement caused by long-term service for hot-wall hydrofining reactors was studied.The kinetics model was applied to phosphorus (P) segregation in 2.25Cr-1Mo steelused for a hot-wall hydrofining reactor, and the kinetics of grain boundary segrea-tion of impurity P in the steel exposed to the process environment of the hydrofiningreactor was calculated on the basis of the model. The Auger electron spectroscopytest was performed in order to determine the grain boundary concentration of P. Theexperimental result is agreement with the theoretical calculated data. The results showthat the kinetics equation is reasonable for predicting the levels of grain boundarysegregation of impurity P in 2.25Cr-1Mo steel used for hot-wall hydrofining reactors.展开更多
The effects of phosphorus on the structure and hydrofining performance of tri-metallic WMoNi/Al2O3 catalysts prepared with W/Mo-based hybrid precursor nanocrystals were investigated. The incorporation of phosphorus we...The effects of phosphorus on the structure and hydrofining performance of tri-metallic WMoNi/Al2O3 catalysts prepared with W/Mo-based hybrid precursor nanocrystals were investigated. The incorporation of phosphorus weakened the metal-support interactions (MSIs) and facilitated the formation of more synergetic NiWMoS phases with higher stacks. Catalytic tests using a fluid catalytic cracking diesel fuel showed that the changes in the MSIs and the morphology of the active phases had a more positive effect on the hydrodenitrogenation activity than on the hydrodesulfurization activity. In contrast, when phosphorus was incorporated into a tri-metallic WMoNiP/Al2O3 catalyst prepared by a conventional incipient impregnation method, the MSIs decreased causing aggregation of the metal species which resulted in poorer hydrofining performance of the catalyst. These results show that incorporating phosphorus into a WMoNi/Al2O3 catalyst can finely tune the structure of the active phase to enhance the hydrogenation and hydrodenitrogenation activity of the resulting tri-metallic catalyst.展开更多
文摘Based on the theory of grain boundary segregation, a kinetics model of temper em-brittlement caused by long-term service for hot-wall hydrofining reactors was studied.The kinetics model was applied to phosphorus (P) segregation in 2.25Cr-1Mo steelused for a hot-wall hydrofining reactor, and the kinetics of grain boundary segrea-tion of impurity P in the steel exposed to the process environment of the hydrofiningreactor was calculated on the basis of the model. The Auger electron spectroscopytest was performed in order to determine the grain boundary concentration of P. Theexperimental result is agreement with the theoretical calculated data. The results showthat the kinetics equation is reasonable for predicting the levels of grain boundarysegregation of impurity P in 2.25Cr-1Mo steel used for hot-wall hydrofining reactors.
基金Acknowledgements We gratefully acknowledge the support from the National Natural Science Foundation of China (Grant Nos. U1462203 and 21106182).
文摘The effects of phosphorus on the structure and hydrofining performance of tri-metallic WMoNi/Al2O3 catalysts prepared with W/Mo-based hybrid precursor nanocrystals were investigated. The incorporation of phosphorus weakened the metal-support interactions (MSIs) and facilitated the formation of more synergetic NiWMoS phases with higher stacks. Catalytic tests using a fluid catalytic cracking diesel fuel showed that the changes in the MSIs and the morphology of the active phases had a more positive effect on the hydrodenitrogenation activity than on the hydrodesulfurization activity. In contrast, when phosphorus was incorporated into a tri-metallic WMoNiP/Al2O3 catalyst prepared by a conventional incipient impregnation method, the MSIs decreased causing aggregation of the metal species which resulted in poorer hydrofining performance of the catalyst. These results show that incorporating phosphorus into a WMoNi/Al2O3 catalyst can finely tune the structure of the active phase to enhance the hydrogenation and hydrodenitrogenation activity of the resulting tri-metallic catalyst.