Traditional laparoscopic liver cancer resection faces challenges,such as difficultiesin tumor localization and accurate marking of liver segments,as well as theinability to provide real-time intraoperative navigation....Traditional laparoscopic liver cancer resection faces challenges,such as difficultiesin tumor localization and accurate marking of liver segments,as well as theinability to provide real-time intraoperative navigation.This approach falls shortof meeting the demands for precise and anatomical liver resection.The introductionof fluorescence imaging technology,particularly indocyanine green,hasdemonstrated significant advantages in visualizing bile ducts,tumor localization,segment staining,microscopic lesion display,margin examination,and lymphnode visualization.This technology addresses the inherent limitations oftraditional laparoscopy,which lacks direct tactile feedback,and is increasinglybecoming the standard in laparoscopic procedures.Guided by fluorescenceimaging technology,laparoscopic liver cancer resection is poised to become thepredominant technique for liver tumor removal,enhancing the accuracy,safetyand efficiency of the procedure.展开更多
Skin imaging technologies such as dermoscopy, high-frequency ultrasound, reflective confocal microscopy and optical coherence tomography are developing rapidly in clinical application. Skin imaging technology can impr...Skin imaging technologies such as dermoscopy, high-frequency ultrasound, reflective confocal microscopy and optical coherence tomography are developing rapidly in clinical application. Skin imaging technology can improve clinical diagnosis rate, and its non-invasiveness and repeatability make it occupy an irreplaceable position in clinical diagnosis. With the “booming development” of medical technology, skin imaging technology can improve clinical diagnosis rate. Researchers have made significant advances in assisting clinical diagnosis, prediction, and treatment of disease. This article reviews the application and progress of skin imaging in the diagnosis of psoriasis.展开更多
Acute pancreatitis(AP)is a potentially life-threatening inflammatory disease of the pancreas,with clinical management determined by the severity of the disease.Diagnosis,severity prediction,and prognosis assessment of...Acute pancreatitis(AP)is a potentially life-threatening inflammatory disease of the pancreas,with clinical management determined by the severity of the disease.Diagnosis,severity prediction,and prognosis assessment of AP typically involve the use of imaging technologies,such as computed tomography,magnetic resonance imaging,and ultrasound,and scoring systems,including Ranson,Acute Physiology and Chronic Health Evaluation II,and Bedside Index for Severity in AP scores.Computed tomography is considered the gold standard imaging modality for AP due to its high sensitivity and specificity,while magnetic resonance imaging and ultrasound can provide additional information on biliary obstruction and vascular complications.Scoring systems utilize clinical and laboratory parameters to classify AP patients into mild,moderate,or severe categories,guiding treatment decisions,such as intensive care unit admission,early enteral feeding,and antibiotic use.Despite the central role of imaging technologies and scoring systems in AP management,these methods have limitations in terms of accuracy,reproducibility,practicality and economics.Recent advancements of artificial intelligence(AI)provide new opportunities to enhance their performance by analyzing vast amounts of clinical and imaging data.AI algorithms can analyze large amounts of clinical and imaging data,identify scoring system patterns,and predict the clinical course of disease.AI-based models have shown promising results in predicting the severity and mortality of AP,but further validation and standardization are required before widespread clinical application.In addition,understanding the correlation between these three technologies will aid in developing new methods that can accurately,sensitively,and specifically be used in the diagnosis,severity prediction,and prognosis assessment of AP through complementary advantages.展开更多
By utilizing wave velocity imaging technology,the uniaxial multi-stage loading test was conducted on siltstone to attain wave velocity imagings during rock fracture.Based on the time series parameters of acoustic emis...By utilizing wave velocity imaging technology,the uniaxial multi-stage loading test was conducted on siltstone to attain wave velocity imagings during rock fracture.Based on the time series parameters of acoustic emissions(AE),joint response characteristics of the velocity field and AE during rock fracture were analyzed.Moreover,the localization effect of damage during rock fracture was explored by applying wave velocity imagings.The experimental result showed that the wave velocity imagings enable three-dimensional(3-D)visualization of the extent and spatial position of damage to the rock.A damaged zone has a low wave velocity and a zone where the low wave velocity is concentrated tends to correspond to a severely damaged zone.AE parameters and wave velocity imagings depict the changes in activity of cracks during rock fracture from temporal and spatial perspectives,respectively:the activity of cracks is strengthened,and the rate of AE events increases during rock fracture;correspondingly,the low-velocity zones are gradually aggregated and their area gradually increases.From the wave velocity imagings,the damaged zones in rock were divided into an initially damaged zone,a progressively damaged zone,and a fractured zone.During rock fracture,the progressively damaged zone and the fractured zone both develop around the initially damaged zone,showing a typical localization effect of the damage.By capturing the spatial development trends of the progressively damaged zone and fractured zone in wave velocity imagings,the development of microfractures can be predicted,exerting practical significance for determining the position of the main fracture.展开更多
To solve the problem that the production of Mahu conglomerate reservoir is not up to expectation after the multi-cluster plus temporary plugging fracturing technology is applied in horizontal wells, stages 2–6 in the...To solve the problem that the production of Mahu conglomerate reservoir is not up to expectation after the multi-cluster plus temporary plugging fracturing technology is applied in horizontal wells, stages 2–6 in the test well MaHW6285 are selected to carry out erosion tests with different pumping parameters. The downhole video imaging technology is used to monitor the degree of perforations erosion, and then the fracture initiation and proppant distribution of each cluster are analyzed. The results showed that proppant entered 76.7% of the perforations. The proppant was mainly distributed in a few perforation clusters, and the amount of proppant entered in most of the clusters was limited. The proppant distribution in Stage 4 was relatively uniform, and the fracture initiation of each cluster in the stage is more uniform. The proppant distribution in stages 2, 3, 5, and 6 was significantly uneven, and the uniform degree of fracture initiation in each cluster is low. More than 70% of the proppant dose in the stage entered clusters near the heel end, so the addition of diverters did not promote the uniform initiation of hydraulic fractures. There was a positive correlation between the amount of proppant added and the degree of perforations erosion, and the degree of perforations erosion ranged from 15% to 352%, with an average value of 74.5%, which was far higher than the statistical results of shale reservoir tests in North America. The use of 180° phase perforation(horizontal direction) can reduce the “Phase Bias” of perforations erosion, promote uniform perforations erosion and fluid inflow. The research results provide the basis for optimizing the pumping procedure, reducing the perforation erosion and improving the success rate of diversion.展开更多
Photodissociation dynamics of dichlorodifluoromethane (CF2Cl2) around 235 nm has been studied using the time-sliced velocity map imaging technology in combination with the resonance enhanced multi-photon ionization te...Photodissociation dynamics of dichlorodifluoromethane (CF2Cl2) around 235 nm has been studied using the time-sliced velocity map imaging technology in combination with the resonance enhanced multi-photon ionization technology. By measuring the raw images of chlorine atoms which are formed via one-photon dissociation of CF2Cl2, the speed and angular distributions can be directly obtained. The speed distribution of excited-state chlorine atoms consists of high translation energy (ET) and low ET components, which are related to direct dissociation on 3Q0 state and predissociation on the ground state induced by internal conversion, respectively. The speed distribution of ground-state chlorine atoms also consists of high ET and low ET components which are related to predissociation between 3Q0 and 1Q1 states and predissociation on the ground state induced by internal conversion, respectively. Radical dissociation channel is confirmed, nevertheless, secondary dissociation and three-body dissociation channels are excluded.展开更多
To ensure the quality and safety of pure milk,detection method of typical preservative-potassium sorbate in milk was researched in this paper.Hyperspectral imaging technology was applied to realize rapid detection.Inf...To ensure the quality and safety of pure milk,detection method of typical preservative-potassium sorbate in milk was researched in this paper.Hyperspectral imaging technology was applied to realize rapid detection.Influence factors for hyperspectral data collection for milk samples were firstly researched,including height of sample,bottom color and sample filled up container or not.Pretreatment methods and variable selection algorithms were applied into original spectral data.Rapid detection models were built based on support vector machine method(SVM).Finally,standard normalized variable(SNV)-competitive adaptive reweighted sampling(CARS)and SVM model was chosen in this paper.The accuracies of calibration set and testing set were 0.97 and 0.97,respectively.Kappa coefficient of the model was 0.93.It could be seen that hyperspectral imaging technology could be used to detect for potassium sorbate in milk.Meanwhile,it also provided methodological supports for the rapid detection of other preservatives in milk.展开更多
Objective:To explore the implementation of gastrointestinal endoscopy technology and endoscopic narrow-band imaging(NBI)in the early screening of gastric cancer and to observe and study their application effects.Metho...Objective:To explore the implementation of gastrointestinal endoscopy technology and endoscopic narrow-band imaging(NBI)in the early screening of gastric cancer and to observe and study their application effects.Methods:During the period from March 2023 to August 2023,312 patients who received gastroscopy in the Kunming Guandu District People’s Hospital were selected,and they underwent both conventional gastroscopy and endoscopic NBI,with clinicopathological tissue biopsy serving as the gold standard.The application value for early screening of gastric cancer was observed and analyzed.Results:The scoring data showed that the clarity of gastric mucosal glandular tube structure,microvascular structure clarity,and lesion contour scoring data of conventional gastroscopy were lower than those of the NBI technology(P<0.05).The screening rate of pathological biopsy in 312 patients was 18.59%(58 cases).Conventional gastroscopy showed a screening rate of 11.53%(36 cases),while NBI technology examined a screening rate of 17.63%(55 cases),and the two-by-two comparison of the screening rate data of the three groups was not statistically significant(P>0.05).The sensitivity,specificity,accuracy,positive predictive value,and negative predictive value of conventional gastroscopy appeared to be lower than those of NBI technology(P<0.05).Conclusion:In the early screening of gastric cancer,endoscopic NBI technology can be applied to patients.Compared with conventional gastroscopy,it provides a clearer visualization of the structure of the gastric mucosal glandular structure and microvascular structure,with a certain screening rate.Additionally,its sensitivity,specificity,accuracy,positive predictive value,and negative predictive value are higher,demonstrating outstanding effectiveness.展开更多
Three-dimensional(3D)printing technology is increasingly used in experimental research of geotechnical engineering.Compared to other materials,3D layer-by-layer printing specimens are extremely similar to the inherent...Three-dimensional(3D)printing technology is increasingly used in experimental research of geotechnical engineering.Compared to other materials,3D layer-by-layer printing specimens are extremely similar to the inherent properties of natural layered rock masses.In this paper,soft-hard interbedded rock masses with different dip angles were prepared based on 3D printing(3DP)sand core technology.Uniaxial compression creep tests were conducted to investigate its anisotropic creep behavior based on digital imaging correlation(DIC)technology.The results show that the anisotropic creep behavior of the 3DP soft-hard interbedded rock mass is mainly affected by the dip angles of the weak interlayer when the stress is at low levels.As the stress level increases,the effect of creep stress on its creep anisotropy increases significantly,and the dip angle is no longer the main factor.The minimum value of the long-term strength and creep failure strength always appears in the weak interlayer within 30°–60°,which explains why the failure of the layered rock mass is controlled by the weak interlayer and generally emerges at 45°.The tests results are verified by comparing with theoretical and other published studies.The feasibility of the 3DP soft-hard interbedded rock mass provides broad prospects and application values for 3DP technology in future experimental research.展开更多
BACKGROUND Transjugular intrahepatic portosystemic shunt(TIPS)is a pivotal intervention for managing esophagogastric variceal bleeding in patients with chronic hepatic schistosomiasis.AIM To evaluate the efficacy of d...BACKGROUND Transjugular intrahepatic portosystemic shunt(TIPS)is a pivotal intervention for managing esophagogastric variceal bleeding in patients with chronic hepatic schistosomiasis.AIM To evaluate the efficacy of digital subtraction angiography image overlay tech-nology(DIT)in guiding the TIPS procedure.METHODS We conducted a retrospective analysis of patients who underwent TIPS at our hospital,comparing outcomes between an ultrasound-guided group and a DIT-guided group.Our analysis focused on the duration of the portosystemic shunt puncture,the number of punctures needed,the total surgical time,and various clinical indicators related to the surgery.RESULTS The study included 52 patients with esophagogastric varices due to chronic hepatic schistosomiasis.Results demonstrated that the DIT-guided group expe-rienced significantly shorter puncture times(P<0.001)and surgical durations(P=0.022)compared to the ultrasound-guided group.Additionally,postoperative assessments showed significant reductions in aspartate aminotransferase,B-type natriuretic peptide,and portal vein pressure in both groups.Notably,the DIT-guided group also showed significant reductions in total bilirubin(P=0.001)and alanine aminotransferase(P=0.023).CONCLUSION The use of DIT for guiding TIPS procedures highlights its potential to enhance procedural efficiency and reduce surgical times in the treatment of esophagogastric variceal bleeding in patients with chronic hepatic schistoso-miasis.展开更多
Soybean is a crop with a long cultivation history that occupies an important position in agricultural production.Soybean mosaic virus disease(SMV)has caused a rapid decline in soybean yields,causing huge losses to the...Soybean is a crop with a long cultivation history that occupies an important position in agricultural production.Soybean mosaic virus disease(SMV)has caused a rapid decline in soybean yields,causing huge losses to the soybean industry,wherefrom its early detec-tion is particularly important.This study proposes a new classification method for the early SMV,dividing its severity into grades 0,1 and 2.In the case of a small number of experi-mental samples of soybeans,this study proposes a combined convolutional neural network and support vector machine(CNN-SVM)method for the early detection of SMV.Experimen-tal results showed that the accuracy of the training set of the CNN-SVM model reached 96.67%,and the accuracy rate of the test set reached 94.17%.The experiment proved the feasibility of using the proposed CNN-SVM model to classify early SMV under the new clas-sification method,and provided a new direction for early SMV detection based on hyper-spectral images.展开更多
Aiming at the problem that the lattice feature exceeds the view field of the scanning electron microscope(SEM)measuring system,a new lattice measuring method is proposed based on integral imaging technology.When the s...Aiming at the problem that the lattice feature exceeds the view field of the scanning electron microscope(SEM)measuring system,a new lattice measuring method is proposed based on integral imaging technology.When the system works,the SEM measuring system is equivalent to an integral image acquisition system.Firstly,a lattice measuring method is researched based on integral imaging theory.Secondly,the system parameters are calibrated by the VLSI lattice standard.Finally,the value of the lattice standard to be tested is determined based on the calibration parameters and the lattice measuring algorithm.The experimental results show that,compared with the traditional electron microscope measurement method,the relative error of the measured value of the algorithm is maintained within 0.2%,with the same level of measurement accuracy,but it expands the field of view of the electron microscope measurement system,which is suitable for the measurement of samples under high magnification.展开更多
This manuscript presents a preliminary investigation on the applicability of hyperspectral imaging technology for nondestructive and rapid analysis to reveal covered original handwritings.The hyperspectral imager Nuan...This manuscript presents a preliminary investigation on the applicability of hyperspectral imaging technology for nondestructive and rapid analysis to reveal covered original handwritings.The hyperspectral imager Nuance‑Macro was used to collect the reflected light signature of inks from the overlapping parts.The software Nuance1p46 was used to analyze the reflected light signature of inks which shows the covered original handwritings.Different types of black/blue ballpoint pen inks and black/blue gel pen inks were chosen for sample preparation.From the hyperspectral images examined,the covered original handwritings of application were revealed in 90.5%,69.1%,49.5%,and 78.6%of the cases.Further,the correlation between the revealing effect and spectral characteristics of the reflected light of inks at the overlapping parts was interpreted through theoretical analysis and experimental verification.The results indicated that when the spectral characteristics of the reflected light of inks at the overlapping parts were the same or very similar to that of the ink that was used to cover the original handwriting,the original handwriting could not be shown.On the contrary,when the spectral characteristics of the reflected light of inks at the overlapping parts were different to that of the ink that was used to cover the original handwriting,the original handwriting was revealed.展开更多
Objective:Acoustic radiation force impulse(ARFI)was applied to measure Shear wave velocity(SWV)of liver in patients with Wilson's disease(WD).To investigate the relationship between SWV and the serological indexes...Objective:Acoustic radiation force impulse(ARFI)was applied to measure Shear wave velocity(SWV)of liver in patients with Wilson's disease(WD).To investigate the relationship between SWV and the serological indexes of liver fibrosis,such as type Ⅳ collagen(CⅣ),hyaluronic acid(HA),type Ⅲ procollagen peptide(PⅢNP),laminin(LN),APRI score(Asparate Aminotransfer to Platelet Ratio Index),and FIB-4 index(FIB-4 index).The clinical efficacy of GandouTang(GDT)in the treatment of liver fibrosis in WD with damp-heat internalization was also observed.Methods:80 cases of WD patients who met the inclusion criteria were randomly divided into the treatment group and the control group,with 40 cases in each group.The control group was treated with Sodium Dimercaptopropylsulfonate(DMPS)and the treatment group was additionally treated with the traditional Chinese medicine GDT.One course for 8 days,a total of 6 courses.The levels of SwV and four serological indicators of liver fibrosis(PⅢNP,HA,CⅣ,LN),APRI score and FIB-4 index were compared before and after treatment.Pearson correlation test was used to analyze the correlation between SWV and HA,CⅣ,LN,PⅢNP,APRI score and FIB-4 index.The effects of GDT on SWV,liver fiber,APRI and FIB-4 were evaluated according to the treatment plan.Results:①The SWV was positively correlated with FIB-4(r=0.83),APRI(r=0.82),HA(r=0.87),CⅣ(r=0.71),LN(r=0.85)and PINP(r=0.77).②Before treatment,there were no significant differences in SWV level,PⅢNP,HA,CⅣ,LN,APRI and FIB-4 levels between two groups(P>0.05).After treatment,the levels of PⅢNP,HA,LN,SWV,APRI and FIB-4 in both groups were significantly decreased(P<0.05,P<0.01),and the levels in the treatment group were lower than those in the control group.There were no significant specific changes in CⅣ level(P>0.05).Conclusion:SWV value can reflect the degree of WD liver fibrosis,and is positively correlated with HA,PⅢNP,CⅣ,LN,FIB-4 index and APRI score.On the basis of the treatment of protecting liver and expelling copper with western medicine,plus the treatment of traditional Chinese medicine GDT can effectively improve the degree of liver fibrosis in WD patients with damp-heat accumulation.展开更多
In this paper,the occurrence and development mechanism of strain on the cross-section during the wood drying is explored.Therefore,strain regularity on the cross-section of 50 mm thickness elm(Ulmus rubra)board at the...In this paper,the occurrence and development mechanism of strain on the cross-section during the wood drying is explored.Therefore,strain regularity on the cross-section of 50 mm thickness elm(Ulmus rubra)board at the temperature of 40℃and 80℃is detected via digital image correlation technology.Hence,the difference between tangential and radial strain at surface and core layers was denoted.The results showed that strain distribution in the width direction of the board is uneven.Moreover,a large drying shrinkage strain occurs at the near-core layer,while the maximum strain difference reaches 4.08%.Hence,the surface of the board is cracked along the thickness direction.The radial strain of the board is higher than the tangential strain in the early stage of drying,while these strains are reversed in the later stage of drying.The temperature is related to the difference between the tangential and radial strains of the elm board.These differences at the core layer are larger than those of the surface layer.The conducted research results provide a theoretical basis for process optimization.展开更多
This study aimed to propose road crack detection method based on infrared image fusion technology.By analyzing the characteristics of road crack images,this method uses a variety of infrared image fusion methods to pr...This study aimed to propose road crack detection method based on infrared image fusion technology.By analyzing the characteristics of road crack images,this method uses a variety of infrared image fusion methods to process different types of images.The use of this method allows the detection of road cracks,which not only reduces the professional requirements for inspectors,but also improves the accuracy of road crack detection.Based on infrared image processing technology,on the basis of in-depth analysis of infrared image features,a road crack detection method is proposed,which can accurately identify the road crack location,direction,length,and other characteristic information.Experiments showed that this method has a good effect,and can meet the requirement of road crack detection.展开更多
This research article introduces and explores the concept of a hybrid prism, which combines the properties of a lens and a reflective prism, designed for optical systems that operate in different spectral ranges of el...This research article introduces and explores the concept of a hybrid prism, which combines the properties of a lens and a reflective prism, designed for optical systems that operate in different spectral ranges of electromagnetic waves. The hybrid prism allows for precise focusing of light rays in a glass body and X-rays in a vacuum, enabling it to serve as an objective in various optical systems for imaging objects. The article delves into the structure and working principles of the hybrid prism, discussing its potential applications, including as an intraocular prism for macular degeneration, a lidar system for vehicle navigation, and objectives for cameras, telescopes, microscopes, X-ray devices, and X-ray microscopes. The revolutionary hybrid prism unlocks precise imaging of light and X-rays, reshaping optical systems and enabling groundbreaking applications.展开更多
AIM: To evaluate the assessment of primary biliary cirrhosis degree by acoustic radiation force impulse imaging (ARFI) and hepatic fibrosis indicators. METHODS: One hundred and twenty patients who developed liver cirr...AIM: To evaluate the assessment of primary biliary cirrhosis degree by acoustic radiation force impulse imaging (ARFI) and hepatic fibrosis indicators. METHODS: One hundred and twenty patients who developed liver cirrhosis secondary to primary biliary cirrhosis were selected as the observation group, with the degree of patient liver cirrhosis graded by Child-Pugh (CP) score. Sixty healthy individuals were selected as the control group. The four indicators of hepatic fibrosis were detected in all research objects, including hyaluronic acid (HA), laminin (LN), type III collagen (PC III), and type IV collagen (IV-C). The liver parenchyma hardness value (LS) was then measured by ARFI technique. LS and the four indicators of liver fibrosis (HA, LN, PC III, and IV-C) were observed in different grade CP scores. The diagnostic value of LS and the four indicators of liver fibrosis in determining liver cirrhosis degree with PBC, whether used alone or in combination, were analyzed by receiver operating characteristic (ROC) curve. RESULTS: LS and the four indicators of liver fibrosis within the three classes (A, B, and C) of CP scores in the observation group were higher than in the control group, with C class > B class > A class; the differences were statistically significant (P < 0.01). Although AUC values of LS within the three classes of CP scores were higher than in the four indicators of liver fibrosis, sensitivity and specificity were unstable. The ROC curves of LS combined with the four indicators of liver fibrosis revealed that: AUC and sensitivity in all indicators combined in the A class of CP score were higher than in LS alone, albeit with slightly decreased specificity; AUC and specificity in all indicators combined in the B class of CP score were higher than in LS alone, with unchanged sensitivity; AUC values (0.967), sensitivity (97.4%), and specificity (90%) of all indicators combined in the C class of CP score were higher than in LS alone (0.936, 92.1%, 83.3%). CONCLUSION: The diagnostic value of PBC cirrhosis degree in liver cirrhosis degree assessment by ARFI combined with the four indicators of serum liver fibrosis is of satisfactory effectiveness and has important clinical application value.展开更多
The penetration behavior of topical substances in the skin not only relates to the transdermal delivery efficiency but also involves the safety and therapeutic effect of topical products,such as sunscreen and hair gro...The penetration behavior of topical substances in the skin not only relates to the transdermal delivery efficiency but also involves the safety and therapeutic effect of topical products,such as sunscreen and hair growth products.Researchers have tried to illustrate the transdermal process with diversified theories and technologies.Directly observing the distribution of topical substances on skin by characteristic imaging is the most convincing approach.Unfortunately,fluorescence labeling imaging,which is commonly used in biochemical research,is limited for transdermal research for most topical substances with a molecular mass less than 500 Da.Label-free imaging technologies possess the advantages of not requiring any macromolecular dyes,no tissue destruction and an extensive substance detection capability,which has enabled rapid development of such technologies in recent years and their introduction to biological tissue analysis,such as skin samples.Through the specific identification of topical substances and endogenous tissue components,label-free imaging technologies can provide abundant tissue distribution information,enrich theoretical and practical guidance for transdermal drug delivery systems.In this review,we expound the mechanisms and applications of the most popular label-free imaging technologies in transdermal research at present,compare their advantages and disadvantages,and forecast development prospects.展开更多
Tea plant stresses threaten the quality of tea seriously.The technology corresponding to the fast detection and differentiation of stresses is of great significance for plant protection in tea plantation.In recent yea...Tea plant stresses threaten the quality of tea seriously.The technology corresponding to the fast detection and differentiation of stresses is of great significance for plant protection in tea plantation.In recent years,hyperspectral imaging technology has shown great potential in detecting and differentiating plant diseases,pests and some other stresses at the leaf level.However,the lack of studies at canopy level hampers the detection of tea plant stresses at a larger scale.In this study,based on the canopy-level hyperspectral imaging data,the methods for identifying and differentiating the three commonly occurred tea stresses(i.e.,the tea leafhopper,anthrax and sun burn)were studied.To account for the complexity of the canopy scenario,a stepwise detecting strategy was proposed that includes the process of background removal,identification of damaged areas and discrimination of stresses.Firstly,combining the successive projection algorithm(SPA)spectral analysis and K-means cluster analysis,the background and overexposed non-plant regions were removed from the image.Then,a rigorous sensitivity analysis and optimization were performed on various forms of spectral features,which yielded optimal features for detecting damaged areas(i.e.,YSV,Area,GI,CARI and NBNDVI)and optimal features for stresses discrimination(i.e.,MCARI,CI,LCI,RARS,TCI and VOG).Based on this information,the models for identifying damaged areas and those models for discriminating different stresses were established using K-nearest neighbor(KNN),Random Forest(RF)and Fisher discriminant analysis.The identification model achieved an accuracy over 95%,and the discrimination model achieved an accuracy over 93%for all stresses.The results suggested the feasibility of stress detection and differentiation using canopy-level hyperspectral imaging techniques,and indicated the potential for its extension over large areas.展开更多
文摘Traditional laparoscopic liver cancer resection faces challenges,such as difficultiesin tumor localization and accurate marking of liver segments,as well as theinability to provide real-time intraoperative navigation.This approach falls shortof meeting the demands for precise and anatomical liver resection.The introductionof fluorescence imaging technology,particularly indocyanine green,hasdemonstrated significant advantages in visualizing bile ducts,tumor localization,segment staining,microscopic lesion display,margin examination,and lymphnode visualization.This technology addresses the inherent limitations oftraditional laparoscopy,which lacks direct tactile feedback,and is increasinglybecoming the standard in laparoscopic procedures.Guided by fluorescenceimaging technology,laparoscopic liver cancer resection is poised to become thepredominant technique for liver tumor removal,enhancing the accuracy,safetyand efficiency of the procedure.
文摘Skin imaging technologies such as dermoscopy, high-frequency ultrasound, reflective confocal microscopy and optical coherence tomography are developing rapidly in clinical application. Skin imaging technology can improve clinical diagnosis rate, and its non-invasiveness and repeatability make it occupy an irreplaceable position in clinical diagnosis. With the “booming development” of medical technology, skin imaging technology can improve clinical diagnosis rate. Researchers have made significant advances in assisting clinical diagnosis, prediction, and treatment of disease. This article reviews the application and progress of skin imaging in the diagnosis of psoriasis.
基金Fujian Provincial Health Technology Project,No.2020GGA079Natural Science Foundation of Fujian Province,No.2021J011380National Natural Science Foundation of China,No.62276146.
文摘Acute pancreatitis(AP)is a potentially life-threatening inflammatory disease of the pancreas,with clinical management determined by the severity of the disease.Diagnosis,severity prediction,and prognosis assessment of AP typically involve the use of imaging technologies,such as computed tomography,magnetic resonance imaging,and ultrasound,and scoring systems,including Ranson,Acute Physiology and Chronic Health Evaluation II,and Bedside Index for Severity in AP scores.Computed tomography is considered the gold standard imaging modality for AP due to its high sensitivity and specificity,while magnetic resonance imaging and ultrasound can provide additional information on biliary obstruction and vascular complications.Scoring systems utilize clinical and laboratory parameters to classify AP patients into mild,moderate,or severe categories,guiding treatment decisions,such as intensive care unit admission,early enteral feeding,and antibiotic use.Despite the central role of imaging technologies and scoring systems in AP management,these methods have limitations in terms of accuracy,reproducibility,practicality and economics.Recent advancements of artificial intelligence(AI)provide new opportunities to enhance their performance by analyzing vast amounts of clinical and imaging data.AI algorithms can analyze large amounts of clinical and imaging data,identify scoring system patterns,and predict the clinical course of disease.AI-based models have shown promising results in predicting the severity and mortality of AP,but further validation and standardization are required before widespread clinical application.In addition,understanding the correlation between these three technologies will aid in developing new methods that can accurately,sensitively,and specifically be used in the diagnosis,severity prediction,and prognosis assessment of AP through complementary advantages.
基金Projects(51774138,51804122,51904105)supported by the National Natural Science Foundation of ChinaProjects(E2021209148,E2021209052)supported by the Natural Science Foundation of Hebei Province,China。
文摘By utilizing wave velocity imaging technology,the uniaxial multi-stage loading test was conducted on siltstone to attain wave velocity imagings during rock fracture.Based on the time series parameters of acoustic emissions(AE),joint response characteristics of the velocity field and AE during rock fracture were analyzed.Moreover,the localization effect of damage during rock fracture was explored by applying wave velocity imagings.The experimental result showed that the wave velocity imagings enable three-dimensional(3-D)visualization of the extent and spatial position of damage to the rock.A damaged zone has a low wave velocity and a zone where the low wave velocity is concentrated tends to correspond to a severely damaged zone.AE parameters and wave velocity imagings depict the changes in activity of cracks during rock fracture from temporal and spatial perspectives,respectively:the activity of cracks is strengthened,and the rate of AE events increases during rock fracture;correspondingly,the low-velocity zones are gradually aggregated and their area gradually increases.From the wave velocity imagings,the damaged zones in rock were divided into an initially damaged zone,a progressively damaged zone,and a fractured zone.During rock fracture,the progressively damaged zone and the fractured zone both develop around the initially damaged zone,showing a typical localization effect of the damage.By capturing the spatial development trends of the progressively damaged zone and fractured zone in wave velocity imagings,the development of microfractures can be predicted,exerting practical significance for determining the position of the main fracture.
基金Supported by the PetroChina–China University of Petroleum (Beijing) Strategic Cooperation Project (ZLZX2020-04)。
文摘To solve the problem that the production of Mahu conglomerate reservoir is not up to expectation after the multi-cluster plus temporary plugging fracturing technology is applied in horizontal wells, stages 2–6 in the test well MaHW6285 are selected to carry out erosion tests with different pumping parameters. The downhole video imaging technology is used to monitor the degree of perforations erosion, and then the fracture initiation and proppant distribution of each cluster are analyzed. The results showed that proppant entered 76.7% of the perforations. The proppant was mainly distributed in a few perforation clusters, and the amount of proppant entered in most of the clusters was limited. The proppant distribution in Stage 4 was relatively uniform, and the fracture initiation of each cluster in the stage is more uniform. The proppant distribution in stages 2, 3, 5, and 6 was significantly uneven, and the uniform degree of fracture initiation in each cluster is low. More than 70% of the proppant dose in the stage entered clusters near the heel end, so the addition of diverters did not promote the uniform initiation of hydraulic fractures. There was a positive correlation between the amount of proppant added and the degree of perforations erosion, and the degree of perforations erosion ranged from 15% to 352%, with an average value of 74.5%, which was far higher than the statistical results of shale reservoir tests in North America. The use of 180° phase perforation(horizontal direction) can reduce the “Phase Bias” of perforations erosion, promote uniform perforations erosion and fluid inflow. The research results provide the basis for optimizing the pumping procedure, reducing the perforation erosion and improving the success rate of diversion.
基金supported by the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (No.17KJB150005 and No.17KJD510001)the Natural Science Foundation of Changzhou Institute of Technology (No.YN1507 and No.YN1611)+1 种基金Undergraduate Training Program for Innovation of Changzhou Institute of Technology (No.2017276Y)the National Natural Science Foundation of China (No.21273212)
文摘Photodissociation dynamics of dichlorodifluoromethane (CF2Cl2) around 235 nm has been studied using the time-sliced velocity map imaging technology in combination with the resonance enhanced multi-photon ionization technology. By measuring the raw images of chlorine atoms which are formed via one-photon dissociation of CF2Cl2, the speed and angular distributions can be directly obtained. The speed distribution of excited-state chlorine atoms consists of high translation energy (ET) and low ET components, which are related to direct dissociation on 3Q0 state and predissociation on the ground state induced by internal conversion, respectively. The speed distribution of ground-state chlorine atoms also consists of high ET and low ET components which are related to predissociation between 3Q0 and 1Q1 states and predissociation on the ground state induced by internal conversion, respectively. Radical dissociation channel is confirmed, nevertheless, secondary dissociation and three-body dissociation channels are excluded.
基金Supported by the National Key Research and Development Program of China(2016YFD0700204-02)China Agriculture Research System(CARS-36)Heilongjiang Post-doctoral Subsidy Project of China(LBH-Z17020)。
文摘To ensure the quality and safety of pure milk,detection method of typical preservative-potassium sorbate in milk was researched in this paper.Hyperspectral imaging technology was applied to realize rapid detection.Influence factors for hyperspectral data collection for milk samples were firstly researched,including height of sample,bottom color and sample filled up container or not.Pretreatment methods and variable selection algorithms were applied into original spectral data.Rapid detection models were built based on support vector machine method(SVM).Finally,standard normalized variable(SNV)-competitive adaptive reweighted sampling(CARS)and SVM model was chosen in this paper.The accuracies of calibration set and testing set were 0.97 and 0.97,respectively.Kappa coefficient of the model was 0.93.It could be seen that hyperspectral imaging technology could be used to detect for potassium sorbate in milk.Meanwhile,it also provided methodological supports for the rapid detection of other preservatives in milk.
文摘Objective:To explore the implementation of gastrointestinal endoscopy technology and endoscopic narrow-band imaging(NBI)in the early screening of gastric cancer and to observe and study their application effects.Methods:During the period from March 2023 to August 2023,312 patients who received gastroscopy in the Kunming Guandu District People’s Hospital were selected,and they underwent both conventional gastroscopy and endoscopic NBI,with clinicopathological tissue biopsy serving as the gold standard.The application value for early screening of gastric cancer was observed and analyzed.Results:The scoring data showed that the clarity of gastric mucosal glandular tube structure,microvascular structure clarity,and lesion contour scoring data of conventional gastroscopy were lower than those of the NBI technology(P<0.05).The screening rate of pathological biopsy in 312 patients was 18.59%(58 cases).Conventional gastroscopy showed a screening rate of 11.53%(36 cases),while NBI technology examined a screening rate of 17.63%(55 cases),and the two-by-two comparison of the screening rate data of the three groups was not statistically significant(P>0.05).The sensitivity,specificity,accuracy,positive predictive value,and negative predictive value of conventional gastroscopy appeared to be lower than those of NBI technology(P<0.05).Conclusion:In the early screening of gastric cancer,endoscopic NBI technology can be applied to patients.Compared with conventional gastroscopy,it provides a clearer visualization of the structure of the gastric mucosal glandular structure and microvascular structure,with a certain screening rate.Additionally,its sensitivity,specificity,accuracy,positive predictive value,and negative predictive value are higher,demonstrating outstanding effectiveness.
基金the support of the National Natural Science Foundation of China(Grant Nos.42207199,52179113,42272333)Zhejiang Postdoctoral Scientific Research Project(Grant Nos.ZJ2022155,ZJ2022156)。
文摘Three-dimensional(3D)printing technology is increasingly used in experimental research of geotechnical engineering.Compared to other materials,3D layer-by-layer printing specimens are extremely similar to the inherent properties of natural layered rock masses.In this paper,soft-hard interbedded rock masses with different dip angles were prepared based on 3D printing(3DP)sand core technology.Uniaxial compression creep tests were conducted to investigate its anisotropic creep behavior based on digital imaging correlation(DIC)technology.The results show that the anisotropic creep behavior of the 3DP soft-hard interbedded rock mass is mainly affected by the dip angles of the weak interlayer when the stress is at low levels.As the stress level increases,the effect of creep stress on its creep anisotropy increases significantly,and the dip angle is no longer the main factor.The minimum value of the long-term strength and creep failure strength always appears in the weak interlayer within 30°–60°,which explains why the failure of the layered rock mass is controlled by the weak interlayer and generally emerges at 45°.The tests results are verified by comparing with theoretical and other published studies.The feasibility of the 3DP soft-hard interbedded rock mass provides broad prospects and application values for 3DP technology in future experimental research.
基金Jinshan Science and Technology Committee(the data collection for this study was partially funded by the project),No.2021-3-05.
文摘BACKGROUND Transjugular intrahepatic portosystemic shunt(TIPS)is a pivotal intervention for managing esophagogastric variceal bleeding in patients with chronic hepatic schistosomiasis.AIM To evaluate the efficacy of digital subtraction angiography image overlay tech-nology(DIT)in guiding the TIPS procedure.METHODS We conducted a retrospective analysis of patients who underwent TIPS at our hospital,comparing outcomes between an ultrasound-guided group and a DIT-guided group.Our analysis focused on the duration of the portosystemic shunt puncture,the number of punctures needed,the total surgical time,and various clinical indicators related to the surgery.RESULTS The study included 52 patients with esophagogastric varices due to chronic hepatic schistosomiasis.Results demonstrated that the DIT-guided group expe-rienced significantly shorter puncture times(P<0.001)and surgical durations(P=0.022)compared to the ultrasound-guided group.Additionally,postoperative assessments showed significant reductions in aspartate aminotransferase,B-type natriuretic peptide,and portal vein pressure in both groups.Notably,the DIT-guided group also showed significant reductions in total bilirubin(P=0.001)and alanine aminotransferase(P=0.023).CONCLUSION The use of DIT for guiding TIPS procedures highlights its potential to enhance procedural efficiency and reduce surgical times in the treatment of esophagogastric variceal bleeding in patients with chronic hepatic schistoso-miasis.
基金This work is supported by National Natural Science Founda-tion of China(NSFC)(32071904)。
文摘Soybean is a crop with a long cultivation history that occupies an important position in agricultural production.Soybean mosaic virus disease(SMV)has caused a rapid decline in soybean yields,causing huge losses to the soybean industry,wherefrom its early detec-tion is particularly important.This study proposes a new classification method for the early SMV,dividing its severity into grades 0,1 and 2.In the case of a small number of experi-mental samples of soybeans,this study proposes a combined convolutional neural network and support vector machine(CNN-SVM)method for the early detection of SMV.Experimen-tal results showed that the accuracy of the training set of the CNN-SVM model reached 96.67%,and the accuracy rate of the test set reached 94.17%.The experiment proved the feasibility of using the proposed CNN-SVM model to classify early SMV under the new clas-sification method,and provided a new direction for early SMV detection based on hyper-spectral images.
基金supported by the National Key Research and Development Program(No.2019YFB2005503)。
文摘Aiming at the problem that the lattice feature exceeds the view field of the scanning electron microscope(SEM)measuring system,a new lattice measuring method is proposed based on integral imaging technology.When the system works,the SEM measuring system is equivalent to an integral image acquisition system.Firstly,a lattice measuring method is researched based on integral imaging theory.Secondly,the system parameters are calibrated by the VLSI lattice standard.Finally,the value of the lattice standard to be tested is determined based on the calibration parameters and the lattice measuring algorithm.The experimental results show that,compared with the traditional electron microscope measurement method,the relative error of the measured value of the algorithm is maintained within 0.2%,with the same level of measurement accuracy,but it expands the field of view of the electron microscope measurement system,which is suitable for the measurement of samples under high magnification.
基金supported by Program for Young Innovative Research Team in China University of Political Science and Law(1000‑10814344)Young Research in China University of Political Science and Law(16ZFQ82008).
文摘This manuscript presents a preliminary investigation on the applicability of hyperspectral imaging technology for nondestructive and rapid analysis to reveal covered original handwritings.The hyperspectral imager Nuance‑Macro was used to collect the reflected light signature of inks from the overlapping parts.The software Nuance1p46 was used to analyze the reflected light signature of inks which shows the covered original handwritings.Different types of black/blue ballpoint pen inks and black/blue gel pen inks were chosen for sample preparation.From the hyperspectral images examined,the covered original handwritings of application were revealed in 90.5%,69.1%,49.5%,and 78.6%of the cases.Further,the correlation between the revealing effect and spectral characteristics of the reflected light of inks at the overlapping parts was interpreted through theoretical analysis and experimental verification.The results indicated that when the spectral characteristics of the reflected light of inks at the overlapping parts were the same or very similar to that of the ink that was used to cover the original handwriting,the original handwriting could not be shown.On the contrary,when the spectral characteristics of the reflected light of inks at the overlapping parts were different to that of the ink that was used to cover the original handwriting,the original handwriting was revealed.
基金Training Program for Young Qhuang Scholars[Chinese Medicine Education Letter(2022)No.256]Key Research and Development Program of Anhui Province(No.202204295107020001)+1 种基金Anhui Young Leaders Reserve Talent Project[No.4,Middle Development(2022)]National Natural Science Foundation of China(No.81973825,82104783)。
文摘Objective:Acoustic radiation force impulse(ARFI)was applied to measure Shear wave velocity(SWV)of liver in patients with Wilson's disease(WD).To investigate the relationship between SWV and the serological indexes of liver fibrosis,such as type Ⅳ collagen(CⅣ),hyaluronic acid(HA),type Ⅲ procollagen peptide(PⅢNP),laminin(LN),APRI score(Asparate Aminotransfer to Platelet Ratio Index),and FIB-4 index(FIB-4 index).The clinical efficacy of GandouTang(GDT)in the treatment of liver fibrosis in WD with damp-heat internalization was also observed.Methods:80 cases of WD patients who met the inclusion criteria were randomly divided into the treatment group and the control group,with 40 cases in each group.The control group was treated with Sodium Dimercaptopropylsulfonate(DMPS)and the treatment group was additionally treated with the traditional Chinese medicine GDT.One course for 8 days,a total of 6 courses.The levels of SwV and four serological indicators of liver fibrosis(PⅢNP,HA,CⅣ,LN),APRI score and FIB-4 index were compared before and after treatment.Pearson correlation test was used to analyze the correlation between SWV and HA,CⅣ,LN,PⅢNP,APRI score and FIB-4 index.The effects of GDT on SWV,liver fiber,APRI and FIB-4 were evaluated according to the treatment plan.Results:①The SWV was positively correlated with FIB-4(r=0.83),APRI(r=0.82),HA(r=0.87),CⅣ(r=0.71),LN(r=0.85)and PINP(r=0.77).②Before treatment,there were no significant differences in SWV level,PⅢNP,HA,CⅣ,LN,APRI and FIB-4 levels between two groups(P>0.05).After treatment,the levels of PⅢNP,HA,LN,SWV,APRI and FIB-4 in both groups were significantly decreased(P<0.05,P<0.01),and the levels in the treatment group were lower than those in the control group.There were no significant specific changes in CⅣ level(P>0.05).Conclusion:SWV value can reflect the degree of WD liver fibrosis,and is positively correlated with HA,PⅢNP,CⅣ,LN,FIB-4 index and APRI score.On the basis of the treatment of protecting liver and expelling copper with western medicine,plus the treatment of traditional Chinese medicine GDT can effectively improve the degree of liver fibrosis in WD patients with damp-heat accumulation.
基金supported by the National Natural Science Foundation of China(No.31901242)Heilongjiang Science Foundation Project(No.LH2020C038)National Undergraduate Training Programs for Innovations(No.202110225074)。
文摘In this paper,the occurrence and development mechanism of strain on the cross-section during the wood drying is explored.Therefore,strain regularity on the cross-section of 50 mm thickness elm(Ulmus rubra)board at the temperature of 40℃and 80℃is detected via digital image correlation technology.Hence,the difference between tangential and radial strain at surface and core layers was denoted.The results showed that strain distribution in the width direction of the board is uneven.Moreover,a large drying shrinkage strain occurs at the near-core layer,while the maximum strain difference reaches 4.08%.Hence,the surface of the board is cracked along the thickness direction.The radial strain of the board is higher than the tangential strain in the early stage of drying,while these strains are reversed in the later stage of drying.The temperature is related to the difference between the tangential and radial strains of the elm board.These differences at the core layer are larger than those of the surface layer.The conducted research results provide a theoretical basis for process optimization.
文摘This study aimed to propose road crack detection method based on infrared image fusion technology.By analyzing the characteristics of road crack images,this method uses a variety of infrared image fusion methods to process different types of images.The use of this method allows the detection of road cracks,which not only reduces the professional requirements for inspectors,but also improves the accuracy of road crack detection.Based on infrared image processing technology,on the basis of in-depth analysis of infrared image features,a road crack detection method is proposed,which can accurately identify the road crack location,direction,length,and other characteristic information.Experiments showed that this method has a good effect,and can meet the requirement of road crack detection.
文摘This research article introduces and explores the concept of a hybrid prism, which combines the properties of a lens and a reflective prism, designed for optical systems that operate in different spectral ranges of electromagnetic waves. The hybrid prism allows for precise focusing of light rays in a glass body and X-rays in a vacuum, enabling it to serve as an objective in various optical systems for imaging objects. The article delves into the structure and working principles of the hybrid prism, discussing its potential applications, including as an intraocular prism for macular degeneration, a lidar system for vehicle navigation, and objectives for cameras, telescopes, microscopes, X-ray devices, and X-ray microscopes. The revolutionary hybrid prism unlocks precise imaging of light and X-rays, reshaping optical systems and enabling groundbreaking applications.
文摘AIM: To evaluate the assessment of primary biliary cirrhosis degree by acoustic radiation force impulse imaging (ARFI) and hepatic fibrosis indicators. METHODS: One hundred and twenty patients who developed liver cirrhosis secondary to primary biliary cirrhosis were selected as the observation group, with the degree of patient liver cirrhosis graded by Child-Pugh (CP) score. Sixty healthy individuals were selected as the control group. The four indicators of hepatic fibrosis were detected in all research objects, including hyaluronic acid (HA), laminin (LN), type III collagen (PC III), and type IV collagen (IV-C). The liver parenchyma hardness value (LS) was then measured by ARFI technique. LS and the four indicators of liver fibrosis (HA, LN, PC III, and IV-C) were observed in different grade CP scores. The diagnostic value of LS and the four indicators of liver fibrosis in determining liver cirrhosis degree with PBC, whether used alone or in combination, were analyzed by receiver operating characteristic (ROC) curve. RESULTS: LS and the four indicators of liver fibrosis within the three classes (A, B, and C) of CP scores in the observation group were higher than in the control group, with C class > B class > A class; the differences were statistically significant (P < 0.01). Although AUC values of LS within the three classes of CP scores were higher than in the four indicators of liver fibrosis, sensitivity and specificity were unstable. The ROC curves of LS combined with the four indicators of liver fibrosis revealed that: AUC and sensitivity in all indicators combined in the A class of CP score were higher than in LS alone, albeit with slightly decreased specificity; AUC and specificity in all indicators combined in the B class of CP score were higher than in LS alone, with unchanged sensitivity; AUC values (0.967), sensitivity (97.4%), and specificity (90%) of all indicators combined in the C class of CP score were higher than in LS alone (0.936, 92.1%, 83.3%). CONCLUSION: The diagnostic value of PBC cirrhosis degree in liver cirrhosis degree assessment by ARFI combined with the four indicators of serum liver fibrosis is of satisfactory effectiveness and has important clinical application value.
文摘The penetration behavior of topical substances in the skin not only relates to the transdermal delivery efficiency but also involves the safety and therapeutic effect of topical products,such as sunscreen and hair growth products.Researchers have tried to illustrate the transdermal process with diversified theories and technologies.Directly observing the distribution of topical substances on skin by characteristic imaging is the most convincing approach.Unfortunately,fluorescence labeling imaging,which is commonly used in biochemical research,is limited for transdermal research for most topical substances with a molecular mass less than 500 Da.Label-free imaging technologies possess the advantages of not requiring any macromolecular dyes,no tissue destruction and an extensive substance detection capability,which has enabled rapid development of such technologies in recent years and their introduction to biological tissue analysis,such as skin samples.Through the specific identification of topical substances and endogenous tissue components,label-free imaging technologies can provide abundant tissue distribution information,enrich theoretical and practical guidance for transdermal drug delivery systems.In this review,we expound the mechanisms and applications of the most popular label-free imaging technologies in transdermal research at present,compare their advantages and disadvantages,and forecast development prospects.
基金This work was supported by Zhejiang Public Welfare Program of Applied Research(LGN19D010001)Zhejiang Agricultural Cooperative and Extensive Project of Key Technology(2020XTTGCY04-02+1 种基金2020XTTGCY01-05)the National Key R&D Program of China(2017YFE0122500).
文摘Tea plant stresses threaten the quality of tea seriously.The technology corresponding to the fast detection and differentiation of stresses is of great significance for plant protection in tea plantation.In recent years,hyperspectral imaging technology has shown great potential in detecting and differentiating plant diseases,pests and some other stresses at the leaf level.However,the lack of studies at canopy level hampers the detection of tea plant stresses at a larger scale.In this study,based on the canopy-level hyperspectral imaging data,the methods for identifying and differentiating the three commonly occurred tea stresses(i.e.,the tea leafhopper,anthrax and sun burn)were studied.To account for the complexity of the canopy scenario,a stepwise detecting strategy was proposed that includes the process of background removal,identification of damaged areas and discrimination of stresses.Firstly,combining the successive projection algorithm(SPA)spectral analysis and K-means cluster analysis,the background and overexposed non-plant regions were removed from the image.Then,a rigorous sensitivity analysis and optimization were performed on various forms of spectral features,which yielded optimal features for detecting damaged areas(i.e.,YSV,Area,GI,CARI and NBNDVI)and optimal features for stresses discrimination(i.e.,MCARI,CI,LCI,RARS,TCI and VOG).Based on this information,the models for identifying damaged areas and those models for discriminating different stresses were established using K-nearest neighbor(KNN),Random Forest(RF)and Fisher discriminant analysis.The identification model achieved an accuracy over 95%,and the discrimination model achieved an accuracy over 93%for all stresses.The results suggested the feasibility of stress detection and differentiation using canopy-level hyperspectral imaging techniques,and indicated the potential for its extension over large areas.