Multi-modal histological image registration tasks pose significant challenges due to tissue staining operations causing partial loss and folding of tissue.Convolutional neural network(CNN)and generative adversarial ne...Multi-modal histological image registration tasks pose significant challenges due to tissue staining operations causing partial loss and folding of tissue.Convolutional neural network(CNN)and generative adversarial network(GAN)are pivotal inmedical image registration.However,existing methods often struggle with severe interference and deformation,as seen in histological images of conditions like Cushing’s disease.We argue that the failure of current approaches lies in underutilizing the feature extraction capability of the discriminator inGAN.In this study,we propose a novel multi-modal registration approach GAN-DIRNet based on GAN for deformable histological image registration.To begin with,the discriminators of two GANs are embedded as a new dual parallel feature extraction module into the unsupervised registration networks,characterized by implicitly extracting feature descriptors of specific modalities.Additionally,modal feature description layers and registration layers collaborate in unsupervised optimization,facilitating faster convergence and more precise results.Lastly,experiments and evaluations were conducted on the registration of the Mixed National Institute of Standards and Technology database(MNIST),eight publicly available datasets of histological sections and the Clustering-Registration-Classification-Segmentation(CRCS)dataset on the Cushing’s disease.Experimental results demonstrate that our proposed GAN-DIRNet method surpasses existing approaches like DIRNet in terms of both registration accuracy and time efficiency,while also exhibiting robustness across different image types.展开更多
Many deep learning-based registration methods rely on a single-stream encoder-decoder network for computing deformation fields between 3D volumes.However,these methods often lack constraint information and overlook se...Many deep learning-based registration methods rely on a single-stream encoder-decoder network for computing deformation fields between 3D volumes.However,these methods often lack constraint information and overlook semantic consistency,limiting their performance.To address these issues,we present a novel approach for medical image registration called theDual-VoxelMorph,featuring a dual-channel cross-constraint network.This innovative network utilizes both intensity and segmentation images,which share identical semantic information and feature representations.Two encoder-decoder structures calculate deformation fields for intensity and segmentation images,as generated by the dual-channel cross-constraint network.This design facilitates bidirectional communication between grayscale and segmentation information,enabling the model to better learn the corresponding grayscale and segmentation details of the same anatomical structures.To ensure semantic and directional consistency,we introduce constraints and apply the cosine similarity function to enhance semantic consistency.Evaluation on four public datasets demonstrates superior performance compared to the baselinemethod,achieving Dice scores of 79.9%,64.5%,69.9%,and 63.5%for OASIS-1,OASIS-3,LPBA40,and ADNI,respectively.展开更多
To develop a quick, accurate and antinoise automated image registration technique for infrared images, the wavelet analysis technique was used to extract the feature points in two images followed by the compensation f...To develop a quick, accurate and antinoise automated image registration technique for infrared images, the wavelet analysis technique was used to extract the feature points in two images followed by the compensation for input image with angle difference between them. A hi erarchical feature matching algorithm was adopted to get the final transform parameters between the two images. The simulation results for two infrared images show that the method can effectively, quickly and accurately register images and be antinoise to some extent.展开更多
A methodology for alignment of an X-ray image and a CT image, based on the Chamfer 3-4 distance transform and simulated annealing optimization algorithm is presented. Firstly, an initial transformation matrix is const...A methodology for alignment of an X-ray image and a CT image, based on the Chamfer 3-4 distance transform and simulated annealing optimization algorithm is presented. Firstly, an initial transformation matrix is constructed. For the convenience of computing, geometric models of the X-ray device to reconstruct the calibration matrix are used. Then, by defining the distance between the 3-D protective and the 2-D object image, we optimize this distance matching problem, using the simulated annealing algorithm. This method is also integrated into medical intra-operation, dealing with the data set acquired from 3-D image workstation and active navigation.展开更多
Technique s for constructing full view panoramic mosaics from sequences of images are pres ented. The goal of this work is to remove too many limitations for pure panning motion. The best reference block is important...Technique s for constructing full view panoramic mosaics from sequences of images are pres ented. The goal of this work is to remove too many limitations for pure panning motion. The best reference block is important for the block-matching method for improving the robustness and performance. It is automatically selected in the h igh-frequency image, which always contains the plenty visible features. In orde r to reduce accumulated registration errors, the global registration using the p hase-correlation matching method with rotation adjustment is applied to the who le sequence of images, which results in an optimal image mosaic with resolving t ranslational or rotational motion. The local registration using the Levenberg-M arquardt iterative non-linear minimization algorithm is applied to compensating for small amounts of motion parallax introduced by translations of the camera a nd other unmodeled distortions, then minimizing the discrepancy after applying t he global registration. The accumulated misregistration errors may cause a visib le gap between the two images. A smoothing filter is introduced for removing the visible artifact.展开更多
A novel algorithm of 3-D surface image registration is proposed. It makes use of the array information of 3-D points and takes vector/vertex-like features as the basis of the matching. That array information of 3-D po...A novel algorithm of 3-D surface image registration is proposed. It makes use of the array information of 3-D points and takes vector/vertex-like features as the basis of the matching. That array information of 3-D points can be easily obtained when capturing original 3-D images. The iterative least-mean-squared (LMS) algorithm is applied to optimizing adaptively the transformation matrix parameters. These can effectively improve the registration performance and hurry up the matching process. Experimental results show that it can reach a good subjective impression on aligned 3-D images. Although the algorithm focuses primarily on the human head model, it can also be used for other objects with small modifications.展开更多
Mutual information is widely used in medical image registration, because it does not require preprocessing the image. However, the local maximum problem in the registration is insurmountable. We combine mutual informa...Mutual information is widely used in medical image registration, because it does not require preprocessing the image. However, the local maximum problem in the registration is insurmountable. We combine mutual information and gradient information to solve this problem and apply it to the non-rigid deformation image registration. To improve the accuracy, we provide some implemental issues, for example, the Powell searching algorithm, gray interpolation and consideration of outlier points. The experimental results show the accuracy of the method and the feasibility in non-rigid medical image registration.展开更多
Point features, as the basis of lines, surfaces, and bodies, are commonly used in medical image registration. To obtain an elegant spatial transformation of extracted feature points, many point set matching algorithms...Point features, as the basis of lines, surfaces, and bodies, are commonly used in medical image registration. To obtain an elegant spatial transformation of extracted feature points, many point set matching algorithms(PMs) have been developed to match two point sets by optimizing multifarious distance functions. There are ample reviews related to medical image registration and PMs which summarize their basic principles and main algorithms separately. However,to data, detailed summary of PMs used in medical image registration in different clinical environments has not been published. In this paper, we provide a comprehensive review of the existing key techniques of the PMs applied to medical image registration according to the basic principles and clinical applications. As the core technique of the PMs, geometric transformation models are elaborated in this paper, demonstrating the mechanism of point set registration. We also focus on the clinical applications of the PMs and propose a practical classification method according to their applications in different clinical surgeries. The aim of this paper is to provide a summary of pointfeaturebased methods used in medical image registration and to guide doctors or researchers interested in this field to choose appropriate techniques in their research.展开更多
Image fusion aims to integrate complementary information in source images to synthesize a fused image comprehensively characterizing the imaging scene. However, existing image fusion algorithms are only applicable to ...Image fusion aims to integrate complementary information in source images to synthesize a fused image comprehensively characterizing the imaging scene. However, existing image fusion algorithms are only applicable to strictly aligned source images and cause severe artifacts in the fusion results when input images have slight shifts or deformations. In addition,the fusion results typically only have good visual effect, but neglect the semantic requirements of high-level vision tasks.This study incorporates image registration, image fusion, and semantic requirements of high-level vision tasks into a single framework and proposes a novel image registration and fusion method, named Super Fusion. Specifically, we design a registration network to estimate bidirectional deformation fields to rectify geometric distortions of input images under the supervision of both photometric and end-point constraints. The registration and fusion are combined in a symmetric scheme, in which while mutual promotion can be achieved by optimizing the naive fusion loss, it is further enhanced by the mono-modal consistent constraint on symmetric fusion outputs. In addition, the image fusion network is equipped with the global spatial attention mechanism to achieve adaptive feature integration. Moreover, the semantic constraint based on the pre-trained segmentation model and Lovasz-Softmax loss is deployed to guide the fusion network to focus more on the semantic requirements of high-level vision tasks. Extensive experiments on image registration, image fusion,and semantic segmentation tasks demonstrate the superiority of our Super Fusion compared to the state-of-the-art alternatives.The source code and pre-trained model are publicly available at https://github.com/Linfeng-Tang/Super Fusion.展开更多
This paper presents a novel medical image registration algorithm named total variation constrained graphregularization for non-negative matrix factorization(TV-GNMF).The method utilizes non-negative matrix factorizati...This paper presents a novel medical image registration algorithm named total variation constrained graphregularization for non-negative matrix factorization(TV-GNMF).The method utilizes non-negative matrix factorization by total variation constraint and graph regularization.The main contributions of our work are the following.First,total variation is incorporated into NMF to control the diffusion speed.The purpose is to denoise in smooth regions and preserve features or details of the data in edge regions by using a diffusion coefficient based on gradient information.Second,we add graph regularization into NMF to reveal intrinsic geometry and structure information of features to enhance the discrimination power.Third,the multiplicative update rules and proof of convergence of the TV-GNMF algorithm are given.Experiments conducted on datasets show that the proposed TV-GNMF method outperforms other state-of-the-art algorithms.展开更多
The proposed algorithm relies on a group of new formulas for calculating tangent slope so as to address angle feature of edge curves of image. It can utilize tangent angle features to estimate automatically and fully ...The proposed algorithm relies on a group of new formulas for calculating tangent slope so as to address angle feature of edge curves of image. It can utilize tangent angle features to estimate automatically and fully the rotation parameters of geometric transform and enable rough matching of images with huge rotation difference. After angle compensation, it can search for matching point sets by correlation criterion, then calculate parameters of affine transform, enable higher-precision emendation of rotation and transferring. Finally, it fulfills precise matching for images with relax-tense iteration method. Compared with the registration approach based on wavelet direction-angle features, the matching algorithm with tangent feature of image edge is more robust and realizes precise registration of various images. Furthermore, it is also helpful in graphics matching.展开更多
Multi-sensor image registration has been widely used in remote sensing and medical image field, but registration performance is degenerated when heterogeneous images are involved. An image registration method based on...Multi-sensor image registration has been widely used in remote sensing and medical image field, but registration performance is degenerated when heterogeneous images are involved. An image registration method based on multi-resolution shape analysis is proposed in this paper, to deal with the problem that the shape of similar objects is always invariant. The contours of shapes are first detected as visual features using an extended contour search algorithm in order to reduce effects of noise, and the multi-resolution shape descriptor is constructed through Fourier curvature representation of the contour’s chain code. Then a minimum distance function is used to judge the similarity between two contours. To avoid the effect of different resolution and intensity distribution, suitable resolution of each image is selected by maximizing the consistency of its pyramid shapes. Finally, the transformation parameters are estimated based on the matched control-point pairs which are the centers of gravity of the closed contours. Multi-sensor Landsat TM imagery and infrared imagery have been used as experimental data for comparison with the classical contour-based registration. Our results have been shown to be superior to the classical ones.展开更多
Homologous feature point extraction is a key problem in the optical and synthetic aperture radar (SAR) image registration for islands. A new feature point extraction method using a threshold shrink operator and non-...Homologous feature point extraction is a key problem in the optical and synthetic aperture radar (SAR) image registration for islands. A new feature point extraction method using a threshold shrink operator and non-subsampled wavelet transform (TSO-NSWT) for optical and SAR image registration was proposed. Moreover, the matching for this proposed feature was different from the traditional feature matching strategies and was performed using a similarity measure computed from neighborhood circles in low-frequency bands. Then, a number of reliably matched couples with even distributions were obtained, which assured the accuracy of the registration. Application of the proposed algorithm to SPOT-5 (multi-spectral) and YG-1 (SAR) images showed that a large number of accurately matched couples could be identified. Additionally, both of the root mean square error (RMSE) patterns of the registration parameters computed based on the TSO-NSWT algorithm and traditional NSWT algorithm were analyzed and compared, which further demonstrated the effectiveness of the proposed algorithm. The algorithm can supply the crucial step for island image registration and island recognition.展开更多
A new coarse-to-fine strategy was proposed for nonrigid registration of computed tomography(CT) and magnetic resonance(MR) images of a liver.This hierarchical framework consisted of an affine transformation and a B-sp...A new coarse-to-fine strategy was proposed for nonrigid registration of computed tomography(CT) and magnetic resonance(MR) images of a liver.This hierarchical framework consisted of an affine transformation and a B-splines free-form deformation(FFD).The affine transformation performed a rough registration targeting the mismatch between the CT and MR images.The B-splines FFD transformation performed a finer registration by correcting local motion deformation.In the registration algorithm,the normalized mutual information(NMI) was used as similarity measure,and the limited memory Broyden-Fletcher- Goldfarb-Shannon(L-BFGS) optimization method was applied for optimization process.The algorithm was applied to the fully automated registration of liver CT and MR images in three subjects.The results demonstrate that the proposed method not only significantly improves the registration accuracy but also reduces the running time,which is effective and efficient for nonrigid registration.展开更多
This paper aims at providing multi-source remote sensing images registered in geometric space for image fusion.Focusing on the characteristics and differences of multi-source remote sensing images,a feature-based regi...This paper aims at providing multi-source remote sensing images registered in geometric space for image fusion.Focusing on the characteristics and differences of multi-source remote sensing images,a feature-based registration algorithm is implemented.The key technologies include image scale-space for implementing multi-scale properties,Harris corner detection for keypoints extraction,and partial intensity invariant feature descriptor(PIIFD)for keypoints description.Eventually,a multi-scale Harris-PIIFD image registration algorithm framework is proposed.The experimental results of fifteen sets of representative real data show that the algorithm has excellent,stable performance in multi-source remote sensing image registration,and can achieve accurate spatial alignment,which has strong practical application value and certain generalization ability.展开更多
Presence of higher breast density(BD)and persistence over time are risk factors for breast cancer.A quantitatively accurate and highly reproducible BD measure that relies on precise and reproducible whole-breast segme...Presence of higher breast density(BD)and persistence over time are risk factors for breast cancer.A quantitatively accurate and highly reproducible BD measure that relies on precise and reproducible whole-breast segmentation is desirable.In this study,we aimed to develop a highly reproducible and accurate whole-breast segmentation algorithm for the generation of reproducible BD measures.Three datasets of volunteers from two clinical trials were included.Breast MR images were acquired on 3T Siemens Biograph mMR,Prisma,and Skyra using 3D Cartesian six-echo GRE sequences with a fat-water separation technique.Two whole-breast segmentation strategies,utiliz-ing image registration and 3D U-Net,were developed.Manual segmentation was performed.A task-based analysis was performed:a previously developed MR-based BD measure,MagDensity,was calculated and assessed using automated and manual segmentation.The mean squared error(MSE)and intraclass correlation coefficient(ICC)between MagDensity were evaluated using the manual segmentation as a reference.The test-retest reproducibility of MagDensity derived from different breast segmentation methods was assessed using the difference between the test and retest measures(Δ_(2-1)),MSE,and ICC.The results showed that MagDensity derived by the registration and deep learning segmentation methods exhibited high concordance with manual segmentation,with ICCs of 0.986(95%CI:0.974-0.993)and 0.983(95%CI:0.961-0.992),respectively.For test-retest analysis,MagDensity derived using the regis-tration algorithm achieved the smallest MSE of 0.370 and highest ICC of 0.993(95%CI:0.982-0.997)when compared to other segmentation methods.In conclusion,the proposed registration and deep learning whole-breast segmentation methods are accurate and reliable for estimating BD.Both methods outperformed a previously developed algorithm and manual segmentation in the test-retest assessment,with the registration exhibiting superior performance for highly reproducible BD measurements.展开更多
Medical image registration is important in many medical applications. Registration method based on maximization of mutual information of voxel intensities is one of the most popular methods for 3-D multi-modality medi...Medical image registration is important in many medical applications. Registration method based on maximization of mutual information of voxel intensities is one of the most popular methods for 3-D multi-modality medical image registration. Generally, the optimization process is easily trapped in local maximum, resulting in wrong registration results. In order to find the correct optimum, a new multi-resolution approach for brain image registration based on normalized mutual information is proposed. In this method, to eliminate the effect of local optima, multi-scale wavelet transformation is adopted to extract the image edge features. Then the feature images are registered, and the result at this level is taken as the initial estimate for the registration of the original images. Three-dimensional volumes are used to test the algorithm. Experimental results show that the registration strategy proposed is a robust and efficient method which can reach sub-voxel accuracy and improve the optimization speed.展开更多
This paper presents a closed-form robust phase correlation based algorithm for performing image registration to subpixel accuracy.The subpixel translational shift information is directly obtained from the phase of the...This paper presents a closed-form robust phase correlation based algorithm for performing image registration to subpixel accuracy.The subpixel translational shift information is directly obtained from the phase of the normalized cross power spectrum by using Maximum Likelihood Estimation(MLE).The proposed algorithm also has slighter time complexity.Experimental results show that the proposed algorithm yields superior registration precision on the Cramér-Rao Bound(CRB) in the presence of aliasing and noise.展开更多
Multispectral imaging (MSI) technique is often used to capture imagesof the fundus by illuminating it with different wavelengths of light. However,these images are taken at different points in time such that eyeball m...Multispectral imaging (MSI) technique is often used to capture imagesof the fundus by illuminating it with different wavelengths of light. However,these images are taken at different points in time such that eyeball movementscan cause misalignment between consecutive images. The multispectral imagesequence reveals important information in the form of retinal and choroidal bloodvessel maps, which can help ophthalmologists to analyze the morphology of theseblood vessels in detail. This in turn can lead to a high diagnostic accuracy of several diseases. In this paper, we propose a novel semi-supervised end-to-end deeplearning framework called “Adversarial Segmentation and Registration Nets”(ASRNet) for the simultaneous estimation of the blood vessel segmentation andthe registration of multispectral images via an adversarial learning process. ASRNet consists of two subnetworks: (i) A segmentation module S that fulfills theblood vessel segmentation task, and (ii) A registration module R that estimatesthe spatial correspondence of an image pair. Based on the segmention-drivenregistration network, we train the segmentation network using a semi-supervisedadversarial learning strategy. Our experimental results show that the proposedASRNet can achieve state-of-the-art accuracy in segmentation and registrationtasks performed with real MSI datasets.展开更多
The mean Hausdorff distance, though highly applicable in image registration, does not work well on partial matching images. An improvement upon traditional Hausdorff-distance-based image registration method is propose...The mean Hausdorff distance, though highly applicable in image registration, does not work well on partial matching images. An improvement upon traditional Hausdorff-distance-based image registration method is proposed, which consists of the following two aspects. One is to estimate transformation parameters between two images from the distributions of geometric property differences instead of establishing explicit feature correspondences. This procedure is treated as the pre-registration. The other aspect is that mean Hausdorff distance computation is replaced with the analysis of the second difference of generalized Hausdorff distance so as to eliminate the redundant points. Experimental results show that our registration method outperforms the method based on mean Hausdorff distance. The registration errors are noticeably reduced in the partial matching images.展开更多
文摘Multi-modal histological image registration tasks pose significant challenges due to tissue staining operations causing partial loss and folding of tissue.Convolutional neural network(CNN)and generative adversarial network(GAN)are pivotal inmedical image registration.However,existing methods often struggle with severe interference and deformation,as seen in histological images of conditions like Cushing’s disease.We argue that the failure of current approaches lies in underutilizing the feature extraction capability of the discriminator inGAN.In this study,we propose a novel multi-modal registration approach GAN-DIRNet based on GAN for deformable histological image registration.To begin with,the discriminators of two GANs are embedded as a new dual parallel feature extraction module into the unsupervised registration networks,characterized by implicitly extracting feature descriptors of specific modalities.Additionally,modal feature description layers and registration layers collaborate in unsupervised optimization,facilitating faster convergence and more precise results.Lastly,experiments and evaluations were conducted on the registration of the Mixed National Institute of Standards and Technology database(MNIST),eight publicly available datasets of histological sections and the Clustering-Registration-Classification-Segmentation(CRCS)dataset on the Cushing’s disease.Experimental results demonstrate that our proposed GAN-DIRNet method surpasses existing approaches like DIRNet in terms of both registration accuracy and time efficiency,while also exhibiting robustness across different image types.
基金National Natural Science Foundation of China(Grant Nos.62171130,62172197,61972093)the Natural Science Foundation of Fujian Province(Grant Nos.2020J01573,2022J01131257,2022J01607)+3 种基金Fujian University Industry University Research Joint Innovation Project(No.2022H6006)in part by the Fund of Cloud Computing and BigData for SmartAgriculture(GrantNo.117-612014063)NationalNatural Science Foundation of China(Grant No.62301160)Nature Science Foundation of Fujian Province(Grant No.2022J01607).
文摘Many deep learning-based registration methods rely on a single-stream encoder-decoder network for computing deformation fields between 3D volumes.However,these methods often lack constraint information and overlook semantic consistency,limiting their performance.To address these issues,we present a novel approach for medical image registration called theDual-VoxelMorph,featuring a dual-channel cross-constraint network.This innovative network utilizes both intensity and segmentation images,which share identical semantic information and feature representations.Two encoder-decoder structures calculate deformation fields for intensity and segmentation images,as generated by the dual-channel cross-constraint network.This design facilitates bidirectional communication between grayscale and segmentation information,enabling the model to better learn the corresponding grayscale and segmentation details of the same anatomical structures.To ensure semantic and directional consistency,we introduce constraints and apply the cosine similarity function to enhance semantic consistency.Evaluation on four public datasets demonstrates superior performance compared to the baselinemethod,achieving Dice scores of 79.9%,64.5%,69.9%,and 63.5%for OASIS-1,OASIS-3,LPBA40,and ADNI,respectively.
文摘To develop a quick, accurate and antinoise automated image registration technique for infrared images, the wavelet analysis technique was used to extract the feature points in two images followed by the compensation for input image with angle difference between them. A hi erarchical feature matching algorithm was adopted to get the final transform parameters between the two images. The simulation results for two infrared images show that the method can effectively, quickly and accurately register images and be antinoise to some extent.
基金The National Natural Science Foundation of China (60272045) the Key Project of Ministry of Education of China.
文摘A methodology for alignment of an X-ray image and a CT image, based on the Chamfer 3-4 distance transform and simulated annealing optimization algorithm is presented. Firstly, an initial transformation matrix is constructed. For the convenience of computing, geometric models of the X-ray device to reconstruct the calibration matrix are used. Then, by defining the distance between the 3-D protective and the 2-D object image, we optimize this distance matching problem, using the simulated annealing algorithm. This method is also integrated into medical intra-operation, dealing with the data set acquired from 3-D image workstation and active navigation.
文摘Technique s for constructing full view panoramic mosaics from sequences of images are pres ented. The goal of this work is to remove too many limitations for pure panning motion. The best reference block is important for the block-matching method for improving the robustness and performance. It is automatically selected in the h igh-frequency image, which always contains the plenty visible features. In orde r to reduce accumulated registration errors, the global registration using the p hase-correlation matching method with rotation adjustment is applied to the who le sequence of images, which results in an optimal image mosaic with resolving t ranslational or rotational motion. The local registration using the Levenberg-M arquardt iterative non-linear minimization algorithm is applied to compensating for small amounts of motion parallax introduced by translations of the camera a nd other unmodeled distortions, then minimizing the discrepancy after applying t he global registration. The accumulated misregistration errors may cause a visib le gap between the two images. A smoothing filter is introduced for removing the visible artifact.
文摘A novel algorithm of 3-D surface image registration is proposed. It makes use of the array information of 3-D points and takes vector/vertex-like features as the basis of the matching. That array information of 3-D points can be easily obtained when capturing original 3-D images. The iterative least-mean-squared (LMS) algorithm is applied to optimizing adaptively the transformation matrix parameters. These can effectively improve the registration performance and hurry up the matching process. Experimental results show that it can reach a good subjective impression on aligned 3-D images. Although the algorithm focuses primarily on the human head model, it can also be used for other objects with small modifications.
文摘Mutual information is widely used in medical image registration, because it does not require preprocessing the image. However, the local maximum problem in the registration is insurmountable. We combine mutual information and gradient information to solve this problem and apply it to the non-rigid deformation image registration. To improve the accuracy, we provide some implemental issues, for example, the Powell searching algorithm, gray interpolation and consideration of outlier points. The experimental results show the accuracy of the method and the feasibility in non-rigid medical image registration.
基金Supported by the National Natural Science Foundation of China(Grant No.61533016)
文摘Point features, as the basis of lines, surfaces, and bodies, are commonly used in medical image registration. To obtain an elegant spatial transformation of extracted feature points, many point set matching algorithms(PMs) have been developed to match two point sets by optimizing multifarious distance functions. There are ample reviews related to medical image registration and PMs which summarize their basic principles and main algorithms separately. However,to data, detailed summary of PMs used in medical image registration in different clinical environments has not been published. In this paper, we provide a comprehensive review of the existing key techniques of the PMs applied to medical image registration according to the basic principles and clinical applications. As the core technique of the PMs, geometric transformation models are elaborated in this paper, demonstrating the mechanism of point set registration. We also focus on the clinical applications of the PMs and propose a practical classification method according to their applications in different clinical surgeries. The aim of this paper is to provide a summary of pointfeaturebased methods used in medical image registration and to guide doctors or researchers interested in this field to choose appropriate techniques in their research.
基金supported by the National Natural Science Foundation of China(62276192,62075169,62061160370)the Key Research and Development Program of Hubei Province(2020BAB113)。
文摘Image fusion aims to integrate complementary information in source images to synthesize a fused image comprehensively characterizing the imaging scene. However, existing image fusion algorithms are only applicable to strictly aligned source images and cause severe artifacts in the fusion results when input images have slight shifts or deformations. In addition,the fusion results typically only have good visual effect, but neglect the semantic requirements of high-level vision tasks.This study incorporates image registration, image fusion, and semantic requirements of high-level vision tasks into a single framework and proposes a novel image registration and fusion method, named Super Fusion. Specifically, we design a registration network to estimate bidirectional deformation fields to rectify geometric distortions of input images under the supervision of both photometric and end-point constraints. The registration and fusion are combined in a symmetric scheme, in which while mutual promotion can be achieved by optimizing the naive fusion loss, it is further enhanced by the mono-modal consistent constraint on symmetric fusion outputs. In addition, the image fusion network is equipped with the global spatial attention mechanism to achieve adaptive feature integration. Moreover, the semantic constraint based on the pre-trained segmentation model and Lovasz-Softmax loss is deployed to guide the fusion network to focus more on the semantic requirements of high-level vision tasks. Extensive experiments on image registration, image fusion,and semantic segmentation tasks demonstrate the superiority of our Super Fusion compared to the state-of-the-art alternatives.The source code and pre-trained model are publicly available at https://github.com/Linfeng-Tang/Super Fusion.
基金supported by the National Natural Science Foundation of China(61702251,41971424,61701191,U1605254)the Natural Science Basic Research Plan in Shaanxi Province of China(2018JM6030)+4 种基金the Key Technical Project of Fujian Province(2017H6015)the Science and Technology Project of Xiamen(3502Z20183032)the Doctor Scientific Research Starting Foundation of Northwest University(338050050)Youth Academic Talent Support Program of Northwest University(360051900151)the Natural Sciences and Engineering Research Council of Canada,Canada。
文摘This paper presents a novel medical image registration algorithm named total variation constrained graphregularization for non-negative matrix factorization(TV-GNMF).The method utilizes non-negative matrix factorization by total variation constraint and graph regularization.The main contributions of our work are the following.First,total variation is incorporated into NMF to control the diffusion speed.The purpose is to denoise in smooth regions and preserve features or details of the data in edge regions by using a diffusion coefficient based on gradient information.Second,we add graph regularization into NMF to reveal intrinsic geometry and structure information of features to enhance the discrimination power.Third,the multiplicative update rules and proof of convergence of the TV-GNMF algorithm are given.Experiments conducted on datasets show that the proposed TV-GNMF method outperforms other state-of-the-art algorithms.
基金Supported by the National Natural Science Foundation of China (No.60141002) the Aviation Basic Science Foundation (02I53073)
文摘The proposed algorithm relies on a group of new formulas for calculating tangent slope so as to address angle feature of edge curves of image. It can utilize tangent angle features to estimate automatically and fully the rotation parameters of geometric transform and enable rough matching of images with huge rotation difference. After angle compensation, it can search for matching point sets by correlation criterion, then calculate parameters of affine transform, enable higher-precision emendation of rotation and transferring. Finally, it fulfills precise matching for images with relax-tense iteration method. Compared with the registration approach based on wavelet direction-angle features, the matching algorithm with tangent feature of image edge is more robust and realizes precise registration of various images. Furthermore, it is also helpful in graphics matching.
基金Project supported by the National Natural Science Foundation of China (No. 60272031), the Hi-Tech Research and Development Program (863) of China (No. 2003AA131032-2), and the Natural Science Foundation of Zhejiang Province (No. M603202), China
文摘Multi-sensor image registration has been widely used in remote sensing and medical image field, but registration performance is degenerated when heterogeneous images are involved. An image registration method based on multi-resolution shape analysis is proposed in this paper, to deal with the problem that the shape of similar objects is always invariant. The contours of shapes are first detected as visual features using an extended contour search algorithm in order to reduce effects of noise, and the multi-resolution shape descriptor is constructed through Fourier curvature representation of the contour’s chain code. Then a minimum distance function is used to judge the similarity between two contours. To avoid the effect of different resolution and intensity distribution, suitable resolution of each image is selected by maximizing the consistency of its pyramid shapes. Finally, the transformation parameters are estimated based on the matched control-point pairs which are the centers of gravity of the closed contours. Multi-sensor Landsat TM imagery and infrared imagery have been used as experimental data for comparison with the classical contour-based registration. Our results have been shown to be superior to the classical ones.
基金The National Natural Science Foundation of China under contract No.41271409the National Key Technology Research and Development Program under contract No.2011BAH23B00the National High Technology Research and Development Program(863 Program)of China under contract No.2012AA12A406
文摘Homologous feature point extraction is a key problem in the optical and synthetic aperture radar (SAR) image registration for islands. A new feature point extraction method using a threshold shrink operator and non-subsampled wavelet transform (TSO-NSWT) for optical and SAR image registration was proposed. Moreover, the matching for this proposed feature was different from the traditional feature matching strategies and was performed using a similarity measure computed from neighborhood circles in low-frequency bands. Then, a number of reliably matched couples with even distributions were obtained, which assured the accuracy of the registration. Application of the proposed algorithm to SPOT-5 (multi-spectral) and YG-1 (SAR) images showed that a large number of accurately matched couples could be identified. Additionally, both of the root mean square error (RMSE) patterns of the registration parameters computed based on the TSO-NSWT algorithm and traditional NSWT algorithm were analyzed and compared, which further demonstrated the effectiveness of the proposed algorithm. The algorithm can supply the crucial step for island image registration and island recognition.
基金Project(61240010)supported by the National Natural Science Foundation of ChinaProject(20070007070)supported by Specialized Research Fund for the Doctoral Program of Higher Education of China
文摘A new coarse-to-fine strategy was proposed for nonrigid registration of computed tomography(CT) and magnetic resonance(MR) images of a liver.This hierarchical framework consisted of an affine transformation and a B-splines free-form deformation(FFD).The affine transformation performed a rough registration targeting the mismatch between the CT and MR images.The B-splines FFD transformation performed a finer registration by correcting local motion deformation.In the registration algorithm,the normalized mutual information(NMI) was used as similarity measure,and the limited memory Broyden-Fletcher- Goldfarb-Shannon(L-BFGS) optimization method was applied for optimization process.The algorithm was applied to the fully automated registration of liver CT and MR images in three subjects.The results demonstrate that the proposed method not only significantly improves the registration accuracy but also reduces the running time,which is effective and efficient for nonrigid registration.
文摘This paper aims at providing multi-source remote sensing images registered in geometric space for image fusion.Focusing on the characteristics and differences of multi-source remote sensing images,a feature-based registration algorithm is implemented.The key technologies include image scale-space for implementing multi-scale properties,Harris corner detection for keypoints extraction,and partial intensity invariant feature descriptor(PIIFD)for keypoints description.Eventually,a multi-scale Harris-PIIFD image registration algorithm framework is proposed.The experimental results of fifteen sets of representative real data show that the algorithm has excellent,stable performance in multi-source remote sensing image registration,and can achieve accurate spatial alignment,which has strong practical application value and certain generalization ability.
基金This work is partially supported by the National Institute of Health R03CA223052The sulindac trial was supported by R01CA161534The metformin trial was supported by R01CA172444 and P30CA023074。
文摘Presence of higher breast density(BD)and persistence over time are risk factors for breast cancer.A quantitatively accurate and highly reproducible BD measure that relies on precise and reproducible whole-breast segmentation is desirable.In this study,we aimed to develop a highly reproducible and accurate whole-breast segmentation algorithm for the generation of reproducible BD measures.Three datasets of volunteers from two clinical trials were included.Breast MR images were acquired on 3T Siemens Biograph mMR,Prisma,and Skyra using 3D Cartesian six-echo GRE sequences with a fat-water separation technique.Two whole-breast segmentation strategies,utiliz-ing image registration and 3D U-Net,were developed.Manual segmentation was performed.A task-based analysis was performed:a previously developed MR-based BD measure,MagDensity,was calculated and assessed using automated and manual segmentation.The mean squared error(MSE)and intraclass correlation coefficient(ICC)between MagDensity were evaluated using the manual segmentation as a reference.The test-retest reproducibility of MagDensity derived from different breast segmentation methods was assessed using the difference between the test and retest measures(Δ_(2-1)),MSE,and ICC.The results showed that MagDensity derived by the registration and deep learning segmentation methods exhibited high concordance with manual segmentation,with ICCs of 0.986(95%CI:0.974-0.993)and 0.983(95%CI:0.961-0.992),respectively.For test-retest analysis,MagDensity derived using the regis-tration algorithm achieved the smallest MSE of 0.370 and highest ICC of 0.993(95%CI:0.982-0.997)when compared to other segmentation methods.In conclusion,the proposed registration and deep learning whole-breast segmentation methods are accurate and reliable for estimating BD.Both methods outperformed a previously developed algorithm and manual segmentation in the test-retest assessment,with the registration exhibiting superior performance for highly reproducible BD measurements.
基金Supported by National Natural Science Foundation of China (No.60373061)Natural Science Foundation of Tianjin (No.04310491R)+1 种基金National Natural Science Foundation of ChinaGeneral Administration of Civil Aviation of China (No.60372048) .
文摘Medical image registration is important in many medical applications. Registration method based on maximization of mutual information of voxel intensities is one of the most popular methods for 3-D multi-modality medical image registration. Generally, the optimization process is easily trapped in local maximum, resulting in wrong registration results. In order to find the correct optimum, a new multi-resolution approach for brain image registration based on normalized mutual information is proposed. In this method, to eliminate the effect of local optima, multi-scale wavelet transformation is adopted to extract the image edge features. Then the feature images are registered, and the result at this level is taken as the initial estimate for the registration of the original images. Three-dimensional volumes are used to test the algorithm. Experimental results show that the registration strategy proposed is a robust and efficient method which can reach sub-voxel accuracy and improve the optimization speed.
文摘This paper presents a closed-form robust phase correlation based algorithm for performing image registration to subpixel accuracy.The subpixel translational shift information is directly obtained from the phase of the normalized cross power spectrum by using Maximum Likelihood Estimation(MLE).The proposed algorithm also has slighter time complexity.Experimental results show that the proposed algorithm yields superior registration precision on the Cramér-Rao Bound(CRB) in the presence of aliasing and noise.
基金supported by the National Natural Science Foundation of China(Grant Nos.81871508 and 61773246)the Major Program of Shandong Province Natural Science Foundation(Grant No.ZR2019ZD04 and ZR2018ZB0419)the Taishan Scholar Program of Shandong Province of China(Grant No.TSHW201502038).
文摘Multispectral imaging (MSI) technique is often used to capture imagesof the fundus by illuminating it with different wavelengths of light. However,these images are taken at different points in time such that eyeball movementscan cause misalignment between consecutive images. The multispectral imagesequence reveals important information in the form of retinal and choroidal bloodvessel maps, which can help ophthalmologists to analyze the morphology of theseblood vessels in detail. This in turn can lead to a high diagnostic accuracy of several diseases. In this paper, we propose a novel semi-supervised end-to-end deeplearning framework called “Adversarial Segmentation and Registration Nets”(ASRNet) for the simultaneous estimation of the blood vessel segmentation andthe registration of multispectral images via an adversarial learning process. ASRNet consists of two subnetworks: (i) A segmentation module S that fulfills theblood vessel segmentation task, and (ii) A registration module R that estimatesthe spatial correspondence of an image pair. Based on the segmention-drivenregistration network, we train the segmentation network using a semi-supervisedadversarial learning strategy. Our experimental results show that the proposedASRNet can achieve state-of-the-art accuracy in segmentation and registrationtasks performed with real MSI datasets.
基金Project(61070090)supported by the National Natural Science Foundation of ChinaProject(2012J4300030)supported by the GuangzhouScience and Technology Support Key Projects,China
文摘The mean Hausdorff distance, though highly applicable in image registration, does not work well on partial matching images. An improvement upon traditional Hausdorff-distance-based image registration method is proposed, which consists of the following two aspects. One is to estimate transformation parameters between two images from the distributions of geometric property differences instead of establishing explicit feature correspondences. This procedure is treated as the pre-registration. The other aspect is that mean Hausdorff distance computation is replaced with the analysis of the second difference of generalized Hausdorff distance so as to eliminate the redundant points. Experimental results show that our registration method outperforms the method based on mean Hausdorff distance. The registration errors are noticeably reduced in the partial matching images.