Critical infrastructure systems(CISs)play a key role in the socio-economic activity of a society,but are exposed to an array of disruptive events that can greatly impact their function and performance.Therefore,unders...Critical infrastructure systems(CISs)play a key role in the socio-economic activity of a society,but are exposed to an array of disruptive events that can greatly impact their function and performance.Therefore,understanding the underlying behaviors of CISs and their response to perturbations is needed to better prepare for,and mitigate the impact of,future disruptions.Resilience is one characteristic of CISs that influences the extent and severity of the impact induced by extreme events.Resilience is often dissected into four dimensions:robustness,redundancy,resourcefulness,and rapidity,known as the“4Rs”.This study proposes a framework to assess the resilience of an infrastructure network in terms of these four dimensions under optimal resource allocation strategies and incorporates interdependencies between different CISs,with resilience considered as a stochastic variable.The proposed framework combines an agent-based infrastructure interdependency model,advanced optimization algorithms,Bayesian network techniques,and Monte Carlo simulation to assess the resilience of an infrastructure network.The applicability and flexibility of the proposed framework is demonstrated with a case study using a network of CISs in Austin,Texas,where the resilience of the network is assessed and a“what-if”analysis is performed.展开更多
Equal access to social infrastructures is a fundamental prerequisite for sustainable development,but has long been a great challenge worldwide.Previous studies have primarily focused on the accessibility to social inf...Equal access to social infrastructures is a fundamental prerequisite for sustainable development,but has long been a great challenge worldwide.Previous studies have primarily focused on the accessibility to social infras-tructures in urban areas across various scales,with less attention to rural areas,where inequality can be more severe.Particularly,few have investigated the disparities of accessibility to social infrastructures between urban and rural areas.Here,using the Changsha-Zhuzhou-Xiangtan urban agglomeration,China,as an example,we investigated the inequality of accessibility in both urban and rural areas,and further compared the urban-rural difference.Accessibility was measured by travel time of residents to infrastructures.We selected four types of social infrastructures including supermarkets,bus stops,primary schools,and health care,which were funda-mentally important to both urban and rural residents.We found large disparities in accessibility between urban and rural areas,ranging from 20 min to 2 h.Rural residents had to spend one to two more hours to bus stops than urban residents,and 20 min more to the other three types of infrastructures.Furthermore,accessibility to multiple infrastructures showed greater urban-rural differences.Rural residents in more than half of the towns had no access to any infrastructure within 15 min,while more than 60%of the urban residents could access to all infrastructures within 15 min.Our results revealed quantitative accessibility gap between urban and rural areas and underscored the necessity of social infrastructures planning to address such disparities.展开更多
Protection of urban critical infrastructures(CIs)from GPS-denied,bomb-carrying kamikaze drones(G-BKDs)is very challenging.Previous approaches based on drone jamming,spoofing,communication interruption and hijacking ca...Protection of urban critical infrastructures(CIs)from GPS-denied,bomb-carrying kamikaze drones(G-BKDs)is very challenging.Previous approaches based on drone jamming,spoofing,communication interruption and hijacking cannot be applied in the case under examination,since G-B-KDs are uncontrolled.On the other hand,drone capturing schemes and electromagnetic pulse(EMP)weapons seem to be effective.However,again,existing approaches present various limitations,while most of them do not examine the case of G-B-KDs.This paper,focuses on the aforementioned under-researched field,where the G-B-KD is confronted by two defensive drones.The first neutralizes and captures the kamikaze drone,while the second captures the bomb.Both defensive drones are equipped with a net-gun and an innovative algorithm,which,among others,estimates the locations of interception,using a real-world trajectory model.Additionally,one of the defensive drones is also equipped with an EMP weapon to damage the electronics equipment of the kamikaze drone and reduce the capturing time and the overall risk.Extensive simulated experiments and comparisons to state-of-art methods,reveal the advantages and limitations of the proposed approach.More specifically,compared to state-of-art,the proposed approach improves:(a)time to neutralize the target by at least 6.89%,(b)maximum number of missions by at least 1.27%and(c)total cost by at least 5.15%.展开更多
Research data infrastructures form the cornerstone in both cyber and physical spaces,driving the progression of the data-intensive scientific research paradigm.This opinion paper presents an overview of global researc...Research data infrastructures form the cornerstone in both cyber and physical spaces,driving the progression of the data-intensive scientific research paradigm.This opinion paper presents an overview of global research data infrastructure,drawing insights from national roadmaps and strategic documents related to research data infrastructure.It emphasizes the pivotal role of research data infrastructures by delineating four new missions aimed at positioning them at the core of the current scientific research and communication ecosystem.The four new missions of research data infrastructures are:(1)as a pioneer,to transcend the disciplinary border and address complex,cutting-edge scientific and social challenges with problem-and data-oriented insights;(2)as an architect,to establish a digital,intelligent,flexible research and knowledge services environment;(3)as a platform,to foster the high-end academic communication;(4)as a coordinator,to balance scientific openness with ethics needs.展开更多
Due to the need for massive device connectivity,low communication latency,and various customizations in 6G architecture,a distributed cloud deployment approach will be more relevant to the space-air-ground-sea integra...Due to the need for massive device connectivity,low communication latency,and various customizations in 6G architecture,a distributed cloud deployment approach will be more relevant to the space-air-ground-sea integrated network scenario.However,the openness and heterogeneity of the 6G network cause the problems of network security.To improve the trustworthiness of 6G networks,we propose a trusted computing-based approach for establishing trust relationships inmulti-cloud scenarios.The proposed method shows the relationship of trust based on dual-level verification.It separates the trustworthy states of multiple complex cloud units in 6G architecture into the state within and between cloud units.Firstly,SM3 algorithm establishes the chain of trust for the system’s trusted boot phase.Then,the remote attestation server(RAS)of distributed cloud units verifies the physical servers.Meanwhile,the physical servers use a ring approach to verify the cloud servers.Eventually,the centralized RAS takes one-time authentication to the critical evidence information of distributed cloud unit servers.Simultaneously,the centralized RAS also verifies the evidence of distributed RAS.We establish our proposed approach in a natural OpenStack-based cloud environment.The simulation results show that the proposed method achieves higher security with less than a 1%system performance loss.展开更多
Common prosperity is an important goal of China’s modernization efforts,and narrowing the income gap among different regions and populations is crucial to achieving common prosperity.The construction of digital infra...Common prosperity is an important goal of China’s modernization efforts,and narrowing the income gap among different regions and populations is crucial to achieving common prosperity.The construction of digital infrastructure has significantly boosted productivity and facilitated the diffusion of technology in less developed regions,leading to notable changes in labor employment and the income gap,which aligns with the goal of common prosperity.This paper explores the mechanism through which digital infrastructure influences common prosperity with a focus on employment,using panel data from 30 provinces in China between 2011 and 2021 for an empirical test.The research finds that digital infrastructure significantly promotes common prosperity.By expanding employment and increasing labor remuneration,the influence of digital infrastructure on common prosperity exhibits regional heterogeneity and a nonlinear threshold effect.The research suggests that the government should enhance investment in and construction of digital infrastructure,reduce the digital divide through policy support in rural areas,promote digital employment and skills training,and encourage industrial integration and enterprise participation.展开更多
Transportation infrastructure is crucial to China’s economic growth because it substantially contributes to the holistic development of rural primary,secondary,and tertiary industries.This study innovatively examines...Transportation infrastructure is crucial to China’s economic growth because it substantially contributes to the holistic development of rural primary,secondary,and tertiary industries.This study innovatively examines transportation infrastructure and urbanization levels to explore,both theoretically and empirically,their relationship with the holistic development of primary,secondary,and tertiary industries in rural China,and the mediating role of urbanization on this relationship.We employed fixed-effects models,the entropy weight approach,mixed regression,and generalized method of moments to analyze the data of 30 provinces across China from 2013 to 2020.The results indicate that the construction of transportation infrastructure directly fosters the collective advancement of such industries in rural areas and that urbanization partially mediates the transportation infrastructure-rural industry integration relationship.However,the western region shows disparities in the integrated development of these sectors.Further analysis reveals that foreign investments amplify the positive influence of transportation infrastructure on rural industry integration.Essentially,the enhancement of rural transportation infrastructure,promotion of urbanization,implementation of strategic planning,and strengthening of support mechanisms are crucial aspects in the comprehensive development of rural industries and the achievement of rural revitalization in China.展开更多
Kuala Lumpur of Malaysia,as a tropical city,has experienced a notable decline in its critical urban green infrastructure(UGI)due to rapid urbanization and haphazard development.The decrease of UGI,especially natural f...Kuala Lumpur of Malaysia,as a tropical city,has experienced a notable decline in its critical urban green infrastructure(UGI)due to rapid urbanization and haphazard development.The decrease of UGI,especially natural forest and artificial forest,may reduce the diversity of ecosystem services and the ability of Kuala Lumpur to build resilience in the future.This study analyzed land use and land cover(LULC)and UGI changes in Kuala Lumpur based on Landsat satellite images in 1990,2005,and 2021and employed the overall accuracy and Kappa coefficient to assess classification accuracy.LULC was categorized into six main types:natural forest,artificial forest,grassland,water body,bare ground,and built-up area.Satellite images in 1990,2005,and 2021 showed the remarkable overall accuracy values of 91.06%,96.67%,and 98.28%,respectively,along with the significant Kappa coefficient values of 0.8997,0.9626,and 0.9512,respectively.Then,this study utilized Cellular Automata and Markov Chain model to analyze the transition of different LULC types during 1990-2005 and 1990-2021 and predict LULC types in 2050.The results showed that natural forest decreased from 15.22%to 8.20%and artificial forest reduced from 18.51%to 15.16%during 1990-2021.Reductions in natural forest and artificial forest led to alterations in urban surface water dynamics,increasing the risk of urban floods.However,grassland showed a significant increase from 7.80%to 24.30%during 1990-2021.Meanwhile,bare ground increased from 27.16%to 31.56%and built-up area increased from 30.45%to 39.90%during 1990-2005.In 2021,built-up area decreased to 35.10%and bare ground decreased to 13.08%,indicating a consistent dominance of built-up area in the central parts of Kuala Lumpur.This study highlights the importance of integrating past,current,and future LULC changes to improve urban ecosystem services in the city.展开更多
The emergence of Web3 technologies promises to revolutionize the Internet and redefine our interactions with digital assets and applications.This essay explores the pivotal role of 5G infrastructure in bolstering the ...The emergence of Web3 technologies promises to revolutionize the Internet and redefine our interactions with digital assets and applications.This essay explores the pivotal role of 5G infrastructure in bolstering the growth and potential of Web3.By focusing on several crucial aspects—network speed,edge computing,network capacity,security and power consumption—we shed light on how 5G technology offers a robust and transformative foundation for the decentralized future of the Internet.Prior to delving into the specifics,we undertake a technical review of the historical progression and development of Internet and telecommunication technologies.展开更多
Critical Infrastructures(CIs),which serve as the foundation of our modern society,are facing increasing risks from cyber threats,physical attacks,and natural disasters.Additionally,the interdependencies between CIs th...Critical Infrastructures(CIs),which serve as the foundation of our modern society,are facing increasing risks from cyber threats,physical attacks,and natural disasters.Additionally,the interdependencies between CIs through-out their operational lifespan can also significantly impact their integrity and safety.As a result,enhancing the resilience of CIs has emerged as a top priority for many countries,including the European Union.This involves not only understanding the threats/attacks themselves but also gaining knowledge about the areas and infrastruc-tures that could potentially be affected.A European Union-funded project named PRECINCT(Preparedness and Resilience Enforcement for Critical INfrastructure Cascading Cyber-Physical Threats),under the Horizon 2020 program,tries to connect private and public stakeholders of CIs in a specific geographical area.The key objec-tive of this project is to establish a common cyber-physical security management approach that will ensure the protection of both citizens and infrastructures,creating a secure territory.This paper presents the components of PRECINCT,including a directory of PRECINCT Critical Infrastructure Protection(CIP)blueprints.These blueprints support CI communities in designing integrated ecosystems,operating and replicating PRECINCT components(or toolkits).The integration enables coordinated security and resilience management,incorporating improved’installation-specific’security solutions.Additionally,Serious Games(SG),and Digital Twins(DT)are a significant part of this project,serving as a novel vulnerability evaluation method for analysing complicated multi-system cascading effects in the PRECINCT Living Labs(LLs).The use of SG supports the concentrated advancement of innovative resilience enhancement services.展开更多
This study aims to explore the challenges and opportunities associated with developing healthcare infrastructure in Saudi Arabia through the implementation of smart technologies. The healthcare sector in Saudi Arabia ...This study aims to explore the challenges and opportunities associated with developing healthcare infrastructure in Saudi Arabia through the implementation of smart technologies. The healthcare sector in Saudi Arabia is undergoing significant transformation, and the integration of smart technologies has the potential to revolutionize healthcare delivery, improve patient outcomes, and enhance the overall healthcare experience. However, several challenges need to be addressed in order to fully leverage the benefits of smart technologies in healthcare infrastructure development. This research identifies and analyzes these challenges while also highlighting the opportunities that arise from the adoption of smart technologies in the Saudi Arabian healthcare system. The findings contribute to the understanding of the current state of healthcare infrastructure in Saudi Arabia and provide insights into the strategies and policies required to overcome challenges and maximize the benefits of smart technologies in healthcare.展开更多
Rapid expansion in global energy demand driven primarily by oil and gas consumption has spurred significant environmental concerns. This study delves into the intricate relationship between energy development and envi...Rapid expansion in global energy demand driven primarily by oil and gas consumption has spurred significant environmental concerns. This study delves into the intricate relationship between energy development and environmental impacts focusing on Midland County, Texas, a pivotal region within the Permian Basin. Leveraging satellite imagery and Geographic Information Systems (GIS) techniques, the research meticulously examines land use dynamics from 2001 to 2019. The findings illuminate a marked decline in vegetation health and density attributable to the burgeoning oil and gas infrastructure in the area. Moreover, the analysis underscores the emergence of barren lands and the displacement of agricultural areas, indicative of the profound alterations in land cover patterns over the study period. These insights underscore the urgent need for concerted efforts to mitigate the adverse environmental effects of energy expansion, emphasizing the importance of collaborative approaches to foster sustainable land use practices. Additionally, the study explores the socio-economic implications of land use changes, addressing how energy expansion affects local communities and economies. Previous studies have emphasized the need for comprehensive assessments of cumulative environmental impacts, advocating for the implementation of effective mitigation strategies.展开更多
This paper uses the HS2 extension cancellation in November 2021 as a quasi-experiment to study its impact on house prices and rents in Leeds.Using a DiD approach on repeat sales and monthly rents,I compare property va...This paper uses the HS2 extension cancellation in November 2021 as a quasi-experiment to study its impact on house prices and rents in Leeds.Using a DiD approach on repeat sales and monthly rents,I compare property values near the HS2 station and proposed construction site before and after the announcement.Results show a 3.6%decrease in house prices and a 3.9%decline in rents near the station,while properties near the construction site experienced a 2.4%increase in prices and a 2.1%rise in rents.This is the first paper to analyse the HS2 cancellation effect using panel data methods.展开更多
The sharing of telecommunications infrastructure and power supply equipment is currently an applicable and very common model for grouping signal transmission and reception equipment and their power supply on the same ...The sharing of telecommunications infrastructure and power supply equipment is currently an applicable and very common model for grouping signal transmission and reception equipment and their power supply on the same site to ensure coverage of fixed, mobile, Internet and radio and television broadcasting networks. This study consists of producing an inventory of telecommunications and energy infrastructure sharing, focusing on the one hand on analyzing the impacts of active and passive sharing of telecommunications infrastructure from a technical point of view, particularly in terms of legal framework, deployment, coverage and exposure to electromagnetic radiation, and on the other hand on identifying the effects of infrastructure sharing from a socio-economic point of view in a multi-operator mobile telephony environment, by indicating the economic value of the revenue generated as a result of infrastructure sharing. Finally, the results will contribute to identify strategies for ensuring maximum deployment and coverage of the country, and for developing the information and communication technologies (ICT) sector in order to contribute to the digital transformation by digitising services using mobile telephony and the Internet in Burundi.展开更多
The accelerating urbanization process and intensifying climate change have exacerbated the urban heat island effect, threatening sustainable urban development. This study investigates the role of green infrastructure ...The accelerating urbanization process and intensifying climate change have exacerbated the urban heat island effect, threatening sustainable urban development. This study investigates the role of green infrastructure in mitigating urban heat island effects, its implementation challenges, and applications. Employing a system dynamics approach, the research models the relationships between green infrastructure, urban microclimate, and human well-being. Findings indicate that large, continuous green spaces, such as urban parks and green corridors, are most effective, potentially reducing surrounding temperatures by 1˚C - 4˚C. Green infrastructure also provides multiple ecosystem services, including improved air quality and increased biodiversity. However, its implementation faces challenges such as land resource limitations and financial constraints. To address these issues, the study proposes a performance-based planning method, emphasizing multifunctional design and cross-sectoral collaboration. Through analysis of international and Chinese urban case studies, best practices and lessons learned are summarized. The research demonstrates that successful strategies must be context-specific, integrating local conditions while emphasizing long-term planning and continuous optimization. This study provides a scientific basis for developing effective heat island mitigation strategies and climate adaptation plans, ultimately achieving sustainable urban development and improved living environments.展开更多
Lifelines are critical infrastructure systems characterized by a high level of interdependency that can lead to cascading failures after any disaster.Many approaches can be used to analyze infrastructural interdepende...Lifelines are critical infrastructure systems characterized by a high level of interdependency that can lead to cascading failures after any disaster.Many approaches can be used to analyze infrastructural interdependencies,but they are usually not able to describe the sequence of events during emergencies.Therefore,interdependencies need to be modeled also taking into account the time effects.The methodology proposed in this paper is based on a modified version of the Input-output Inoperability Model and returns the probabilities of failure for each node of the system.Lifelines are modeled using graph theory,while perturbations,representing a natural or man-made disaster,are applied to the elements of the network following predetermined rules.The cascading effects among interdependent networks have been simulated using a spatial multilayer approach,while the use of an adjacency tensor allows to consider the temporal dimension and its effects.The method has been tested on a case study based on the 2011 Fukushima Dai-ichi nuclear disaster.Different configurations of the system have been analyzed and their probability of occurrence evaluated.Two models of the nuclear power plant have been developed to evaluate how different spatial scales and levels of detail affect the results.展开更多
Ghanaian construction projects encounter a number of challenges, including low health, safety, and environmental requirements, poor performance, and time and cost overruns. To provide value for money (VFM) on governme...Ghanaian construction projects encounter a number of challenges, including low health, safety, and environmental requirements, poor performance, and time and cost overruns. To provide value for money (VFM) on government infrastructure projects in Ghana, this research assesses the roles of project consultants, specifically architects and quantity surveyors, and highlights important obstacles. A cross-sectional survey design involving architects and quantity surveyors yielded a 96% response rate after 100 questionnaires were distributed. Consultants’ responsibilities also include monitoring standards compliance, providing advice on delays, controlling budgets, and advising on project completion dates. Difficulties encompass a lack of promptness in decision-making, unethical conduct, political pressure, and inadequate focus on contract administration and construction audits. Project urgency, longevity, political clout, timely decision-making, and team experience are important variables that impact VFM. Policy makers and construction management practitioners should take note of the implications for Ghana’s public infrastructure projects.展开更多
Worldwide we see that the construction industry is expanding, requiring new directions, new perspectives that can help reduce time, cost, and make transportation easy, safe, and affordable. For decades now, most of th...Worldwide we see that the construction industry is expanding, requiring new directions, new perspectives that can help reduce time, cost, and make transportation easy, safe, and affordable. For decades now, most of the large cities have completed their surface infrastructure. It has become urgent to address their issues for overpopulated cities where nowadays all infrastructure is overwhelmed, these issues must be addressed, solved and have vision to build underground infrastructure. Developed countries are focused on expanding their infrastructure for road systems, subway network, railway, storm, and sanitary systems. The emergency for underground infrastructure development requires more large-scale projects to be built and it is becoming more crucial building tunnels/underground structures for the future than ever before. Engineering focus, scientific searches are looking to develop their ideas for designing and delivering project underground, but government, agencies and engineers are concerned about the safety, durability, functionality, and the lifetime of this structures planned to be functional for decades. To address all this concerns this study provides information of how to identify the risk on tunnels and underground structures by capturing data from the beginning phases of construction, to analyze, evaluate and produce bulletins and engineering reports through convergences and monitoring. Convergences are the key factor on development of infrastructure underground as it is the only way to explore and analyze the rock mass disturbance during excavation. Convergences and monitoring in infrastructure are the safety coefficient for building underground, preventing accidents, and assessing real risks associated with tunnel/mine works and ensuring progress of the construction in underground structures. This study delves into the engineering role of convergence monitoring, during construction activities on project excavated using New Austrian Tunnelling method and Sequential Excavation Method. The primary objective of convergence monitoring is to gather critical information on ground movements and disturbances, thereby enhancing safety measures during tunnel construction. The monitoring process serves as an early warning system offering evidence of the real risks associated with underground infrastructure, bringing results and engineering data to be used for the design as key coefficient for structural design, type of material, type and strength of the concrete, rebars, concrete mix design. By using the convergence and monitoring system on underground infrastructure this study represents information that can contribute to risk assessment, structural analysis, and the lifetime of a project.展开更多
Objective To study the pharmaceutical distribution industry against the background of new infrastructure construction since it is vital to the health and life of the public,and to offer some suggestions to further imp...Objective To study the pharmaceutical distribution industry against the background of new infrastructure construction since it is vital to the health and life of the public,and to offer some suggestions to further improve the industry quality and achieve industry upgrading.Methods The national strategies for new infrastructure as well as the underlying logic for enterprise digital transformation were analyzed to provide the outlook on the digital transformation trend of the pharmaceutical distribution industry.Results and Conclusion In the future,the pharmaceutical distribution industry shall transform the pattern,channel,management and control,and experience in the entire business chain in a digital way by focusing on connection efficiency,data efficiency and decision-making efficiency.展开更多
In the last decade,the detection and attribution science that links climate change to extreme weather and climate events has emerged as a growing field of research with an increasing body of literature.This paper over...In the last decade,the detection and attribution science that links climate change to extreme weather and climate events has emerged as a growing field of research with an increasing body of literature.This paper overviews the methods for extreme event attribution(EEA)and discusses the new insights that EEA provides for infrastructure adaptation.We found that EEA can inform stakeholders about current climate risk,support vulnerability-based and hazard-based adaptations,assist in the development of cost-effective adaptation strategies,and enhance justice and equity in the allocation of adaptation resources.As engineering practice shifts from a retrospective approach to a proactive,forward-looking risk management strategy,EEA can be used together with climate projections to enhance the comprehensiveness of decision making,including planning and preparing for un-precedented extreme events.Additionally,attribution assessment can be more useful for adaptation planning when the exposure and vulnerability of communities to past events are analyzed,and future changes in the probability of extreme events are evaluated.Given large uncertainties inherent in event attribution and climate projections,future research should examine the sensitivity of engineering design to climate model uncertainties,and adapt engineering practice,including building codes,to uncertain future conditions.While this study focuses on adaptation planning,EEA can also be a useful tool for informing and enhancing decisions related to climate mitigation.展开更多
文摘Critical infrastructure systems(CISs)play a key role in the socio-economic activity of a society,but are exposed to an array of disruptive events that can greatly impact their function and performance.Therefore,understanding the underlying behaviors of CISs and their response to perturbations is needed to better prepare for,and mitigate the impact of,future disruptions.Resilience is one characteristic of CISs that influences the extent and severity of the impact induced by extreme events.Resilience is often dissected into four dimensions:robustness,redundancy,resourcefulness,and rapidity,known as the“4Rs”.This study proposes a framework to assess the resilience of an infrastructure network in terms of these four dimensions under optimal resource allocation strategies and incorporates interdependencies between different CISs,with resilience considered as a stochastic variable.The proposed framework combines an agent-based infrastructure interdependency model,advanced optimization algorithms,Bayesian network techniques,and Monte Carlo simulation to assess the resilience of an infrastructure network.The applicability and flexibility of the proposed framework is demonstrated with a case study using a network of CISs in Austin,Texas,where the resilience of the network is assessed and a“what-if”analysis is performed.
基金supported by funding from the National Natural Science Foundation of China(Grant No.U21A2010)the National Science Fund for Distinguished Young Scholars(Grant No.42225104)the National Key Research and Development Program(Grant No.2022YFF130110O).
文摘Equal access to social infrastructures is a fundamental prerequisite for sustainable development,but has long been a great challenge worldwide.Previous studies have primarily focused on the accessibility to social infras-tructures in urban areas across various scales,with less attention to rural areas,where inequality can be more severe.Particularly,few have investigated the disparities of accessibility to social infrastructures between urban and rural areas.Here,using the Changsha-Zhuzhou-Xiangtan urban agglomeration,China,as an example,we investigated the inequality of accessibility in both urban and rural areas,and further compared the urban-rural difference.Accessibility was measured by travel time of residents to infrastructures.We selected four types of social infrastructures including supermarkets,bus stops,primary schools,and health care,which were funda-mentally important to both urban and rural residents.We found large disparities in accessibility between urban and rural areas,ranging from 20 min to 2 h.Rural residents had to spend one to two more hours to bus stops than urban residents,and 20 min more to the other three types of infrastructures.Furthermore,accessibility to multiple infrastructures showed greater urban-rural differences.Rural residents in more than half of the towns had no access to any infrastructure within 15 min,while more than 60%of the urban residents could access to all infrastructures within 15 min.Our results revealed quantitative accessibility gap between urban and rural areas and underscored the necessity of social infrastructures planning to address such disparities.
基金supported in part by Interbit Research and in part by the European Union under(Grant No.2021-1-EL01-KA220-VET-000028082).
文摘Protection of urban critical infrastructures(CIs)from GPS-denied,bomb-carrying kamikaze drones(G-BKDs)is very challenging.Previous approaches based on drone jamming,spoofing,communication interruption and hijacking cannot be applied in the case under examination,since G-B-KDs are uncontrolled.On the other hand,drone capturing schemes and electromagnetic pulse(EMP)weapons seem to be effective.However,again,existing approaches present various limitations,while most of them do not examine the case of G-B-KDs.This paper,focuses on the aforementioned under-researched field,where the G-B-KD is confronted by two defensive drones.The first neutralizes and captures the kamikaze drone,while the second captures the bomb.Both defensive drones are equipped with a net-gun and an innovative algorithm,which,among others,estimates the locations of interception,using a real-world trajectory model.Additionally,one of the defensive drones is also equipped with an EMP weapon to damage the electronics equipment of the kamikaze drone and reduce the capturing time and the overall risk.Extensive simulated experiments and comparisons to state-of-art methods,reveal the advantages and limitations of the proposed approach.More specifically,compared to state-of-art,the proposed approach improves:(a)time to neutralize the target by at least 6.89%,(b)maximum number of missions by at least 1.27%and(c)total cost by at least 5.15%.
基金the National Social Science Fund of China(Grant No.22CTQ031)Special Project on Library Capacity Building of the Chinese Academy of Sciences(Grant No.E2290431).
文摘Research data infrastructures form the cornerstone in both cyber and physical spaces,driving the progression of the data-intensive scientific research paradigm.This opinion paper presents an overview of global research data infrastructure,drawing insights from national roadmaps and strategic documents related to research data infrastructure.It emphasizes the pivotal role of research data infrastructures by delineating four new missions aimed at positioning them at the core of the current scientific research and communication ecosystem.The four new missions of research data infrastructures are:(1)as a pioneer,to transcend the disciplinary border and address complex,cutting-edge scientific and social challenges with problem-and data-oriented insights;(2)as an architect,to establish a digital,intelligent,flexible research and knowledge services environment;(3)as a platform,to foster the high-end academic communication;(4)as a coordinator,to balance scientific openness with ethics needs.
基金This work was supported by the Ministry of Education and China Mobile Research Fund Project(MCM20200102)the 173 Project(No.2019-JCJQ-ZD-342-00)+2 种基金the National Natural Science Foundation of China(No.U19A2081)the Fundamental Research Funds for the Central Universities(No.2023SCU12129)the Science and Engineering Connotation Development Project of Sichuan University(No.2020SCUNG129).
文摘Due to the need for massive device connectivity,low communication latency,and various customizations in 6G architecture,a distributed cloud deployment approach will be more relevant to the space-air-ground-sea integrated network scenario.However,the openness and heterogeneity of the 6G network cause the problems of network security.To improve the trustworthiness of 6G networks,we propose a trusted computing-based approach for establishing trust relationships inmulti-cloud scenarios.The proposed method shows the relationship of trust based on dual-level verification.It separates the trustworthy states of multiple complex cloud units in 6G architecture into the state within and between cloud units.Firstly,SM3 algorithm establishes the chain of trust for the system’s trusted boot phase.Then,the remote attestation server(RAS)of distributed cloud units verifies the physical servers.Meanwhile,the physical servers use a ring approach to verify the cloud servers.Eventually,the centralized RAS takes one-time authentication to the critical evidence information of distributed cloud unit servers.Simultaneously,the centralized RAS also verifies the evidence of distributed RAS.We establish our proposed approach in a natural OpenStack-based cloud environment.The simulation results show that the proposed method achieves higher security with less than a 1%system performance loss.
基金This paper is a phased achievement of the National Social Science Foundation of China’s general project“Research on the Influence Mechanism of Transportation Network Optimization on the Spatio-temporal Allocation of Labor Resources and Its Realization Path”(22BJY082).
文摘Common prosperity is an important goal of China’s modernization efforts,and narrowing the income gap among different regions and populations is crucial to achieving common prosperity.The construction of digital infrastructure has significantly boosted productivity and facilitated the diffusion of technology in less developed regions,leading to notable changes in labor employment and the income gap,which aligns with the goal of common prosperity.This paper explores the mechanism through which digital infrastructure influences common prosperity with a focus on employment,using panel data from 30 provinces in China between 2011 and 2021 for an empirical test.The research finds that digital infrastructure significantly promotes common prosperity.By expanding employment and increasing labor remuneration,the influence of digital infrastructure on common prosperity exhibits regional heterogeneity and a nonlinear threshold effect.The research suggests that the government should enhance investment in and construction of digital infrastructure,reduce the digital divide through policy support in rural areas,promote digital employment and skills training,and encourage industrial integration and enterprise participation.
基金supported by 2023 Chongqing Education Commission Humanities and Social Sciences Research Planning Project[Grant No.23SKGH090]2023−2024 Higher Education Science Research Project of Chongqing Higher Education Association[Grant No.cqgj23037C].
文摘Transportation infrastructure is crucial to China’s economic growth because it substantially contributes to the holistic development of rural primary,secondary,and tertiary industries.This study innovatively examines transportation infrastructure and urbanization levels to explore,both theoretically and empirically,their relationship with the holistic development of primary,secondary,and tertiary industries in rural China,and the mediating role of urbanization on this relationship.We employed fixed-effects models,the entropy weight approach,mixed regression,and generalized method of moments to analyze the data of 30 provinces across China from 2013 to 2020.The results indicate that the construction of transportation infrastructure directly fosters the collective advancement of such industries in rural areas and that urbanization partially mediates the transportation infrastructure-rural industry integration relationship.However,the western region shows disparities in the integrated development of these sectors.Further analysis reveals that foreign investments amplify the positive influence of transportation infrastructure on rural industry integration.Essentially,the enhancement of rural transportation infrastructure,promotion of urbanization,implementation of strategic planning,and strengthening of support mechanisms are crucial aspects in the comprehensive development of rural industries and the achievement of rural revitalization in China.
基金supported by the Malaysia-Japan International Institute of Technology(MJIIT),Universiti Teknologi Malaysia.
文摘Kuala Lumpur of Malaysia,as a tropical city,has experienced a notable decline in its critical urban green infrastructure(UGI)due to rapid urbanization and haphazard development.The decrease of UGI,especially natural forest and artificial forest,may reduce the diversity of ecosystem services and the ability of Kuala Lumpur to build resilience in the future.This study analyzed land use and land cover(LULC)and UGI changes in Kuala Lumpur based on Landsat satellite images in 1990,2005,and 2021and employed the overall accuracy and Kappa coefficient to assess classification accuracy.LULC was categorized into six main types:natural forest,artificial forest,grassland,water body,bare ground,and built-up area.Satellite images in 1990,2005,and 2021 showed the remarkable overall accuracy values of 91.06%,96.67%,and 98.28%,respectively,along with the significant Kappa coefficient values of 0.8997,0.9626,and 0.9512,respectively.Then,this study utilized Cellular Automata and Markov Chain model to analyze the transition of different LULC types during 1990-2005 and 1990-2021 and predict LULC types in 2050.The results showed that natural forest decreased from 15.22%to 8.20%and artificial forest reduced from 18.51%to 15.16%during 1990-2021.Reductions in natural forest and artificial forest led to alterations in urban surface water dynamics,increasing the risk of urban floods.However,grassland showed a significant increase from 7.80%to 24.30%during 1990-2021.Meanwhile,bare ground increased from 27.16%to 31.56%and built-up area increased from 30.45%to 39.90%during 1990-2005.In 2021,built-up area decreased to 35.10%and bare ground decreased to 13.08%,indicating a consistent dominance of built-up area in the central parts of Kuala Lumpur.This study highlights the importance of integrating past,current,and future LULC changes to improve urban ecosystem services in the city.
基金supported by the ZTE Industry-University-Institute Fund Project under Grant No.IA20221202011.
文摘The emergence of Web3 technologies promises to revolutionize the Internet and redefine our interactions with digital assets and applications.This essay explores the pivotal role of 5G infrastructure in bolstering the growth and potential of Web3.By focusing on several crucial aspects—network speed,edge computing,network capacity,security and power consumption—we shed light on how 5G technology offers a robust and transformative foundation for the decentralized future of the Internet.Prior to delving into the specifics,we undertake a technical review of the historical progression and development of Internet and telecommunication technologies.
基金funded by the European Commission,Horizon 2020 research and innovation programme under grant agreement No.101021668.
文摘Critical Infrastructures(CIs),which serve as the foundation of our modern society,are facing increasing risks from cyber threats,physical attacks,and natural disasters.Additionally,the interdependencies between CIs through-out their operational lifespan can also significantly impact their integrity and safety.As a result,enhancing the resilience of CIs has emerged as a top priority for many countries,including the European Union.This involves not only understanding the threats/attacks themselves but also gaining knowledge about the areas and infrastruc-tures that could potentially be affected.A European Union-funded project named PRECINCT(Preparedness and Resilience Enforcement for Critical INfrastructure Cascading Cyber-Physical Threats),under the Horizon 2020 program,tries to connect private and public stakeholders of CIs in a specific geographical area.The key objec-tive of this project is to establish a common cyber-physical security management approach that will ensure the protection of both citizens and infrastructures,creating a secure territory.This paper presents the components of PRECINCT,including a directory of PRECINCT Critical Infrastructure Protection(CIP)blueprints.These blueprints support CI communities in designing integrated ecosystems,operating and replicating PRECINCT components(or toolkits).The integration enables coordinated security and resilience management,incorporating improved’installation-specific’security solutions.Additionally,Serious Games(SG),and Digital Twins(DT)are a significant part of this project,serving as a novel vulnerability evaluation method for analysing complicated multi-system cascading effects in the PRECINCT Living Labs(LLs).The use of SG supports the concentrated advancement of innovative resilience enhancement services.
文摘This study aims to explore the challenges and opportunities associated with developing healthcare infrastructure in Saudi Arabia through the implementation of smart technologies. The healthcare sector in Saudi Arabia is undergoing significant transformation, and the integration of smart technologies has the potential to revolutionize healthcare delivery, improve patient outcomes, and enhance the overall healthcare experience. However, several challenges need to be addressed in order to fully leverage the benefits of smart technologies in healthcare infrastructure development. This research identifies and analyzes these challenges while also highlighting the opportunities that arise from the adoption of smart technologies in the Saudi Arabian healthcare system. The findings contribute to the understanding of the current state of healthcare infrastructure in Saudi Arabia and provide insights into the strategies and policies required to overcome challenges and maximize the benefits of smart technologies in healthcare.
文摘Rapid expansion in global energy demand driven primarily by oil and gas consumption has spurred significant environmental concerns. This study delves into the intricate relationship between energy development and environmental impacts focusing on Midland County, Texas, a pivotal region within the Permian Basin. Leveraging satellite imagery and Geographic Information Systems (GIS) techniques, the research meticulously examines land use dynamics from 2001 to 2019. The findings illuminate a marked decline in vegetation health and density attributable to the burgeoning oil and gas infrastructure in the area. Moreover, the analysis underscores the emergence of barren lands and the displacement of agricultural areas, indicative of the profound alterations in land cover patterns over the study period. These insights underscore the urgent need for concerted efforts to mitigate the adverse environmental effects of energy expansion, emphasizing the importance of collaborative approaches to foster sustainable land use practices. Additionally, the study explores the socio-economic implications of land use changes, addressing how energy expansion affects local communities and economies. Previous studies have emphasized the need for comprehensive assessments of cumulative environmental impacts, advocating for the implementation of effective mitigation strategies.
文摘This paper uses the HS2 extension cancellation in November 2021 as a quasi-experiment to study its impact on house prices and rents in Leeds.Using a DiD approach on repeat sales and monthly rents,I compare property values near the HS2 station and proposed construction site before and after the announcement.Results show a 3.6%decrease in house prices and a 3.9%decline in rents near the station,while properties near the construction site experienced a 2.4%increase in prices and a 2.1%rise in rents.This is the first paper to analyse the HS2 cancellation effect using panel data methods.
文摘The sharing of telecommunications infrastructure and power supply equipment is currently an applicable and very common model for grouping signal transmission and reception equipment and their power supply on the same site to ensure coverage of fixed, mobile, Internet and radio and television broadcasting networks. This study consists of producing an inventory of telecommunications and energy infrastructure sharing, focusing on the one hand on analyzing the impacts of active and passive sharing of telecommunications infrastructure from a technical point of view, particularly in terms of legal framework, deployment, coverage and exposure to electromagnetic radiation, and on the other hand on identifying the effects of infrastructure sharing from a socio-economic point of view in a multi-operator mobile telephony environment, by indicating the economic value of the revenue generated as a result of infrastructure sharing. Finally, the results will contribute to identify strategies for ensuring maximum deployment and coverage of the country, and for developing the information and communication technologies (ICT) sector in order to contribute to the digital transformation by digitising services using mobile telephony and the Internet in Burundi.
文摘The accelerating urbanization process and intensifying climate change have exacerbated the urban heat island effect, threatening sustainable urban development. This study investigates the role of green infrastructure in mitigating urban heat island effects, its implementation challenges, and applications. Employing a system dynamics approach, the research models the relationships between green infrastructure, urban microclimate, and human well-being. Findings indicate that large, continuous green spaces, such as urban parks and green corridors, are most effective, potentially reducing surrounding temperatures by 1˚C - 4˚C. Green infrastructure also provides multiple ecosystem services, including improved air quality and increased biodiversity. However, its implementation faces challenges such as land resource limitations and financial constraints. To address these issues, the study proposes a performance-based planning method, emphasizing multifunctional design and cross-sectoral collaboration. Through analysis of international and Chinese urban case studies, best practices and lessons learned are summarized. The research demonstrates that successful strategies must be context-specific, integrating local conditions while emphasizing long-term planning and continuous optimization. This study provides a scientific basis for developing effective heat island mitigation strategies and climate adaptation plans, ultimately achieving sustainable urban development and improved living environments.
基金the European Research Council under the Grant agreement no.ERC_IDEAL RESCUE_637842 of the project IDEAL RESCUE_Integrated Design and Control of Sustainable Communities during Emergencies.
文摘Lifelines are critical infrastructure systems characterized by a high level of interdependency that can lead to cascading failures after any disaster.Many approaches can be used to analyze infrastructural interdependencies,but they are usually not able to describe the sequence of events during emergencies.Therefore,interdependencies need to be modeled also taking into account the time effects.The methodology proposed in this paper is based on a modified version of the Input-output Inoperability Model and returns the probabilities of failure for each node of the system.Lifelines are modeled using graph theory,while perturbations,representing a natural or man-made disaster,are applied to the elements of the network following predetermined rules.The cascading effects among interdependent networks have been simulated using a spatial multilayer approach,while the use of an adjacency tensor allows to consider the temporal dimension and its effects.The method has been tested on a case study based on the 2011 Fukushima Dai-ichi nuclear disaster.Different configurations of the system have been analyzed and their probability of occurrence evaluated.Two models of the nuclear power plant have been developed to evaluate how different spatial scales and levels of detail affect the results.
文摘Ghanaian construction projects encounter a number of challenges, including low health, safety, and environmental requirements, poor performance, and time and cost overruns. To provide value for money (VFM) on government infrastructure projects in Ghana, this research assesses the roles of project consultants, specifically architects and quantity surveyors, and highlights important obstacles. A cross-sectional survey design involving architects and quantity surveyors yielded a 96% response rate after 100 questionnaires were distributed. Consultants’ responsibilities also include monitoring standards compliance, providing advice on delays, controlling budgets, and advising on project completion dates. Difficulties encompass a lack of promptness in decision-making, unethical conduct, political pressure, and inadequate focus on contract administration and construction audits. Project urgency, longevity, political clout, timely decision-making, and team experience are important variables that impact VFM. Policy makers and construction management practitioners should take note of the implications for Ghana’s public infrastructure projects.
文摘Worldwide we see that the construction industry is expanding, requiring new directions, new perspectives that can help reduce time, cost, and make transportation easy, safe, and affordable. For decades now, most of the large cities have completed their surface infrastructure. It has become urgent to address their issues for overpopulated cities where nowadays all infrastructure is overwhelmed, these issues must be addressed, solved and have vision to build underground infrastructure. Developed countries are focused on expanding their infrastructure for road systems, subway network, railway, storm, and sanitary systems. The emergency for underground infrastructure development requires more large-scale projects to be built and it is becoming more crucial building tunnels/underground structures for the future than ever before. Engineering focus, scientific searches are looking to develop their ideas for designing and delivering project underground, but government, agencies and engineers are concerned about the safety, durability, functionality, and the lifetime of this structures planned to be functional for decades. To address all this concerns this study provides information of how to identify the risk on tunnels and underground structures by capturing data from the beginning phases of construction, to analyze, evaluate and produce bulletins and engineering reports through convergences and monitoring. Convergences are the key factor on development of infrastructure underground as it is the only way to explore and analyze the rock mass disturbance during excavation. Convergences and monitoring in infrastructure are the safety coefficient for building underground, preventing accidents, and assessing real risks associated with tunnel/mine works and ensuring progress of the construction in underground structures. This study delves into the engineering role of convergence monitoring, during construction activities on project excavated using New Austrian Tunnelling method and Sequential Excavation Method. The primary objective of convergence monitoring is to gather critical information on ground movements and disturbances, thereby enhancing safety measures during tunnel construction. The monitoring process serves as an early warning system offering evidence of the real risks associated with underground infrastructure, bringing results and engineering data to be used for the design as key coefficient for structural design, type of material, type and strength of the concrete, rebars, concrete mix design. By using the convergence and monitoring system on underground infrastructure this study represents information that can contribute to risk assessment, structural analysis, and the lifetime of a project.
文摘Objective To study the pharmaceutical distribution industry against the background of new infrastructure construction since it is vital to the health and life of the public,and to offer some suggestions to further improve the industry quality and achieve industry upgrading.Methods The national strategies for new infrastructure as well as the underlying logic for enterprise digital transformation were analyzed to provide the outlook on the digital transformation trend of the pharmaceutical distribution industry.Results and Conclusion In the future,the pharmaceutical distribution industry shall transform the pattern,channel,management and control,and experience in the entire business chain in a digital way by focusing on connection efficiency,data efficiency and decision-making efficiency.
文摘In the last decade,the detection and attribution science that links climate change to extreme weather and climate events has emerged as a growing field of research with an increasing body of literature.This paper overviews the methods for extreme event attribution(EEA)and discusses the new insights that EEA provides for infrastructure adaptation.We found that EEA can inform stakeholders about current climate risk,support vulnerability-based and hazard-based adaptations,assist in the development of cost-effective adaptation strategies,and enhance justice and equity in the allocation of adaptation resources.As engineering practice shifts from a retrospective approach to a proactive,forward-looking risk management strategy,EEA can be used together with climate projections to enhance the comprehensiveness of decision making,including planning and preparing for un-precedented extreme events.Additionally,attribution assessment can be more useful for adaptation planning when the exposure and vulnerability of communities to past events are analyzed,and future changes in the probability of extreme events are evaluated.Given large uncertainties inherent in event attribution and climate projections,future research should examine the sensitivity of engineering design to climate model uncertainties,and adapt engineering practice,including building codes,to uncertain future conditions.While this study focuses on adaptation planning,EEA can also be a useful tool for informing and enhancing decisions related to climate mitigation.