The aim of the paper is to estimate the density functions or distribution functions measured by Wasserstein metric, a typical kind of statistical distances, which is usually required in the statistical learning. Based...The aim of the paper is to estimate the density functions or distribution functions measured by Wasserstein metric, a typical kind of statistical distances, which is usually required in the statistical learning. Based on the classical Bernstein approximation, a scheme is presented. To get the error estimates of the scheme, the problem turns to estimating the L1 norm of the Bernstein approximation for monotone C-1 functions, which was rarely discussed in the classical approximation theory. Finally, we get a probability estimate by the statistical distance.展开更多
In this article,we study the energy dissipation property of time-fractional Allen–Cahn equation.On the continuous level,we propose an upper bound of energy that decreases with respect to time and coincides with the o...In this article,we study the energy dissipation property of time-fractional Allen–Cahn equation.On the continuous level,we propose an upper bound of energy that decreases with respect to time and coincides with the original energy at t=0 and as t tends to∞.This upper bound can also be viewed as a nonlocal-in-time modified energy which is the summation of the original energy and an accumulation term due to the memory effect of time-fractional derivative.In particular,the decrease of the modified energy indicates that the original energy indeed decays w.r.t.time in a small neighborhood at t=0.We illustrate the theory mainly with the time-fractional Allen-Cahn equation but it could also be applied to other time-fractional phase-field models such as the Cahn-Hilliard equation.On the discrete level,the decreasing upper bound of energy is useful for proving energy dissipation of numerical schemes.First-order L1 and second-order L2 schemes for the time-fractional Allen-Cahn equation have similar decreasing modified energies,so that stability can be established.Some numerical results are provided to illustrate the behavior of this modified energy and to verify our theoretical results.展开更多
The main contents of this paper are to establish a finite element fully-discrete approximate scheme for multi-term time-fractional mixed sub-diffusion and diffusionwave equation with spatial variable coefficient,which...The main contents of this paper are to establish a finite element fully-discrete approximate scheme for multi-term time-fractional mixed sub-diffusion and diffusionwave equation with spatial variable coefficient,which contains a time-space coupled derivative.The nonconforming EQ^(rot)_(1)element and Raviart-Thomas element are employed for spatial discretization,and L1 time-stepping method combined with the Crank-Nicolson scheme are applied for temporal discretization.Firstly,based on some significant lemmas,the unconditional stability analysis of the fully-discrete scheme is acquired.With the assistance of the interpolation operator I_(h)and projection operator Rh,superclose and convergence results of the variable u in H^(1)-norm and the flux~p=k_(5)(x)ru(x,t)in L^(2)-norm are obtained,respectively.Furthermore,the global superconvergence results are derived by applying the interpolation postprocessing technique.Finally,the availability and accuracy of the theoretical analysis are corroborated by experimental results of numerical examples on anisotropic meshes.展开更多
基金Supported by 973-Project of China(2006cb303102)the National Science Foundation of China(11461161006,11201079)
文摘The aim of the paper is to estimate the density functions or distribution functions measured by Wasserstein metric, a typical kind of statistical distances, which is usually required in the statistical learning. Based on the classical Bernstein approximation, a scheme is presented. To get the error estimates of the scheme, the problem turns to estimating the L1 norm of the Bernstein approximation for monotone C-1 functions, which was rarely discussed in the classical approximation theory. Finally, we get a probability estimate by the statistical distance.
基金partially supported by the National Natural Science Foundation of China/Hong Kong RGC Joint Research Scheme(NSFC/RGC 11961160718)the fund of the Guangdong Provincial Key Laboratory of Computational Science And Material Design(No.2019B030301001)+4 种基金supported in part by the Guangdong Provincial Key Laboratory of Interdisciplinary Research and Application for Data Science under UIC 2022B1212010006supported by the National Science Foundation of China(NSFC)Grant No.12271240supported by NSFC Grant 12271241Guangdong Basic and Applied Basic Research Foundation(No.2023B1515020030)Shenzhen Science and Technology Program(Grant No.RCYX20210609104358076).
文摘In this article,we study the energy dissipation property of time-fractional Allen–Cahn equation.On the continuous level,we propose an upper bound of energy that decreases with respect to time and coincides with the original energy at t=0 and as t tends to∞.This upper bound can also be viewed as a nonlocal-in-time modified energy which is the summation of the original energy and an accumulation term due to the memory effect of time-fractional derivative.In particular,the decrease of the modified energy indicates that the original energy indeed decays w.r.t.time in a small neighborhood at t=0.We illustrate the theory mainly with the time-fractional Allen-Cahn equation but it could also be applied to other time-fractional phase-field models such as the Cahn-Hilliard equation.On the discrete level,the decreasing upper bound of energy is useful for proving energy dissipation of numerical schemes.First-order L1 and second-order L2 schemes for the time-fractional Allen-Cahn equation have similar decreasing modified energies,so that stability can be established.Some numerical results are provided to illustrate the behavior of this modified energy and to verify our theoretical results.
基金The work is supported by the National Natural Science Foundation of China(Nos.11971416 and 11871441)the Scientific Research Innovation Team of Xuchang University(No.2022CXTD002)the Foundation for University Key Young Teacher of Henan Province(No.2019GGJS214).
文摘The main contents of this paper are to establish a finite element fully-discrete approximate scheme for multi-term time-fractional mixed sub-diffusion and diffusionwave equation with spatial variable coefficient,which contains a time-space coupled derivative.The nonconforming EQ^(rot)_(1)element and Raviart-Thomas element are employed for spatial discretization,and L1 time-stepping method combined with the Crank-Nicolson scheme are applied for temporal discretization.Firstly,based on some significant lemmas,the unconditional stability analysis of the fully-discrete scheme is acquired.With the assistance of the interpolation operator I_(h)and projection operator Rh,superclose and convergence results of the variable u in H^(1)-norm and the flux~p=k_(5)(x)ru(x,t)in L^(2)-norm are obtained,respectively.Furthermore,the global superconvergence results are derived by applying the interpolation postprocessing technique.Finally,the availability and accuracy of the theoretical analysis are corroborated by experimental results of numerical examples on anisotropic meshes.