Starting from the wave normal tracing treatment in the Savart polariscope that relates the Jones matrix to its transmission performance, this paper establishes a simple and effective model for the Jones matrix at an a...Starting from the wave normal tracing treatment in the Savart polariscope that relates the Jones matrix to its transmission performance, this paper establishes a simple and effective model for the Jones matrix at an arbitrary incidence in the spatial domain. Analytical expressions of all the matrix components are determined with the consideration of all the main impact factors. This model needs only a few parameters hence it is convenient to be employed to evaluate the propagation performance of any birefringent optical system. The simulated results obtained with it demonstrate that this model gives a precise representation of the characteristic of light propagation in the Savart polariscope. This would provide useful suggestions for the design, calibration, and performance improvement of any other birefringent polarisation element and optical system.展开更多
The Jones matrix of practical Faraday rotators is often used in the engineering calculation of non-reciprocal optical field. Nevertheless, only the approximate Jones matrix of practical Faraday rotators has been prese...The Jones matrix of practical Faraday rotators is often used in the engineering calculation of non-reciprocal optical field. Nevertheless, only the approximate Jones matrix of practical Faraday rotators has been presented by now. Based on the theory of polarized light, this paper presents the accurate Jones matrix of practical Faraday rotators. In addition, an experiment has been carried out to verify the validity of the accurate Jones matrix. This matrix accurately describes the optical characteristics of practical Faraday rotators, including rotation, loss and depolarization of the polarized light. The accurate Jones matrix can be used to obtain the accurate results for the practical Faraday rotator to transform the polarized light, which paves the way for the accurate analysis and calculation of practical Faraday rotators in relevant engineering applications.展开更多
Optical metasurfaces,which consist of subwavelength scale meta-atoms,represent a novel platform to manipulate the polarization and phase of light.The optical performance of metasurfaces heavily relies on the quality o...Optical metasurfaces,which consist of subwavelength scale meta-atoms,represent a novel platform to manipulate the polarization and phase of light.The optical performance of metasurfaces heavily relies on the quality of nanofabrication.Retrieving the Jones matrix of an imperfect metasurface optical element is highly desirable.We show that this can be realized by decomposing the generalized Jones matrix of a meta-atom into two parallel ones,which correspond to the ideal matrix and a phase retardation.To experimentally verify this concept,we designed and fabricated metasurface polarizers,which consist of geometric phase-controlled dielectric meta-atoms.By scanning the polarization states of the incident and transmitted light,we are able to extract the coefficients of the two parallel matrices of a metasurface polarizer.Based on the results of the Jones matrix decomposition,we also demonstrated polarization image encryption and spin-selective optical holography.The proposed Jones matrix retrieval protocol may have important applications in computational imaging,optical computing,optical communications,and so on.展开更多
Polarizers have always been an important optical component for optical engineering and have played an indispensable part of polarization imaging systems.Metasurface polarizers provide an excellent platform to achieve ...Polarizers have always been an important optical component for optical engineering and have played an indispensable part of polarization imaging systems.Metasurface polarizers provide an excellent platform to achieve miniaturization,high resolution,and low cost of polarization imaging systems.Here,we proposed freeform metasurface polarizers derived by adjoint-based inverse design of a full-Jones matrix with gradient-descent optimization.We designed multiple freeform polarizers with different filtered states of polarization(SOPs),including circular polarizers,elliptical polarizers,and linear polarizers that could cover the full Poincarésphere.Note that near-unitary polarization dichroism and the ultrahigh polarization extinction ratio(ER)reaching 50 d B were achieved for optimized circular polarizers.The multiple freeform polarizers with filtered polarization state locating at four vertices of an inscribed regular tetrahedron of the Poincarésphere are designed to form a full-Stokes parameters micropolarizer array.Our work provides a novel approach,we believe,for the design of meta-polarizers that may have potential applications in polarization imaging,polarization detection,and communication.展开更多
Performed in this work are complex statistical,fractal and singular analyses of phase properties inherent to birefringence networks of protein crystals consisting of optically-thin layers prepared from blood plasma.Wi...Performed in this work are complex statistical,fractal and singular analyses of phase properties inherent to birefringence networks of protein crystals consisting of optically-thin layers prepared from blood plasma.Within the framework of a statistical approach,the authors have investigated values and ranges for changes of statistical moments of thefirst to the fourth orders that characterize coordinate distributions for phase shifts between orthogonal components of amplitudes inherent to laser radiation transformed by blood plasma with various pathologies.In the framework of the fractal approach,determined are the dimensions of self-similar coordinate phase distributions as well as features of transformation of logarithmic dependences for power spectra of these distributions for various types of hominal mammary gland pathologies.展开更多
基金Project supported by the State Key Program of National Natural Science Foundation of China (Grant No. 40537031)the National Natural Science Foundation of China (Grant No. 40875013)+1 种基金the National Defense Basic Scientific Research Project,China (Grant No. A1420080187)the National High Technology Research and Development Program of China (Grant No. 2006AA12Z152)
文摘Starting from the wave normal tracing treatment in the Savart polariscope that relates the Jones matrix to its transmission performance, this paper establishes a simple and effective model for the Jones matrix at an arbitrary incidence in the spatial domain. Analytical expressions of all the matrix components are determined with the consideration of all the main impact factors. This model needs only a few parameters hence it is convenient to be employed to evaluate the propagation performance of any birefringent optical system. The simulated results obtained with it demonstrate that this model gives a precise representation of the characteristic of light propagation in the Savart polariscope. This would provide useful suggestions for the design, calibration, and performance improvement of any other birefringent polarisation element and optical system.
文摘The Jones matrix of practical Faraday rotators is often used in the engineering calculation of non-reciprocal optical field. Nevertheless, only the approximate Jones matrix of practical Faraday rotators has been presented by now. Based on the theory of polarized light, this paper presents the accurate Jones matrix of practical Faraday rotators. In addition, an experiment has been carried out to verify the validity of the accurate Jones matrix. This matrix accurately describes the optical characteristics of practical Faraday rotators, including rotation, loss and depolarization of the polarized light. The accurate Jones matrix can be used to obtain the accurate results for the practical Faraday rotator to transform the polarized light, which paves the way for the accurate analysis and calculation of practical Faraday rotators in relevant engineering applications.
基金supported by the National Key Technologies R&D Program of China (Grant No.2022YFA1404301)the Zhangjiang Laboratory,the National Natural Science Foundation of China (Grant Nos.91950114 and 12161141010)+2 种基金the Guangdong Provincial Innovation and Entrepreneurship Project (Grant No.2017ZT07C071)the Guangdong Provincial Key Laboratory Program (Grant No.2021B1212040001)the Natural Science Foundation of Shenzhen Innovation Commission (Grant No.JCYJ20200109140808088).
文摘Optical metasurfaces,which consist of subwavelength scale meta-atoms,represent a novel platform to manipulate the polarization and phase of light.The optical performance of metasurfaces heavily relies on the quality of nanofabrication.Retrieving the Jones matrix of an imperfect metasurface optical element is highly desirable.We show that this can be realized by decomposing the generalized Jones matrix of a meta-atom into two parallel ones,which correspond to the ideal matrix and a phase retardation.To experimentally verify this concept,we designed and fabricated metasurface polarizers,which consist of geometric phase-controlled dielectric meta-atoms.By scanning the polarization states of the incident and transmitted light,we are able to extract the coefficients of the two parallel matrices of a metasurface polarizer.Based on the results of the Jones matrix decomposition,we also demonstrated polarization image encryption and spin-selective optical holography.The proposed Jones matrix retrieval protocol may have important applications in computational imaging,optical computing,optical communications,and so on.
基金supported by the National Key Research and Development Program of China(Nos.2022YFB3607300 and 2021YFB2802003)the National Natural Science Foundation of China(NSFC)(No.62075084)the Guangdong Basic and Applied Basic Research Foundation(No.2022B1515020004)。
文摘Polarizers have always been an important optical component for optical engineering and have played an indispensable part of polarization imaging systems.Metasurface polarizers provide an excellent platform to achieve miniaturization,high resolution,and low cost of polarization imaging systems.Here,we proposed freeform metasurface polarizers derived by adjoint-based inverse design of a full-Jones matrix with gradient-descent optimization.We designed multiple freeform polarizers with different filtered states of polarization(SOPs),including circular polarizers,elliptical polarizers,and linear polarizers that could cover the full Poincarésphere.Note that near-unitary polarization dichroism and the ultrahigh polarization extinction ratio(ER)reaching 50 d B were achieved for optimized circular polarizers.The multiple freeform polarizers with filtered polarization state locating at four vertices of an inscribed regular tetrahedron of the Poincarésphere are designed to form a full-Stokes parameters micropolarizer array.Our work provides a novel approach,we believe,for the design of meta-polarizers that may have potential applications in polarization imaging,polarization detection,and communication.
文摘Performed in this work are complex statistical,fractal and singular analyses of phase properties inherent to birefringence networks of protein crystals consisting of optically-thin layers prepared from blood plasma.Within the framework of a statistical approach,the authors have investigated values and ranges for changes of statistical moments of thefirst to the fourth orders that characterize coordinate distributions for phase shifts between orthogonal components of amplitudes inherent to laser radiation transformed by blood plasma with various pathologies.In the framework of the fractal approach,determined are the dimensions of self-similar coordinate phase distributions as well as features of transformation of logarithmic dependences for power spectra of these distributions for various types of hominal mammary gland pathologies.