The cochlear auditory epithelium contains two types of sound receptors,inner hair cells(IHCs)and outer hair cells(OHCs).Mouse models for labelling juvenile and adult IHCs or OHCs exist;however,labelling for embryonic ...The cochlear auditory epithelium contains two types of sound receptors,inner hair cells(IHCs)and outer hair cells(OHCs).Mouse models for labelling juvenile and adult IHCs or OHCs exist;however,labelling for embryonic and perinatal IHCs or OHCs are lacking.Here,we generated a new knock-in Fgf8^(P2A-3×GFP/+)(Fgf8^(GFP)/+)strain,in which the expression of a series of three GFP fragments is controlled by endogenous Fgf8 cis-regulatory elements.After confirming that GFP expression accurately reflects the expression of Fgf8,we successfully obtained both embryonic and neonatal IHCs with high purity,highlighting the power of Fgf8^(GFP)/+.Furthermore,our fate-mapping analysis revealed,unexpectedly,that IHCs are also derived from inner ear progenitors expressing Insm1,which is currently regarded as an OHC marker.Thus,besides serving as a highly favorable tool for sorting early IHCs,Fgf8^(GFP)/+will facilitate the isolation of pure early OHCs by excluding IHCs from the entire hair cell pool.展开更多
Sodium salicylate is an anti-inflammatory medication with a side-effect of tinnitus.Here,we used mouse cochlear cultures to explore the effects of salicylate treatment on cochlear inner hair cells(IHCs).We found that ...Sodium salicylate is an anti-inflammatory medication with a side-effect of tinnitus.Here,we used mouse cochlear cultures to explore the effects of salicylate treatment on cochlear inner hair cells(IHCs).We found that IHCs showed significant damage after exposure to a high concentration of salicylate.Whole-cell patch clamp recordings showed that 1–5 mmol/L salicylate did not affect the exocytosis of IHCs,indicating that IHCs are not involved in tinnitus generation by enhancing their neuronal input.Instead,salicylate induced a larger peak amplitude,a more negative half-activation voltage,and a steeper slope factor of Ca^(2+)current.Using noise analysis of Ca^(2+)tail currents and qRT-PCR,we further found that salicylate increased the number of Ca^(2+)channels along with CaV1.3 expression.All these changes could act synergistically to enhance the Ca^(2+)influx into IHCs.Inhibition of intracellular Ca^(2+)overload significantly attenuated IHC death after 10 mmol/L salicylate treatment.These results implicate a cellular mechanism for tinnitus generation in the peripheral auditory system.展开更多
In mammals,the ribbon synapses of cochlear inner hair cells are a synaptic structure of the first sensory nerve in the pathway of acoustical signal transmission to the acoustic center,and it is directly involved in vo...In mammals,the ribbon synapses of cochlear inner hair cells are a synaptic structure of the first sensory nerve in the pathway of acoustical signal transmission to the acoustic center,and it is directly involved in voice coding and neurotransmitter release. It is difficult to quantitatively analyze the ribbon synaptic number only using an electron microscope,because the ribbon synaptic number is relatively limited and their location is deep. In this study,the specific presynaptic structure-RIBEYE,and non-specific postsynaptic structure-GluR 2 & 3 in C57BL/6J mouse basilar membrane samples were treated by immunofluorescent labeling. Serial section was performed on the samples using a laser scanning confocal microscope,and then the serial sections were used to build three-dimensional models using 3DS MAX software. Each fluorescein color pair indicates one synapse,so the number of ribbon synapses of inner hair cells is obtained. The spatial distribution and the number of ribbon synapses of cochlear inner hair cells were clearly shown in this experiment,and the mean number of ribbon synapses per inner hair cell was 16.10±1.03. Our results have demonstrated the number of ribbon synapses is accurately calculated by double immunofluorescent labeling to presynaptic and postsynaptic structures,serial sections obtained using a laser scanning confocal microscope,and three-dimensional modeling obtained using 3DS MAX software. The method above is feasible and has important significance for further exploring the mechanism of sensorineural deafness.展开更多
Forward Masking Temporal audiotory resolution is the ability of the auditory system to resolve auditory signals in the time domain. Forward masking is a means of studying temporal resolution where one tone, the probe,...Forward Masking Temporal audiotory resolution is the ability of the auditory system to resolve auditory signals in the time domain. Forward masking is a means of studying temporal resolution where one tone, the probe, is masked by a preceding tone, the masker. Forward masking is展开更多
Hair cells in the mammalian inner ear are very fragile and are often injured as a result of acoustic trauma or exposure to ototoxic drugs (cisplatin, aminoglycosides, etc) [1]. In amphibians and birds, spontaneous
Loss of postnatal mammalian auditory hair cells (HCs) is irreversible. Earlier studies have highlighted the importance of the Retinoblastoma family of proteins (pRBs) (i.e., Rb1, Rbl1/p107, and Rbl2/p130) in the audit...Loss of postnatal mammalian auditory hair cells (HCs) is irreversible. Earlier studies have highlighted the importance of the Retinoblastoma family of proteins (pRBs) (i.e., Rb1, Rbl1/p107, and Rbl2/p130) in the auditory cells’ proliferation and emphasized our lack of information on their specific roles in the auditory system. We have previously demonstrated that lack of Rbl2/p130 moderately affects HCs’ and supporting cells’ (SCs) proliferation. Here, we present evidence supporting multiple roles for Rbl1/p107 inthe developing and mature mouse organ of Corti (OC). Like other pRBs, Rbl1/p107 is expressed in the OC, particularly in the Hensen’s and Deiters’ cells. Moreover, Rbl1/p107 impacts maturation and postmitotic quiescence of HCs and SCs, as evidenced by enhanced numbers of these cells and the presence of dividing cells in the postnatal Rbl1/p107-/-OC. These findings were further supported by microarray and bioinformatics analyses, suggesting downregulation of several bHLH molecules, as well as activation of the Notch/Hes/Hey signaling pathway in homozygous Rbl1/p107 mutant mice. Physiological assessments and detection of ectopic HC marker expression in postnatal spiral ganglion neurons (SGNs) provided evidence for incomplete cell maturation and differentiation in Rbl1/p107﹣/﹣OC. Collectively, the present study highlights an important role for Rbl1/p107 inOC cell differentiation and maturation, which is distinct from other pRBs.展开更多
The results from this study showed that the thresholds of brainstem auditory-evoked potentials peak following 10 successive days of intramuscular injection of Roman chickens with kanamycin, starting 3 days after birth...The results from this study showed that the thresholds of brainstem auditory-evoked potentials peak following 10 successive days of intramuscular injection of Roman chickens with kanamycin, starting 3 days after birth. Fluorescence immunohistochemistry analysis revealed few ganglion cells positively labeled for Ephrin A2 in the cochlea of experimental chickens from 2 days before until 7 days after the last kanamycin injection. The number of Ephrin A2-positive ganglion cell bodies was increased at 15 days after the last injection and was similar to that in normal chickens at 30 days following the cessation of kanamycin treatment. These experimental findings indicate that Ephrin A2 protein expression in the acoustic ganglia is synchronized with the connection damage and regeneration of cochlear hair cells after kanamycin exposure. Ephrin A2 may play an important role in the regeneration and plasticity of cochlear hair cells in the chick cochlea following kanamycin ototoxicity.展开更多
miRNA-183 family, in normal biology, is expressed in a harmonious and stable manner in the neurosensory organs and cells. Studies have also shown that miRNA-183 family, in different pathways, affects the neurosensory ...miRNA-183 family, in normal biology, is expressed in a harmonious and stable manner in the neurosensory organs and cells. Studies have also shown that miRNA-183 family, in different pathways, affects the neurosensory development, maintenance, survival and function. In addition, it has potential neuroprotective effects in response to neurosensory destructive stimulations. miRNA-96 mutation causes hereditary deafness in humans and mice, and therefore affects the inner ear activity and its maintenance. Certain roles have been identified for mi R-96 in the maintenance and function of the inner ear. The comparison of the target genes of family-183 in transcriptomes of newborn and adult hair cells shows that hundreds of target genes in this family may affect development and maintenance of the ears. Identifying the genes that are regulated by miRNA-183 family provides researchers with important information about the complex development and environmental regulation of the inner ear, and can offer new approaches to the maintenance and regeneration of hair cells and auditory nerve.展开更多
Studies have shown that phosphatase and tensin homolog deleted on chromosome ten(PTEN)participates in the regulation of cochlear hair cell survival.Bisperoxovanadium protects against neurodegeneration by inhibiting PT...Studies have shown that phosphatase and tensin homolog deleted on chromosome ten(PTEN)participates in the regulation of cochlear hair cell survival.Bisperoxovanadium protects against neurodegeneration by inhibiting PTEN expression.However,whether bisperoxovanadium can protect against noise-induced hearing loss and the underlying mechanism remains unclear.In this study,we established a mouse model of noise-induced hearing loss by exposure to 105 dB sound for 2 hours.We found that PTEN expression was increased in the organ of Corti,including outer hair cells,inner hair cells,and lateral wall tissues.Intraperitoneal administration of bisperoxovanadium decreased the auditory threshold and the loss of cochlear hair cells and inner hair cell ribbons.In addition,noise exposure decreased p-PI3K and p-Akt levels.Bisperoxovanadium preconditioning or PTEN knockdown upregulated the activity of PI3K-Akt.Bisperoxovanadium also prevented H_(2)O_(2)-induced hair cell death by reducing mitochondrial reactive oxygen species generation in cochlear explants.These findings suggest that bisperoxovanadium reduces noise-induced hearing injury and reduces cochlear hair cell loss.展开更多
目的:观察模拟载人飞船中微重力和噪声环境下大鼠耳蜗毛细胞的形态学特点,探讨耳蜗三回(底回、中回和顶回)毛细胞的不同变化。方法:选取32只雄性健康SD大鼠,随机分为空白组、失重组、噪声组和失重+噪声组4组,每组8只。失重组以持续尾吊...目的:观察模拟载人飞船中微重力和噪声环境下大鼠耳蜗毛细胞的形态学特点,探讨耳蜗三回(底回、中回和顶回)毛细胞的不同变化。方法:选取32只雄性健康SD大鼠,随机分为空白组、失重组、噪声组和失重+噪声组4组,每组8只。失重组以持续尾吊法模拟微重力,噪声组以持续2周的(72±2)d B SPL的稳态噪声及之后的3次高达160 d B SPL的脉冲噪声模拟飞船内复合噪声环境,失重+噪声组同时给予模拟微重力和噪声环境,空白组不做任何处理,常规饲养2周。暴露后检测听性脑干反应(auditory brainstem response,ABR)阈值,处死大鼠即刻取耳蜗基底膜行免疫荧光及扫描电子显微镜(scanning electron microscope,SEM)观察。结果:给予模拟环境暴露后,各组大鼠ABR阈值升高,各实验组大鼠暴露前后ABR阈值差异均有统计学意义(P<0.05)。免疫荧光结果显示:失重组底回以内毛细胞缺失为主,中回可见毛细胞肿胀,顶回毛细胞杂乱不清。噪声组底回以外毛细胞缺失为主,多见于最外层毛细胞,中回毛细胞肿胀,顶回杂乱并有毛细胞的缺失。失重+噪声组底回核缺失较明显,主要存在最外层毛细胞,内毛细胞也存在较多缺失。中回和顶回缺失发生在最内层外毛细胞。电子显微镜观察发现失重组底回纤毛大片倒伏,偶有缺失,顶回和中回毛细胞纤毛无明显异常。噪声组底回纤毛大片倒伏伴缺失,顶回和中回均有缺失,其中顶回最为严重。失重+噪声组底回纤毛大片融合伴缺失,中回纤毛融合、倒伏并缺失,顶回内外毛细胞纤毛大量缺失。4组的损伤程度:失重+噪声组>噪声组>失重组>空白组;三回毛细胞损伤程度:底回>中回>顶回。结论:模拟载人飞船内微重力和噪声环境中暴露2周可致大鼠耳蜗形态学结构发生显著变化,尤以失重+噪声组变化最明显,三回毛细胞中以底回最重,顶回最轻。展开更多
基金funded by the National Key R&D Program of China(2021YFA1101804)the Strategic Priority Research Program of the Chinese Academy of Science(XDB32060100)+3 种基金the National Natural Science Foundation of China(91949119,82101212,and 82101209)a Shanghai Municipal Science and Technology Major Project(2018SHZDZX05)the Science and Technology Commission of Shanghai Municipality(21ZR1440200)the Shanghai Sailing Program(20YF1426400).
文摘The cochlear auditory epithelium contains two types of sound receptors,inner hair cells(IHCs)and outer hair cells(OHCs).Mouse models for labelling juvenile and adult IHCs or OHCs exist;however,labelling for embryonic and perinatal IHCs or OHCs are lacking.Here,we generated a new knock-in Fgf8^(P2A-3×GFP/+)(Fgf8^(GFP)/+)strain,in which the expression of a series of three GFP fragments is controlled by endogenous Fgf8 cis-regulatory elements.After confirming that GFP expression accurately reflects the expression of Fgf8,we successfully obtained both embryonic and neonatal IHCs with high purity,highlighting the power of Fgf8^(GFP)/+.Furthermore,our fate-mapping analysis revealed,unexpectedly,that IHCs are also derived from inner ear progenitors expressing Insm1,which is currently regarded as an OHC marker.Thus,besides serving as a highly favorable tool for sorting early IHCs,Fgf8^(GFP)/+will facilitate the isolation of pure early OHCs by excluding IHCs from the entire hair cell pool.
基金This work was supported by the National Natural Science Foundation of China(81770999 and 81670281)the Shanghai Municipal Commission of Science and Technology Research Project(18140900304,and 19140900902)the Big Data and Artificial Intelligence Project(2020DSJ07).
文摘Sodium salicylate is an anti-inflammatory medication with a side-effect of tinnitus.Here,we used mouse cochlear cultures to explore the effects of salicylate treatment on cochlear inner hair cells(IHCs).We found that IHCs showed significant damage after exposure to a high concentration of salicylate.Whole-cell patch clamp recordings showed that 1–5 mmol/L salicylate did not affect the exocytosis of IHCs,indicating that IHCs are not involved in tinnitus generation by enhancing their neuronal input.Instead,salicylate induced a larger peak amplitude,a more negative half-activation voltage,and a steeper slope factor of Ca^(2+)current.Using noise analysis of Ca^(2+)tail currents and qRT-PCR,we further found that salicylate increased the number of Ca^(2+)channels along with CaV1.3 expression.All these changes could act synergistically to enhance the Ca^(2+)influx into IHCs.Inhibition of intracellular Ca^(2+)overload significantly attenuated IHC death after 10 mmol/L salicylate treatment.These results implicate a cellular mechanism for tinnitus generation in the peripheral auditory system.
文摘In mammals,the ribbon synapses of cochlear inner hair cells are a synaptic structure of the first sensory nerve in the pathway of acoustical signal transmission to the acoustic center,and it is directly involved in voice coding and neurotransmitter release. It is difficult to quantitatively analyze the ribbon synaptic number only using an electron microscope,because the ribbon synaptic number is relatively limited and their location is deep. In this study,the specific presynaptic structure-RIBEYE,and non-specific postsynaptic structure-GluR 2 & 3 in C57BL/6J mouse basilar membrane samples were treated by immunofluorescent labeling. Serial section was performed on the samples using a laser scanning confocal microscope,and then the serial sections were used to build three-dimensional models using 3DS MAX software. Each fluorescein color pair indicates one synapse,so the number of ribbon synapses of inner hair cells is obtained. The spatial distribution and the number of ribbon synapses of cochlear inner hair cells were clearly shown in this experiment,and the mean number of ribbon synapses per inner hair cell was 16.10±1.03. Our results have demonstrated the number of ribbon synapses is accurately calculated by double immunofluorescent labeling to presynaptic and postsynaptic structures,serial sections obtained using a laser scanning confocal microscope,and three-dimensional modeling obtained using 3DS MAX software. The method above is feasible and has important significance for further exploring the mechanism of sensorineural deafness.
文摘Forward Masking Temporal audiotory resolution is the ability of the auditory system to resolve auditory signals in the time domain. Forward masking is a means of studying temporal resolution where one tone, the probe, is masked by a preceding tone, the masker. Forward masking is
基金supported by the follow grants:1. The StateKey Program of National Natural Science of China (Grant No. 30730040)2. The National High Technology Research and Development Program of China (Grant No.2007AA02Z150)+2 种基金3. The National Natural Science Foundation of China (30871398)Key Projects in the National Science & Technology Supporting Program during the Eleventh Five-Year Plan Period (2008BAI50B08 2007 BAI18B12, 2007BAI18B14)
文摘Hair cells in the mammalian inner ear are very fragile and are often injured as a result of acoustic trauma or exposure to ototoxic drugs (cisplatin, aminoglycosides, etc) [1]. In amphibians and birds, spontaneous
文摘Loss of postnatal mammalian auditory hair cells (HCs) is irreversible. Earlier studies have highlighted the importance of the Retinoblastoma family of proteins (pRBs) (i.e., Rb1, Rbl1/p107, and Rbl2/p130) in the auditory cells’ proliferation and emphasized our lack of information on their specific roles in the auditory system. We have previously demonstrated that lack of Rbl2/p130 moderately affects HCs’ and supporting cells’ (SCs) proliferation. Here, we present evidence supporting multiple roles for Rbl1/p107 inthe developing and mature mouse organ of Corti (OC). Like other pRBs, Rbl1/p107 is expressed in the OC, particularly in the Hensen’s and Deiters’ cells. Moreover, Rbl1/p107 impacts maturation and postmitotic quiescence of HCs and SCs, as evidenced by enhanced numbers of these cells and the presence of dividing cells in the postnatal Rbl1/p107-/-OC. These findings were further supported by microarray and bioinformatics analyses, suggesting downregulation of several bHLH molecules, as well as activation of the Notch/Hes/Hey signaling pathway in homozygous Rbl1/p107 mutant mice. Physiological assessments and detection of ectopic HC marker expression in postnatal spiral ganglion neurons (SGNs) provided evidence for incomplete cell maturation and differentiation in Rbl1/p107﹣/﹣OC. Collectively, the present study highlights an important role for Rbl1/p107 inOC cell differentiation and maturation, which is distinct from other pRBs.
基金supported by the Natural Science Foundation of Shanghai,No.08ZR1414900 and 11ZR1423600
文摘The results from this study showed that the thresholds of brainstem auditory-evoked potentials peak following 10 successive days of intramuscular injection of Roman chickens with kanamycin, starting 3 days after birth. Fluorescence immunohistochemistry analysis revealed few ganglion cells positively labeled for Ephrin A2 in the cochlea of experimental chickens from 2 days before until 7 days after the last kanamycin injection. The number of Ephrin A2-positive ganglion cell bodies was increased at 15 days after the last injection and was similar to that in normal chickens at 30 days following the cessation of kanamycin treatment. These experimental findings indicate that Ephrin A2 protein expression in the acoustic ganglia is synchronized with the connection damage and regeneration of cochlear hair cells after kanamycin exposure. Ephrin A2 may play an important role in the regeneration and plasticity of cochlear hair cells in the chick cochlea following kanamycin ototoxicity.
文摘miRNA-183 family, in normal biology, is expressed in a harmonious and stable manner in the neurosensory organs and cells. Studies have also shown that miRNA-183 family, in different pathways, affects the neurosensory development, maintenance, survival and function. In addition, it has potential neuroprotective effects in response to neurosensory destructive stimulations. miRNA-96 mutation causes hereditary deafness in humans and mice, and therefore affects the inner ear activity and its maintenance. Certain roles have been identified for mi R-96 in the maintenance and function of the inner ear. The comparison of the target genes of family-183 in transcriptomes of newborn and adult hair cells shows that hundreds of target genes in this family may affect development and maintenance of the ears. Identifying the genes that are regulated by miRNA-183 family provides researchers with important information about the complex development and environmental regulation of the inner ear, and can offer new approaches to the maintenance and regeneration of hair cells and auditory nerve.
基金supported by the National Natural Science Foundation of China,Nos.81670925(to FQC),81870732(to DJZ),81800918(to WL),81900933(to YLS)Department of Science and Technology Key Industry Innovation Chain Social Development Field Fund of Shaanxi Province,No.2021ZDLSF02-12(to FQC)the Natural Science Foundation of Shaanxi Province,No.2019JM-009(to JC).
文摘Studies have shown that phosphatase and tensin homolog deleted on chromosome ten(PTEN)participates in the regulation of cochlear hair cell survival.Bisperoxovanadium protects against neurodegeneration by inhibiting PTEN expression.However,whether bisperoxovanadium can protect against noise-induced hearing loss and the underlying mechanism remains unclear.In this study,we established a mouse model of noise-induced hearing loss by exposure to 105 dB sound for 2 hours.We found that PTEN expression was increased in the organ of Corti,including outer hair cells,inner hair cells,and lateral wall tissues.Intraperitoneal administration of bisperoxovanadium decreased the auditory threshold and the loss of cochlear hair cells and inner hair cell ribbons.In addition,noise exposure decreased p-PI3K and p-Akt levels.Bisperoxovanadium preconditioning or PTEN knockdown upregulated the activity of PI3K-Akt.Bisperoxovanadium also prevented H_(2)O_(2)-induced hair cell death by reducing mitochondrial reactive oxygen species generation in cochlear explants.These findings suggest that bisperoxovanadium reduces noise-induced hearing injury and reduces cochlear hair cell loss.
文摘目的:观察模拟载人飞船中微重力和噪声环境下大鼠耳蜗毛细胞的形态学特点,探讨耳蜗三回(底回、中回和顶回)毛细胞的不同变化。方法:选取32只雄性健康SD大鼠,随机分为空白组、失重组、噪声组和失重+噪声组4组,每组8只。失重组以持续尾吊法模拟微重力,噪声组以持续2周的(72±2)d B SPL的稳态噪声及之后的3次高达160 d B SPL的脉冲噪声模拟飞船内复合噪声环境,失重+噪声组同时给予模拟微重力和噪声环境,空白组不做任何处理,常规饲养2周。暴露后检测听性脑干反应(auditory brainstem response,ABR)阈值,处死大鼠即刻取耳蜗基底膜行免疫荧光及扫描电子显微镜(scanning electron microscope,SEM)观察。结果:给予模拟环境暴露后,各组大鼠ABR阈值升高,各实验组大鼠暴露前后ABR阈值差异均有统计学意义(P<0.05)。免疫荧光结果显示:失重组底回以内毛细胞缺失为主,中回可见毛细胞肿胀,顶回毛细胞杂乱不清。噪声组底回以外毛细胞缺失为主,多见于最外层毛细胞,中回毛细胞肿胀,顶回杂乱并有毛细胞的缺失。失重+噪声组底回核缺失较明显,主要存在最外层毛细胞,内毛细胞也存在较多缺失。中回和顶回缺失发生在最内层外毛细胞。电子显微镜观察发现失重组底回纤毛大片倒伏,偶有缺失,顶回和中回毛细胞纤毛无明显异常。噪声组底回纤毛大片倒伏伴缺失,顶回和中回均有缺失,其中顶回最为严重。失重+噪声组底回纤毛大片融合伴缺失,中回纤毛融合、倒伏并缺失,顶回内外毛细胞纤毛大量缺失。4组的损伤程度:失重+噪声组>噪声组>失重组>空白组;三回毛细胞损伤程度:底回>中回>顶回。结论:模拟载人飞船内微重力和噪声环境中暴露2周可致大鼠耳蜗形态学结构发生显著变化,尤以失重+噪声组变化最明显,三回毛细胞中以底回最重,顶回最轻。