期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Comparative Study on Soot Reduction, Soot Nanostructure and Oxidation Reactivity of n-heptane/DMC and Isooctane/DMC Inverse Diffusion Flames
1
作者 JIANG Bo PALADPOKKRONG Chutikarn LIU Dong 《Journal of Thermal Science》 SCIE EI CAS CSCD 2020年第5期1269-1281,共13页
Dimethyl carbonate(DMC)is an environmentally oxygenated compound which can be used efficiently for soot reduction.This paper compared the soot reduction,soot nanostructure and oxidation reactivity from inverse diffusi... Dimethyl carbonate(DMC)is an environmentally oxygenated compound which can be used efficiently for soot reduction.This paper compared the soot reduction,soot nanostructure and oxidation reactivity from inverse diffusion flames(IDFs)of the hydrocarbon fuels,namely n-heptane and isooctane doped with DMC.Effects of DMC additions on soot reduction were discussed.DMC addition is more effective for the soot reduction of n-heptane/DMC IDF than isooctane/DMC IDF.The morphology and nanostructures of soot particles were investigated by Transmission Electron Microscopy(TEM)and High Resolution TEM(HRTEM),and the soot graphitization and oxidation reactivity were analyzed by X-ray Diflfraction(XRD)and Thermogravimetric Analyzer(TGA),respectively.The results of HRTEM images showed that many larger aggregates were observed for the structures of soot particles from IDFs with DMC additions.The soot particles exhibited more liquid-like material,more amorphous,higher disorganized layers,and less graphitic than that of IDFs without DMC additions.With increasing of DMC blending rate,soot particles changed younger to have shorter fringe length,higher tortuosity,and greater fringe separation.Based on the XRD and TGA results,the degree of the soot graphitization level decreased;the soot mass lost significantly faster,and the soot become more reactive. 展开更多
关键词 inverse diffusion flame n-heptane/DMC isooctane/DMC soot reduction soot nanostructure oxidation reactivity
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部