For a complicated high speed reciprocating machine to meet the requirements of precise motion of its mechanisms, a study of its kineto-elastodynamies is necessary. Here is an example to find out the cause of the misen...For a complicated high speed reciprocating machine to meet the requirements of precise motion of its mechanisms, a study of its kineto-elastodynamies is necessary. Here is an example to find out the cause of the misengagement of flexible rapiers, by means of kineto-elastodynamic analysis, so as to meet the requirements of flexible rapier loom′s design, with beat-up and weft insertion mechanisms operating at high speed.展开更多
The kineto-elastodynamic(KED) model of a hose cutting mechanism used in the aluminum electrolytic capacitor(AEC) casing machine is developed to investigate the dynamic characteristics. According to the composition cha...The kineto-elastodynamic(KED) model of a hose cutting mechanism used in the aluminum electrolytic capacitor(AEC) casing machine is developed to investigate the dynamic characteristics. According to the composition characteristics, the cutting mechanism is divided into cam-roller and linkage two substructures. And the dynamic models of the two substructures are established using the lumped parameter method and finite element method(FEM), respectively. In the model, the compliances of the camshaft and the links are taken into consideration. The elastic displacement of the links, angular error of the cutter and the dynamic stress of the links are analyzed based on the KED model. The results provide important information for structure optimization and vibration control of the mechanism.展开更多
The dynamic modeling and solution of the 3-RRS spatial parallel manipulators with flexible links were investigated. Firstly, a new model of spatial flexible beam element was proposed, and the dynamic equations of elem...The dynamic modeling and solution of the 3-RRS spatial parallel manipulators with flexible links were investigated. Firstly, a new model of spatial flexible beam element was proposed, and the dynamic equations of elements and branches of the parallel manipulator were derived. Secondly, according to the kinematic coupling relationship between the moving platform and flexible links, the kinematic constraints of the flexible parallel manipulator were proposed. Thirdly, using the kinematic constraint equations and dynamic model of the moving platform, the overall system dynamic equations of the parallel manipulator were obtained by assembling the dynamic equations of branches. FtLrthermore, a few commonly used effective solutions of second-order differential equation system with variable coefficients were discussed. Newmark numerical method was used to solve the dynamic equations of the flexible parallel manipulator. Finally, the dynamic responses of the moving platform and driving torques of the 3-RRS parallel mechanism with flexible links were analyzed through numerical simulation. The results provide important information for analysis of dynamic performance, dynamics optimization design, dynamic simulation and control of the 3-RRS flexible parallel manipulator.展开更多
文摘For a complicated high speed reciprocating machine to meet the requirements of precise motion of its mechanisms, a study of its kineto-elastodynamies is necessary. Here is an example to find out the cause of the misengagement of flexible rapiers, by means of kineto-elastodynamic analysis, so as to meet the requirements of flexible rapier loom′s design, with beat-up and weft insertion mechanisms operating at high speed.
文摘The kineto-elastodynamic(KED) model of a hose cutting mechanism used in the aluminum electrolytic capacitor(AEC) casing machine is developed to investigate the dynamic characteristics. According to the composition characteristics, the cutting mechanism is divided into cam-roller and linkage two substructures. And the dynamic models of the two substructures are established using the lumped parameter method and finite element method(FEM), respectively. In the model, the compliances of the camshaft and the links are taken into consideration. The elastic displacement of the links, angular error of the cutter and the dynamic stress of the links are analyzed based on the KED model. The results provide important information for structure optimization and vibration control of the mechanism.
基金Projects(50875002, 60705036) supported by the National Natural Science Foundation of ChinaProject(3062004) supported by Beijing Natural Science Foundation, China+1 种基金Project(20070104) supported by the Key Laboratory of Complex Systems and Intelligence Science, Institute of Automation, Chinese Academy of SciencesProject(2009AA04Z415) supported by the National High-Tech Research and Development Program of China
文摘The dynamic modeling and solution of the 3-RRS spatial parallel manipulators with flexible links were investigated. Firstly, a new model of spatial flexible beam element was proposed, and the dynamic equations of elements and branches of the parallel manipulator were derived. Secondly, according to the kinematic coupling relationship between the moving platform and flexible links, the kinematic constraints of the flexible parallel manipulator were proposed. Thirdly, using the kinematic constraint equations and dynamic model of the moving platform, the overall system dynamic equations of the parallel manipulator were obtained by assembling the dynamic equations of branches. FtLrthermore, a few commonly used effective solutions of second-order differential equation system with variable coefficients were discussed. Newmark numerical method was used to solve the dynamic equations of the flexible parallel manipulator. Finally, the dynamic responses of the moving platform and driving torques of the 3-RRS parallel mechanism with flexible links were analyzed through numerical simulation. The results provide important information for analysis of dynamic performance, dynamics optimization design, dynamic simulation and control of the 3-RRS flexible parallel manipulator.