The permanent magnet synchronous motors (PMSMs) may have chaotic behaviours for the uncertain values of parameters or under certain working conditions, which threatens the secure and stable operation of motor-driven...The permanent magnet synchronous motors (PMSMs) may have chaotic behaviours for the uncertain values of parameters or under certain working conditions, which threatens the secure and stable operation of motor-driven. It is important to study methods of controlling or suppressing chaos in PMSMs. In this paper, robust stabilities of PMSM with parameter uncertainties are investigated. After the uncertain matrices which represent the variable system parameters are formulated through matrix analysis, a novel asymptotical stability criterion is established. Some illustrated examples are also given to show the effectiveness of the obtained results.展开更多
In this paper, some novel sufficient conditions for asymptotic stability of impulsive control systems are presented by comparison systems. The results are used to obtain the conditions under which the chaotic systems ...In this paper, some novel sufficient conditions for asymptotic stability of impulsive control systems are presented by comparison systems. The results are used to obtain the conditions under which the chaotic systems can be asymptotically controlled to the origin via impulsive control. Compared with some existing results, our results are more relaxed in the sense that the Lyapunov function is required to be nonincreasing only along a subsequence of switchings. Moreover, a larger upper bound of impulsive intervals for stabilization and synchronization is obtained.展开更多
This paper studies the stochastic asymptotical stability of stochastic impulsive differential equations, and establishes a comparison theory to ensure the trivial solution's stochastic asymptotical stability. From th...This paper studies the stochastic asymptotical stability of stochastic impulsive differential equations, and establishes a comparison theory to ensure the trivial solution's stochastic asymptotical stability. From the comparison theory, it can find out whether the stochastic impulsive differential system is stable just by studying the stability of a deterministic comparison system. As a general application of this theory, it controls the chaos of stochastic Lii system using impulsive control method, and numerical simulations are employed to verify the feasibility of this method.展开更多
In this paper, an improved impulsive lag synchronization scheme for different chaotic systems with parametric uncertainties is proposed. Based on the new definition of synchronization with error bound and a novel impu...In this paper, an improved impulsive lag synchronization scheme for different chaotic systems with parametric uncertainties is proposed. Based on the new definition of synchronization with error bound and a novel impulsive control scheme (the so-called dual-stage impulsive control), some new and less conservative sufficient conditions are established to guarantee that the error dynamics can converge to a predetermined level, which is more reasonable and rigorous than the existing results. In particular, some simpler and more convenient conditions are derived by taking the same impulsive distances and control gains. Finally, some numerical simulations for the Lorenz system and the Chen system are given to demonstrate the effectiveness and feasibility of the proposed method.展开更多
A whole impulsive control scheme of nonlinear systems with time-varying delays, which is an extension for impulsive control of nonlinear systems without time delay, is presented in this paper. Utilizing the Lyapunov f...A whole impulsive control scheme of nonlinear systems with time-varying delays, which is an extension for impulsive control of nonlinear systems without time delay, is presented in this paper. Utilizing the Lyapunov functions and the impulsive-type comparison principles, we establish a series of different conditions under which impulsively controlled nonlinear systems with time-varying delays are asymptotically stable. Then we estimate upper bounds of impulse interval and time-varying delays for asymptotically stable control. Finally a numerical example is given to illustrate the effectiveness of the method.展开更多
A scheme for the impulsive control of nonlinear systems with time-varying delays is investigated in this paper. Based on the Lyapunov-like stability theorem for impulsive functional differential equations (FDEs), so...A scheme for the impulsive control of nonlinear systems with time-varying delays is investigated in this paper. Based on the Lyapunov-like stability theorem for impulsive functional differential equations (FDEs), some sufficient conditions are presented to guarantee the uniform asymptotic stability of impulsively controlled nonlinear systems with time-varying delays. These conditions are more effective and less conservative than those obtained. Finally, two numerical examples are provided to demonstrate the effectiveness of the proposed method.展开更多
In this paper, structure identification of an uncertain network coupled with complex-variable chaotic systems is in- vestigated. Both the topological structure and the system parameters can be unknown and need to be i...In this paper, structure identification of an uncertain network coupled with complex-variable chaotic systems is in- vestigated. Both the topological structure and the system parameters can be unknown and need to be identified. Based on impulsive stability theory and the Lyapunov function method, an impulsive control scheme combined with an adaptive strategy is adopted to design effective and universal network estimators. The restriction on the impulsive interval is relaxed by adopting an adaptive strategy. Further, the proposed method can monitor the online switching topology effectively. Several numerical simulations are provided to illustrate the effectiveness of the theoretical results.展开更多
By using Impulsive Maximum Principal and three stage optimization method,this paper discusses optimization problems for linear impulsive switched systems with hybridcontrols, which includes continuous control and impu...By using Impulsive Maximum Principal and three stage optimization method,this paper discusses optimization problems for linear impulsive switched systems with hybridcontrols, which includes continuous control and impulsive control. The linear quadratic optimizationproblems without constraints such as optimal hybrid control, optimal stability and optimalswitching instants are addressed in detail. These results are applicable to optimal control problemsin economics,mechanics, and management.展开更多
A permanent magnet synchronous motor (PMSM) may have chaotic behaviours under certain working conditions, especially for uncertain values of parameters, which threatens the security and stability of motor-driven ope...A permanent magnet synchronous motor (PMSM) may have chaotic behaviours under certain working conditions, especially for uncertain values of parameters, which threatens the security and stability of motor-driven operation. Hence, it is important to study methods of controlling or suppressing chaos in PMSMs. In this paper, the stability of a PMSM with parameter uncertainties is investigated. After uncertain matrices which represent the variable system parameters are formulated through matrix analysis, a novel asymptotical stability criterion is established by employing the method of Lyapunov functions and linear matrix inequality technology. An example is also given to illustrate the effectiveness of our results.展开更多
This paper presents a novel approach to hyperchaos control of hyperchaotic systems based on impulsive control and the Takagi-Sugeno (T-S) fuzzy model. In this study, the hyperchaotic Lu system is exactly represented...This paper presents a novel approach to hyperchaos control of hyperchaotic systems based on impulsive control and the Takagi-Sugeno (T-S) fuzzy model. In this study, the hyperchaotic Lu system is exactly represented by the T-S fuzzy model and an impulsive control framework is proposed for stabilizing the hyperchaotic Lu system, which is also suitable for classes of T-S fuzzy hyperchaotic systems, such as the hyperchaotic Rossler, Chen, Chua systems and so on. Sufficient conditions for achieving stability in impulsive T-S fuzzy hyperchaotic systems are derived by using Lyapunov stability theory in the form of the linear matrix inequality, and are less conservative in comparison with existing results. Numerical simulations are given to demonstrate the effectiveness of the proposed method.展开更多
This paper investigates the impulsive control and synchronization of a chaotic system, which is a particular case of the so-called generalized Lorenz canonical form (GLCF) with r τ -1 Based on the impulsive control...This paper investigates the impulsive control and synchronization of a chaotic system, which is a particular case of the so-called generalized Lorenz canonical form (GLCF) with r τ -1 Based on the impulsive control method, some new criteria are obtained to guarantee the impulsively controlled chaotic system and error system to be globally asymptotically stable at origin. Moreover, to be some simulation results are included to visualize the effectiveness and feasibility of the proposed method.展开更多
This paper derives some sufficient conditions for the stabilization of Lorenz system with stochastic impulsive control. The estimate of the upper bound of impulse interval for asymptotically stable control is obtained...This paper derives some sufficient conditions for the stabilization of Lorenz system with stochastic impulsive control. The estimate of the upper bound of impulse interval for asymptotically stable control is obtained. Some differences between the system with stochastic impulsive control and with deterministic impulsive control are presented. Computer simulation is given to show the effectiveness of the proposed method.展开更多
This work investigates synchronization of two fractional unified hyperchaotic systems via impulsive control.The stable theory about impulsive fractional equation is studied based on the stable theory about fractional ...This work investigates synchronization of two fractional unified hyperchaotic systems via impulsive control.The stable theory about impulsive fractional equation is studied based on the stable theory about fractional linear system.Then according to the theorem proposed the sufficient condition on feedback strength and impulsive interval are established to guarantee the synchronization.Numerical simulations show the effectiveness of the theorem.展开更多
A novel framework for chaos and its impul-sive control in Chua's oscillator via time-delay feedback is presented.The exponential stability of impulsive control Chua's oscillator via time-delay feedback is considered...A novel framework for chaos and its impul-sive control in Chua's oscillator via time-delay feedback is presented.The exponential stability of impulsive control Chua's oscillator via time-delay feedback is considered,and some novel conditions are obtained.Then a novel impulsive controller design procedure is proposed.Simulation experiments are provided to demonstrate the feasibility and effectiveness of our method finally.展开更多
This paper proposes an impulsive control scheme for chaotic systems consisting of Van der Pol oscillators coupled to linear oscillators (VDPL) based on their Takagi-Sugeno (T-S) fuzzy models. A T-S fuzzy model is ...This paper proposes an impulsive control scheme for chaotic systems consisting of Van der Pol oscillators coupled to linear oscillators (VDPL) based on their Takagi-Sugeno (T-S) fuzzy models. A T-S fuzzy model is utilized to represent the chaotic VDPL system. By using comparison method, a general asymptotical stability criterion by means of linear matrix inequality (LMI) is derived for the T-S fuzzy model of VDPL system with impulsive effects. The simulation results demonstrate the effectiveness of the proposed scheme.展开更多
A control approach where the fuzzy logic methodology is combined with impulsive control is developed for controlling some time-delay chaotic systems in this paper. We first introduce impulses into each subsystem with ...A control approach where the fuzzy logic methodology is combined with impulsive control is developed for controlling some time-delay chaotic systems in this paper. We first introduce impulses into each subsystem with delay of the Takagi-Sugeno (TS) fuzzy IF-THEN rules and then present a unified TS impulsive fuzzy model with delay for chaos control. Based on the new model, a simple and unified set of conditions for controlling chaotic systems is derived by the Lyapunov Razumikhin method, and a design procedure for estimating bounds on control matrices is also given. Several numerical examples are presented to illustrate the effectiveness of this method.展开更多
An impulsive control scheme of the Lur' e system and several theorems on stability of impulsive control systems was presented,these theorems were then used to find the conditions under which the Lur' e system ...An impulsive control scheme of the Lur' e system and several theorems on stability of impulsive control systems was presented,these theorems were then used to find the conditions under which the Lur' e system can be stabilized by using impulsive control with varying impulsive intervals.The parameters of Lur' e system and impulsive control law are given,a theory of impulsive synchronization of two Lur' e system is also presented. A numerical example is used to verify the theoretical result.展开更多
In this paper, a novel robust impulsive lag synchronization scheme for different chaotic systems with parametric uncertainties is proposed. Based on the theory of impulsive functional differential equations and a new ...In this paper, a novel robust impulsive lag synchronization scheme for different chaotic systems with parametric uncertainties is proposed. Based on the theory of impulsive functional differential equations and a new differential inequality, some new and less conservative sufficient conditions are established to guarantee that the error dynamics can converge to a predetermined region. Finally, some numerical simulations for the Lorenz system and Chen system are given to demonstrate the effectiveness and feasibility of the proposed method. Compared with the existing results based on so-called dual-stage impulsive control, the derived results reduce the complexity of impulsive controller, moreover, a larger stable region can be obtained under the same parameters, which can be shown in the numerical simulations finally.展开更多
Based on the study from both domestic and abroad, an impulsive control scheme on chaotic attractors in one kind of chaotic system is presented.By applying impulsive control theory of the universal equation, the asympt...Based on the study from both domestic and abroad, an impulsive control scheme on chaotic attractors in one kind of chaotic system is presented.By applying impulsive control theory of the universal equation, the asymptotically stable condition of impulsive control on chaotic attractors in such kind of nonlinear chaotic system has been deduced, and with it, the upper bond of the impulse interval for asymptotically stable control was given. Numerical results are presented, which are considered with important reference value for control of chaotic attractors.展开更多
In this paper we study stability and boundedness in terms of two measures for impulsive control systems. By using variational Lyapunov method, a new variational comparison principle and some criteria on stability and ...In this paper we study stability and boundedness in terms of two measures for impulsive control systems. By using variational Lyapunov method, a new variational comparison principle and some criteria on stability and boundedness are obtained. An example is presented to illustrate the efficiency of proposed result.展开更多
基金supported by the National Natural Science Foundation of China (Grant No 60604007)
文摘The permanent magnet synchronous motors (PMSMs) may have chaotic behaviours for the uncertain values of parameters or under certain working conditions, which threatens the secure and stable operation of motor-driven. It is important to study methods of controlling or suppressing chaos in PMSMs. In this paper, robust stabilities of PMSM with parameter uncertainties are investigated. After the uncertain matrices which represent the variable system parameters are formulated through matrix analysis, a novel asymptotical stability criterion is established. Some illustrated examples are also given to show the effectiveness of the obtained results.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.10926066 and 11026182)the Natural Science Foundation of Zhejiang Province,China(Grant No.Y6100007)+3 种基金the Zhejiang Educational Committee,China(Grant No.Y200805720)the Natural Science Foundation of Jiangsu Province,China(Grant No.BK2010408)the Innovation Fund of Basic Scientific Research Operating Expenses,China(Grant No.3207010501)the Alexander von Humboldt Foundation of Germany
文摘In this paper, some novel sufficient conditions for asymptotic stability of impulsive control systems are presented by comparison systems. The results are used to obtain the conditions under which the chaotic systems can be asymptotically controlled to the origin via impulsive control. Compared with some existing results, our results are more relaxed in the sense that the Lyapunov function is required to be nonincreasing only along a subsequence of switchings. Moreover, a larger upper bound of impulsive intervals for stabilization and synchronization is obtained.
基金Project supported by the National Natural Science Foundation of China (Grant No. 10902085)
文摘This paper studies the stochastic asymptotical stability of stochastic impulsive differential equations, and establishes a comparison theory to ensure the trivial solution's stochastic asymptotical stability. From the comparison theory, it can find out whether the stochastic impulsive differential system is stable just by studying the stability of a deterministic comparison system. As a general application of this theory, it controls the chaos of stochastic Lii system using impulsive control method, and numerical simulations are employed to verify the feasibility of this method.
基金supported by the National Natural Science Foundation of China (Grant Nos 60534010,60774048,60728307,60804006 and 60521003)the National High Technology Research and Development Program of China (Grant No 2006AA04Z183)+2 种基金Liaoning Provincial Natural Science Foundation of China (Grant No 20062018)State Key Development Program for Basic research of China (Grant No 2009CB320601)111 Project,China (Grant No B08015)
文摘In this paper, an improved impulsive lag synchronization scheme for different chaotic systems with parametric uncertainties is proposed. Based on the new definition of synchronization with error bound and a novel impulsive control scheme (the so-called dual-stage impulsive control), some new and less conservative sufficient conditions are established to guarantee that the error dynamics can converge to a predetermined level, which is more reasonable and rigorous than the existing results. In particular, some simpler and more convenient conditions are derived by taking the same impulsive distances and control gains. Finally, some numerical simulations for the Lorenz system and the Chen system are given to demonstrate the effectiveness and feasibility of the proposed method.
文摘A whole impulsive control scheme of nonlinear systems with time-varying delays, which is an extension for impulsive control of nonlinear systems without time delay, is presented in this paper. Utilizing the Lyapunov functions and the impulsive-type comparison principles, we establish a series of different conditions under which impulsively controlled nonlinear systems with time-varying delays are asymptotically stable. Then we estimate upper bounds of impulse interval and time-varying delays for asymptotically stable control. Finally a numerical example is given to illustrate the effectiveness of the method.
基金supported by the National Natural Science Foundation of China (Grant Nos 60534010,60774048,60728307,60804006 and 60521003)the National High Technology Research and Development Program of China (Grant No 2006AA04Z183)+1 种基金Liaoning Provincial Natural Science Foundation,China (Grant No 20062018)111 Project (Grant No B08015)
文摘A scheme for the impulsive control of nonlinear systems with time-varying delays is investigated in this paper. Based on the Lyapunov-like stability theorem for impulsive functional differential equations (FDEs), some sufficient conditions are presented to guarantee the uniform asymptotic stability of impulsively controlled nonlinear systems with time-varying delays. These conditions are more effective and less conservative than those obtained. Finally, two numerical examples are provided to demonstrate the effectiveness of the proposed method.
基金Project supported by the Tianyuan Special Funds of the National Natural Science Foundation of China(Grant No.11226242)the Natural Science Foundation of Jiangxi Province of China(Grant No.20122BAB211006)
文摘In this paper, structure identification of an uncertain network coupled with complex-variable chaotic systems is in- vestigated. Both the topological structure and the system parameters can be unknown and need to be identified. Based on impulsive stability theory and the Lyapunov function method, an impulsive control scheme combined with an adaptive strategy is adopted to design effective and universal network estimators. The restriction on the impulsive interval is relaxed by adopting an adaptive strategy. Further, the proposed method can monitor the online switching topology effectively. Several numerical simulations are provided to illustrate the effectiveness of the theoretical results.
文摘By using Impulsive Maximum Principal and three stage optimization method,this paper discusses optimization problems for linear impulsive switched systems with hybridcontrols, which includes continuous control and impulsive control. The linear quadratic optimizationproblems without constraints such as optimal hybrid control, optimal stability and optimalswitching instants are addressed in detail. These results are applicable to optimal control problemsin economics,mechanics, and management.
基金Project supported by the National Natural Science Foundation of China (Grant No. 50775226)the Chongqing Natural Science Foundation (Grant No. CSTC, 2008BB3308)the Innovation Training Foundation of Chongqing University (Grant No. CDCX004)
文摘A permanent magnet synchronous motor (PMSM) may have chaotic behaviours under certain working conditions, especially for uncertain values of parameters, which threatens the security and stability of motor-driven operation. Hence, it is important to study methods of controlling or suppressing chaos in PMSMs. In this paper, the stability of a PMSM with parameter uncertainties is investigated. After uncertain matrices which represent the variable system parameters are formulated through matrix analysis, a novel asymptotical stability criterion is established by employing the method of Lyapunov functions and linear matrix inequality technology. An example is also given to illustrate the effectiveness of our results.
基金supported by the National Natural Science Foundation of China(Grant No 60604007)
文摘This paper presents a novel approach to hyperchaos control of hyperchaotic systems based on impulsive control and the Takagi-Sugeno (T-S) fuzzy model. In this study, the hyperchaotic Lu system is exactly represented by the T-S fuzzy model and an impulsive control framework is proposed for stabilizing the hyperchaotic Lu system, which is also suitable for classes of T-S fuzzy hyperchaotic systems, such as the hyperchaotic Rossler, Chen, Chua systems and so on. Sufficient conditions for achieving stability in impulsive T-S fuzzy hyperchaotic systems are derived by using Lyapunov stability theory in the form of the linear matrix inequality, and are less conservative in comparison with existing results. Numerical simulations are given to demonstrate the effectiveness of the proposed method.
基金Supported by the National Natural Science Foundation of China (60574045)
文摘This paper investigates the impulsive control and synchronization of a chaotic system, which is a particular case of the so-called generalized Lorenz canonical form (GLCF) with r τ -1 Based on the impulsive control method, some new criteria are obtained to guarantee the impulsively controlled chaotic system and error system to be globally asymptotically stable at origin. Moreover, to be some simulation results are included to visualize the effectiveness and feasibility of the proposed method.
基金supported by the National Natural Science Foundation of China (Grant No. 10872165)
文摘This paper derives some sufficient conditions for the stabilization of Lorenz system with stochastic impulsive control. The estimate of the upper bound of impulse interval for asymptotically stable control is obtained. Some differences between the system with stochastic impulsive control and with deterministic impulsive control are presented. Computer simulation is given to show the effectiveness of the proposed method.
基金Key Creative Project of Shanghai Education Community,China(No.13ZZ050)Key Basic Research Project of Shanghai,China(No.12JC1400400)
文摘This work investigates synchronization of two fractional unified hyperchaotic systems via impulsive control.The stable theory about impulsive fractional equation is studied based on the stable theory about fractional linear system.Then according to the theorem proposed the sufficient condition on feedback strength and impulsive interval are established to guarantee the synchronization.Numerical simulations show the effectiveness of the theorem.
文摘A novel framework for chaos and its impul-sive control in Chua's oscillator via time-delay feedback is presented.The exponential stability of impulsive control Chua's oscillator via time-delay feedback is considered,and some novel conditions are obtained.Then a novel impulsive controller design procedure is proposed.Simulation experiments are provided to demonstrate the feasibility and effectiveness of our method finally.
文摘This paper proposes an impulsive control scheme for chaotic systems consisting of Van der Pol oscillators coupled to linear oscillators (VDPL) based on their Takagi-Sugeno (T-S) fuzzy models. A T-S fuzzy model is utilized to represent the chaotic VDPL system. By using comparison method, a general asymptotical stability criterion by means of linear matrix inequality (LMI) is derived for the T-S fuzzy model of VDPL system with impulsive effects. The simulation results demonstrate the effectiveness of the proposed scheme.
基金supported by the Natural Science Foundation of Guandong Province,China (Grant No 8351009001000002)the National Natural Science Foundation of China (Grant Nos 60572073 and 60871025)
文摘A control approach where the fuzzy logic methodology is combined with impulsive control is developed for controlling some time-delay chaotic systems in this paper. We first introduce impulses into each subsystem with delay of the Takagi-Sugeno (TS) fuzzy IF-THEN rules and then present a unified TS impulsive fuzzy model with delay for chaos control. Based on the new model, a simple and unified set of conditions for controlling chaotic systems is derived by the Lyapunov Razumikhin method, and a design procedure for estimating bounds on control matrices is also given. Several numerical examples are presented to illustrate the effectiveness of this method.
文摘An impulsive control scheme of the Lur' e system and several theorems on stability of impulsive control systems was presented,these theorems were then used to find the conditions under which the Lur' e system can be stabilized by using impulsive control with varying impulsive intervals.The parameters of Lur' e system and impulsive control law are given,a theory of impulsive synchronization of two Lur' e system is also presented. A numerical example is used to verify the theoretical result.
基金supported by the Fundamental Research Funds for the Central Universities (Grant No.CDJZR10170002)
文摘In this paper, a novel robust impulsive lag synchronization scheme for different chaotic systems with parametric uncertainties is proposed. Based on the theory of impulsive functional differential equations and a new differential inequality, some new and less conservative sufficient conditions are established to guarantee that the error dynamics can converge to a predetermined region. Finally, some numerical simulations for the Lorenz system and Chen system are given to demonstrate the effectiveness and feasibility of the proposed method. Compared with the existing results based on so-called dual-stage impulsive control, the derived results reduce the complexity of impulsive controller, moreover, a larger stable region can be obtained under the same parameters, which can be shown in the numerical simulations finally.
文摘Based on the study from both domestic and abroad, an impulsive control scheme on chaotic attractors in one kind of chaotic system is presented.By applying impulsive control theory of the universal equation, the asymptotically stable condition of impulsive control on chaotic attractors in such kind of nonlinear chaotic system has been deduced, and with it, the upper bond of the impulse interval for asymptotically stable control was given. Numerical results are presented, which are considered with important reference value for control of chaotic attractors.
文摘In this paper we study stability and boundedness in terms of two measures for impulsive control systems. By using variational Lyapunov method, a new variational comparison principle and some criteria on stability and boundedness are obtained. An example is presented to illustrate the efficiency of proposed result.