Background A deterioration in the meat quality of broilers has attracted much more attention in recent years.L-malic acid(MA)is evidenced to decrease meat drip loss in broilers,but the underlying molecular mechanisms ...Background A deterioration in the meat quality of broilers has attracted much more attention in recent years.L-malic acid(MA)is evidenced to decrease meat drip loss in broilers,but the underlying molecular mechanisms are still unclear.It’s also not sure whether the outputs obtained under experimental conditions can be obtained in a com-mercial condition.Here,we investigated the effects and mechanisms of dietary MA supplementation on chicken meat drip loss at large-scale rearing.Results Results showed that the growth performance and drip loss were improved by MA supplementation.Meat metabolome revealed that L-2-aminoadipic acid,β-aminoisobutyric acid,eicosapentaenoic acid,and nicotinamide,as well as amino acid metabolism pathways connected to the improvements of meat quality by MA addition.The transcriptome analysis further indicated that the effect of MA on drip loss was also related to the proper immune response,evidenced by the enhanced B cell receptor signaling pathway,NF-κB signaling pathway,TNF signaling pathway,and IL-17 signaling pathway.Conclusions We provided evidence that MA decreased chicken meat drip loss under commercial conditions.Metabolome and transcriptome revealed a comprehensive understanding of the underlying mechanisms.Together,MA could be used as a promising dietary supplement for enhancing the water-holding capacity of chicken meat.展开更多
β-Poly(L-malic acid)(PMLA)is a water-soluble biopolymer used in food,medicine and other industries.To date,the biosynthesis pathway of PMLA has not been fully elucidated.In this study,we sequenced the transcriptom e ...β-Poly(L-malic acid)(PMLA)is a water-soluble biopolymer used in food,medicine and other industries.To date,the biosynthesis pathway of PMLA has not been fully elucidated.In this study,we sequenced the transcriptom e of strain Aureobasidium melanogenum under 20 g/L CaCO_(3) addition.The resulting sequencing reads were assembled and annotated for the differentially expressed genes(DEGs)analysis and novel transcripts identification.The result indicated that with the CaCO_(3) addition,the tricarboxylic cycle(TCA)cycle and glyoxylate pathway were up-regulated,and it also found that a non-ribosomal peptide synthetase(NRPS)like protein was highly expressed.The DEGs analysis showed a high expression level of malate dehydrogenase(MDHC)and phosphoenolpyruvate carboxykinase(PCKA)in the CaCO_(3) group,which indicated a cytosolic malate activity.We speculated that the malate should be transported to or synthesized in the cytoplasm,which was then polymerized to PMLA by the NRPS-like protein,accompanied by the up-regulated TCA cycle providing ATP for the polymerization.Depending on the analysis,we assumed that an NRPS-like protein,the TCA cycle,and the cytosolic malate together are contributing to the PMLA biosynthesis.展开更多
Terpolymer of 1, 8-octanediol, adipic acid, and L-malic acid was synthesized via a lipase-catalyzed direct polycondensation. The products were characterized by GPC and 1H NMR. The results indicated that the molecular ...Terpolymer of 1, 8-octanediol, adipic acid, and L-malic acid was synthesized via a lipase-catalyzed direct polycondensation. The products were characterized by GPC and 1H NMR. The results indicated that the molecular weight of the prepared polymers decreased with increasing L-malic acid content in the monomer feed ratio, and that change in the L-malic acid content from 0 to 20 mol % did not remarkably influenced on the molecular weight distribution Mw /Ma of the prepared samples. The 1H NMR spectra of the obtained copolymer samples showed that hydroxyl groups of L-malic acid did not take part in the polymerization reaction.展开更多
Urea L-malic acid, a new second order nonlinear optical crystal, was studied using density functional theory (DFT). PBEPBE/6-31+G(d,p) method, the optimal method for comparing the results from the several DFT met...Urea L-malic acid, a new second order nonlinear optical crystal, was studied using density functional theory (DFT). PBEPBE/6-31+G(d,p) method, the optimal method for comparing the results from the several DFT methods, was chosen to study the molecular structure. Infrared and ultraviolet-visible spectra were obtained and compared with experiments. The ultraviolet-visible spectrum was also analyzed by the molecular orbital population. The geometries, and the infrared and ultraviolet-visible spectra in water were studied using DFT methods in combination with the polarized continuum model to predict the perturbations by the solvent effect.展开更多
The catalyst preparation strategy was based on a strict introduction sequence of rhenium and platinum precursors and their strong interaction with carbon support resulted in the formation of 0.5 nm Pt-Re Ox species of...The catalyst preparation strategy was based on a strict introduction sequence of rhenium and platinum precursors and their strong interaction with carbon support resulted in the formation of 0.5 nm Pt-Re Ox species of atomic dispersion, where platinum is metallic, while monolayer rhenium is partially oxidized(Re2+). The reaction kinetics was studied taking into account the process of L-malic acid association leading to the formation of inactive cyclic oligomeric species. High TOFs(ca. 50 h-1), selectivities(ca. 99%)and stability of Pt-Re Ox/C catalysts in aqueous-phase hydrogenation of L-malic acid, which are close to those of the homogeneous pincer type complexes, were revealed at mild conditions(T = 90–130 ℃). Taking into account that(i) hydrogenation reaction occurred 2–3 orders of magnitude faster than its racemization and(ii) association of L-malic acid dominates at low temperatures and in a concentrated solution,special reaction conditions that allow obtaining chemically and optically(ee 〉 99%) pure(S)-3-hydroxy-γ-butyrolactone and(S)-1,2,4-butanetriol were found. Basing on HAADF-STEM, EDX, XPS, and kinetic studies, the structure of active species and basic reaction pathways are proposed.展开更多
The effect of some phenolic compounds recurrent in wines on technological features of Oenococcus oeni was studied in order to individuate those strains to be utilized as starter in the deacidification of aged red wine...The effect of some phenolic compounds recurrent in wines on technological features of Oenococcus oeni was studied in order to individuate those strains to be utilized as starter in the deacidification of aged red wines. For this purpose, the growth and the L-malic acid metabolism of 100O. oeni strains, previously isolated from different wines, was assayed in a synthetic medium added with ethanol, malic acid and phenol carboxylic (gallic, caffeic, p-coumaric and ferulic) acids or flavonoids (catechin and quercetin) at different concentrations. Results evidenced a different sensitivity of strains to each assayed compound. All the compounds restrained or stimulated the growth of 57 and 11 strains respectively, while no effect was detected on 6 strains. The remaining 26 strains showed a different behaviour: all were restrained by ferulic acid and stimulated by gallic acid and catechin. As for caffeic acid, 17 out of 26 strains were restrained, while 9 strains were stimulated. The main result obtained in this study was the establishment of a relationship between the effect of phenolic compounds on the O. oeni growth and the behaviour of the malolactic fermentation. This study may enrich the selection criteria of strains for the deacidification of aged red wines.展开更多
The sleep-wake cycle stands as an integrative process essential for sustaining optimal brain function and,either directly or indirectly,overall body health,encompassing metabolic and cardiovascular well-being.Given th...The sleep-wake cycle stands as an integrative process essential for sustaining optimal brain function and,either directly or indirectly,overall body health,encompassing metabolic and cardiovascular well-being.Given the heightened metabolic activity of the brain,there exists a considerable demand for nutrients in comparison to other organs.Among these,the branched-chain amino acids,comprising leucine,isoleucine,and valine,display distinctive significance,from their contribution to protein structure to their involvement in overall metabolism,especially in cerebral processes.Among the first amino acids that are released into circulation post-food intake,branched-chain amino acids assume a pivotal role in the regulation of protein synthesis,modulating insulin secretion and the amino acid sensing pathway of target of rapamycin.Branched-chain amino acids are key players in influencing the brain's uptake of monoamine precursors,competing for a shared transporter.Beyond their involvement in protein synthesis,these amino acids contribute to the metabolic cycles ofγ-aminobutyric acid and glutamate,as well as energy metabolism.Notably,they impact GABAergic neurons and the excitation/inhibition balance.The rhythmicity of branchedchain amino acids in plasma concentrations,observed over a 24-hour cycle and conserved in rodent models,is under circadian clock control.The mechanisms underlying those rhythms and the physiological consequences of their disruption are not fully understood.Disturbed sleep,obesity,diabetes,and cardiovascular diseases can elevate branched-chain amino acid concentrations or modify their oscillatory dynamics.The mechanisms driving these effects are currently the focal point of ongoing research efforts,since normalizing branched-chain amino acid levels has the ability to alleviate the severity of these pathologies.In this context,the Drosophila model,though underutilized,holds promise in shedding new light on these mechanisms.Initial findings indicate its potential to introduce novel concepts,particularly in elucidating the intricate connections between the circadian clock,sleep/wake,and metabolism.Consequently,the use and transport of branched-chain amino acids emerge as critical components and orchestrators in the web of interactions across multiple organs throughout the sleep/wake cycle.They could represent one of the so far elusive mechanisms connecting sleep patterns to metabolic and cardiovascular health,paving the way for potential therapeutic interventions.展开更多
The conventional perception of astrocytes as mere supportive cells within the brain has recently been called into question by empirical evidence, which has revealed their active involvement in regulating brain functio...The conventional perception of astrocytes as mere supportive cells within the brain has recently been called into question by empirical evidence, which has revealed their active involvement in regulating brain function and encoding behaviors associated with emotions.Specifically, astrocytes in the basolateral amygdala have been found to play a role in the modulation of anxiety-like behaviors triggered by chronic stress. Nevertheless, the precise molecular mechanisms by which basolateral amygdala astrocytes regulate chronic stress–induced anxiety-like behaviors remain to be fully elucidated. In this study, we found that in a mouse model of anxiety triggered by unpredictable chronic mild stress, the expression of excitatory amino acid transporter 2 was upregulated in the basolateral amygdala. Interestingly, our findings indicate that the targeted knockdown of excitatory amino acid transporter 2 specifically within the basolateral amygdala astrocytes was able to rescue the anxiety-like behavior in mice subjected to stress. Furthermore, we found that the overexpression of excitatory amino acid transporter 2 in the basolateral amygdala, whether achieved through intracranial administration of excitatory amino acid transporter 2agonists or through injection of excitatory amino acid transporter 2-overexpressing viruses with GfaABC1D promoters, evoked anxiety-like behavior in mice. Our single-nucleus RNA sequencing analysis further confirmed that chronic stress induced an upregulation of excitatory amino acid transporter 2 specifically in astrocytes in the basolateral amygdala. Moreover, through in vivo calcium signal recordings, we found that the frequency of calcium activity in the basolateral amygdala of mice subjected to chronic stress was higher compared with normal mice.After knocking down the expression of excitatory amino acid transporter 2 in the basolateral amygdala, the frequency of calcium activity was not significantly increased, and anxiety-like behavior was obviously mitigated. Additionally, administration of an excitatory amino acid transporter 2 inhibitor in the basolateral amygdala yielded a notable reduction in anxiety level among mice subjected to stress. These results suggest that basolateral amygdala astrocytic excitatory amino acid transporter 2 plays a role in in the regulation of unpredictable chronic mild stress-induced anxiety-like behavior by impacting the activity of local glutamatergic neurons, and targeting excitatory amino acid transporter 2 in the basolateral amygdala holds therapeutic promise for addressing anxiety disorders.展开更多
The involvement of the excitatory amino acids glutamate and aspartate in ce rebral ischemia and excitotoxicity is well-documented.Nevertheless,the role of non-excitatory amino acids in brain damage following a stroke ...The involvement of the excitatory amino acids glutamate and aspartate in ce rebral ischemia and excitotoxicity is well-documented.Nevertheless,the role of non-excitatory amino acids in brain damage following a stroke or brain trauma remains largely understudied.The release of amino acids by necrotic cells in the ischemic core may contribute to the expansion of the penumbra.Our findings indicated that the reversible loss of field excitato ry postsynaptic potentials caused by transient hypoxia became irreversible when exposed to a mixture of just four non-excitatory amino acids(L-alanine,glycine,L-glutamine,and L-serine)at their plasma concentrations.These amino acids induce swelling in the somas of neurons and astrocytes during hypoxia,along with permanent dendritic damage mediated by N-methyl-D-aspartate receptors.Blocking N-methyl-D-aspartate receptors prevented neuronal damage in the presence of these amino acids during hypoxia.It is likely that astroglial swelling caused by the accumulation of these amino acids via the alanine-serine-cysteine transporter 2 exchanger and system N transporters activates volume-regulated anion channels,leading to the release of excitotoxins and subsequent neuronal damage through N-methyl-D-aspartate receptor activation.Thus,previously unrecognized mechanisms involving non-excitatory amino acids may contribute to the progression and expansion of brain injury in neurological emergencies such as stroke and traumatic brain injury.Understanding these pathways co uld highlight new therapeutic targets to mitigate brain injury.展开更多
There is a need to develop interventions to slow or reverse the degeneration of dopamine neurons in Parkinson’s disease after diagnosis.Given that preclinical and clinical studies suggest benefits of dietary n-3 poly...There is a need to develop interventions to slow or reverse the degeneration of dopamine neurons in Parkinson’s disease after diagnosis.Given that preclinical and clinical studies suggest benefits of dietary n-3 polyunsaturated fatty acids,such as docosahexaenoic acid,and exercise in Parkinson’s disease,we investigated whether both could synergistically interact to induce recovery of the dopaminergic pathway.First,mice received a unilateral stereotactic injection of 6-hydroxydopamine into the striatum to establish an animal model of nigrostriatal denervation.Four weeks after lesion,animals were fed a docosahexaenoic acid-enriched or a control diet for the next 8 weeks.During this period,the animals had access to a running wheel,which they could use or not.Docosahexaenoic acid treatment,voluntary exercise,or the combination of both had no effect on(i)distance traveled in the open field test,(ii)the percentage of contraversive rotations in the apomorphine-induction test or(iii)the number of tyrosine-hydroxylase-positive cells in the substantia nigra pars compacta.However,the docosahexaenoic acid diet increased the number of tyrosine-hydroxylase-positive terminals and induced a rise in dopamine concentrations in the lesioned striatum.Compared to docosahexaenoic acid treatment or exercise alone,the combination of docosahexaenoic acid and exercise(i)improved forelimb balance in the stepping test,(ii)decreased the striatal DOPAC/dopamine ratio and(iii)led to increased dopamine transporter levels in the lesioned striatum.The present results suggest that the combination of exercise and docosahexaenoic acid may act synergistically in the striatum of mice with a unilateral lesion of the dopaminergic system and provide support for clinical trials combining nutrition and physical exercise in the treatment of Parkinson’s disease.展开更多
It has been shown clinically that continuous removal of ischemia/reperfusion-induced reactive oxygen species is not conducive to the recovery of late stroke.Indeed,previous studies have shown that excessive increases ...It has been shown clinically that continuous removal of ischemia/reperfusion-induced reactive oxygen species is not conducive to the recovery of late stroke.Indeed,previous studies have shown that excessive increases in hypochlorous acid after stroke can cause severe damage to brain tissue.Our previous studies have found that a small amount of hypochlorous acid still exists in the later stage of stroke,but its specific role and mechanism are currently unclear.To simulate stroke in vivo,a middle cerebral artery occlusion rat model was established,with an oxygen-glucose deprivation/reoxygenation model established in vitro to mimic stroke.We found that in the early stage(within 24 hours)of ischemic stroke,neutrophils produced a large amount of hypochlorous acid,while in the recovery phase(10 days after stroke),microglia were activated and produced a small amount of hypochlorous acid.Further,in acute stroke in rats,hypochlorous acid production was prevented using a hypochlorous acid scavenger,taurine,or myeloperoxidase inhibitor,4-aminobenzoic acid hydrazide.Our results showed that high levels of hypochlorous acid(200μM)induced neuronal apoptosis after oxygen/glucose deprivation/reoxygenation.However,in the recovery phase of the middle cerebral artery occlusion model,a moderate level of hypochlorous acid promoted the proliferation and differentiation of neural stem cells into neurons and astrocytes.This suggests that hypochlorous acid plays different roles at different phases of cerebral ischemia/reperfusion injury.Lower levels of hypochlorous acid(5 and 100μM)promoted nuclear translocation ofβ-catenin.By transfection of single-site mutation plasmids,we found that hypochlorous acid induced chlorination of theβ-catenin tyrosine 30 residue,which promoted nuclear translocation.Altogether,our study indicates that maintaining low levels of hypochlorous acid plays a key role in the recovery of neurological function.展开更多
Recent studies have suggested that abnormal acidification of lysosomes induces autophagic accumulation of amyloid-βin neurons,which is a key step in senile plaque formation.Therefore,resto ring normal lysosomal funct...Recent studies have suggested that abnormal acidification of lysosomes induces autophagic accumulation of amyloid-βin neurons,which is a key step in senile plaque formation.Therefore,resto ring normal lysosomal function and rebalancing lysosomal acidification in neurons in the brain may be a new treatment strategy for Alzheimer's disease.Microtubule acetylation/deacetylation plays a central role in lysosomal acidification.Here,we show that inhibiting the classic microtubule deacetylase histone deacetylase 6 with an histone deacetylase 6 shRNA or thehistone deacetylase 6 inhibitor valproic acid promoted lysosomal reacidification by modulating V-ATPase assembly in Alzheimer's disease.Fu rthermore,we found that treatment with valproic acid markedly enhanced autophagy.promoted clearance of amyloid-βaggregates,and ameliorated cognitive deficits in a mouse model of Alzheimer's disease.Our findings demonstrate a previously unknown neuroprotective mechanism in Alzheimer's disease,in which histone deacetylase 6 inhibition by valproic acid increases V-ATPase assembly and lysosomal acidification.展开更多
The presence of endogenous neural stem/progenitor cells in the adult mammalian brain suggests that the central nervous system can be repaired and regenerated after injury.However,whether it is possible to stimulate ne...The presence of endogenous neural stem/progenitor cells in the adult mammalian brain suggests that the central nervous system can be repaired and regenerated after injury.However,whether it is possible to stimulate neurogenesis and reconstruct cortical layers II to VI in non-neurogenic regions,such as the cortex,remains unknown.In this study,we implanted a hyaluronic acid collagen gel loaded with basic fibroblast growth factor into the motor cortex immediately following traumatic injury.Our findings reveal that this gel effectively stimulated the proliferation and migration of endogenous neural stem/progenitor cells,as well as their differentiation into mature and functionally integrated neurons.Importantly,these new neurons reconstructed the architecture of cortical layers II to VI,integrated into the existing neural circuitry,and ultimately led to improved brain function.These findings offer novel insight into potential clinical treatments for traumatic cerebral cortex injuries.展开更多
L-malic acid(L-MA)is an important intermediate in the tricarboxylic acid cycle and a crucial bulk chemical with various applications in the food,pharmaceutical,and chemical industries.With the rapid advancements in me...L-malic acid(L-MA)is an important intermediate in the tricarboxylic acid cycle and a crucial bulk chemical with various applications in the food,pharmaceutical,and chemical industries.With the rapid advancements in metabolic engineering technology and the global commitment toward fostering a green economy and sustainable development,the large-scale production of L-MA is gradually transitioning from conventional petroleum-based approaches to microbial fermentation.This comprehensive review aims to provide a thorough overview of the historical background and recent advancements in the microbial fermentation production of L-MA,encompassing an in-depth introduction to diverse biosynthetic pathways and host strains.Moreover,this review elucidates the challenges encountered in the industrialization of microbial fermentation production of L-MA,offering a summary of potential solutions and prospects for future research directions.The anticipated outcome of this review is to contribute valuable theoretical guidance toward promoting technological innovation in L-MA production.展开更多
The proper recycling of spent lithium-ion batteries(LIBs)can promote the recovery and utilization of valuable resources,while also negative environmental effects resulting from the presence of toxic and hazardous subs...The proper recycling of spent lithium-ion batteries(LIBs)can promote the recovery and utilization of valuable resources,while also negative environmental effects resulting from the presence of toxic and hazardous substances.In this study,a new environmentally friendly hydro-metallurgical process was proposed for leaching lithium(Li),nickel(Ni),cobalt(Co),and manganese(Mn)from spent LIBs using sulfuric acid with citric acid as a reductant.The effects of the concentration of sulfuric acid,the leaching temperature,the leaching time,the solid-liquid ratio,and the reducing agent dosage on the leaching behavior of the above elements were investigated.Key parameters were optimized using response surface methodology(RSM)to maximize the recovery of metals from spent LIBs.The maxim-um recovery efficiencies of Li,Ni,Co,and Mn can reach 99.08%,98.76%,98.33%,and 97.63%.under the optimized conditions(the sulfuric acid concentration was 1.16 mol/L,the citric acid dosage was 15wt%,the solid-liquid ratio was 40 g/L,and the temperature was 83℃ for 120 min),respectively.It was found that in the collaborative leaching process of sulfuric acid and citric acid,the citric acid initially provided strong reducing CO_(2)^(-),and the transition metal ions in the high state underwent a reduction reaction to produce transition metal ions in the low state.Additionally,citric acid can also act as a proton donor and chelate with lower-priced transition metal ions,thus speeding up the dissolution process.展开更多
The stability constants of ML binary system and MLL′(M=La^3+~Yb^3+, Y^3+ and Ca^2+; L=DLmalic aicd, L′=Lhydroxyproline) ternary system were determined by pHpotentiometric method under the simulating physiological c...The stability constants of ML binary system and MLL′(M=La^3+~Yb^3+, Y^3+ and Ca^2+; L=DLmalic aicd, L′=Lhydroxyproline) ternary system were determined by pHpotentiometric method under the simulating physiological condition(37 ℃, I=015 mol/L NaCl). The complex species MpLqL′rHs(abbr as pqrs) in the sytems were ascertained by program COMPLEX. The results show that there are three species(1101, 1100 and 1200) in ML binary system and one species(1010) in ML′ binary system. In addition to the above four species, a new species, 1112 was found in the MLL′-ternary system, which is the only species of mixed ligands. Rare earth ions form more stable complexes than calcium ion does and the stability differences between their complexes in the ternary system are less than that in the binary system. The distributions of all the species in LaLL′-ternary system vs pH are discussed.展开更多
Traditional hydrometallurgical methods for recovering spent lithium-ion batteries(LIBs)involve acid leaching to simultaneously extract all valuable metals into the leachate.These methods usually are followed by a seri...Traditional hydrometallurgical methods for recovering spent lithium-ion batteries(LIBs)involve acid leaching to simultaneously extract all valuable metals into the leachate.These methods usually are followed by a series of separation steps such as precipitation,extraction,and stripping to separate the individual valuable metals.In this study,we present a process for selectively leaching lithium through the synergistic effect of sulfuric and oxalic acids.Under optimal leaching conditions(leaching time of 1.5 h,leaching temperature of 70°C,liquid-solid ratio of 4 mL/g,oxalic acid ratio of 1.3,and sulfuric acid ratio of 1.3),the lithium leaching efficiency reached89.6%,and the leaching efficiencies of Ni,Co,and Mn were 12.8%,6.5%,and 21.7%.X-ray diffraction(XRD)and inductively coupled plasma optical emission spectrometer(ICP-OES)analyses showed that most of the Ni,Co,and Mn in the raw material remained as solid residue oxides and oxalates.This study offers a new approach to enriching the relevant theory for selectively recovering lithium from spent LIBs.展开更多
BACKGROUND Gastric cancer(GC)is associated with high mortality rates.Bile acids(BAs)reflux is a well-known risk factor for GC,but the specific mechanism remains unclear.During GC development in both humans and animals...BACKGROUND Gastric cancer(GC)is associated with high mortality rates.Bile acids(BAs)reflux is a well-known risk factor for GC,but the specific mechanism remains unclear.During GC development in both humans and animals,BAs serve as signaling molecules that induce metabolic reprogramming.This confers additional cancer phenotypes,including ferroptosis sensitivity.Ferroptosis is a novel mode of cell death characterized by lipid peroxidation that contributes universally to malignant progression.However,it is not fully defined if BAs can influence GC progression by modulating ferroptosis.AIM To reveal the mechanism of BAs regulation in ferroptosis of GC cells.METHODS In this study,we treated GC cells with various stimuli and evaluated the effect of BAs on the sensitivity to ferroptosis.We used gain and loss of function assays to examine the impacts of farnesoid X receptor(FXR)and BTB and CNC homology 1(BACH1)overexpression and knockdown to obtain further insights into the molecular mechanism involved.RESULTS Our data suggested that BAs could reverse erastin-induced ferroptosis in GC cells.This effect correlated with increased glutathione(GSH)concentrations,a reduced GSH to oxidized GSH ratio,and higher GSH peroxidase 4(GPX4)expression levels.Subsequently,we confirmed that BAs exerted these effects by activating FXR,which markedly increased the expression of GSH synthetase and GPX4.Notably,BACH1 was detected as an essential intermediate molecule in the promotion of GSH synthesis by BAs and FXR.Finally,our results suggested that FXR could significantly promote GC cell proliferation,which may be closely related to its anti-ferroptosis effect.CONCLUSION This study revealed for the first time that BAs could inhibit ferroptosis sensitivity through the FXR-BACH1-GSHGPX4 axis in GC cells.This work provided new insights into the mechanism associated with BA-mediated promotion of GC and may help identify potential therapeutic targets for GC patients with BAs reflux.展开更多
The increase in anthropogenic carbon dioxide(CO_(2))emissions has exacerbated the deterioration of the global environment,which should be controlled to achieve carbon neutrality.Central to the core goal of achieving c...The increase in anthropogenic carbon dioxide(CO_(2))emissions has exacerbated the deterioration of the global environment,which should be controlled to achieve carbon neutrality.Central to the core goal of achieving carbon neutrality is the utilization of CO_(2) under economic and sustainable conditions.Recently,the strong need for carbon neutrality has led to a proliferation of studies on the direct conversion of CO_(2) into carboxylic acids,which can effectively alleviate CO_(2) emissions and create high-value chemicals.The purpose of this review is to present the application prospects of carboxylic acids and the basic principles of CO_(2) conversion into carboxylic acids through photo-,electric-,and thermal catalysis.Special attention is focused on the regulation strategy of the activity of abundant catalysts at the molecular level,inspiring the preparation of high-performance catalysts.In addition,theoretical calculations,advanced technologies,and numerous typical examples are introduced to elaborate on the corresponding process and influencing factors of catalytic activity.Finally,challenges and prospects are provided for the future development of this field.It is hoped that this review will contribute to a deeper understanding of the conversion of CO_(2) into carboxylic acids and inspire more innovative breakthroughs.展开更多
Omega-3 polyunsaturated fatty acids(n-3 PUFAs),particularly docosahexaenoic acid(22:6n-3,DHA),play crucial roles in the reproductive health of vertebrates,including humans.Nevertheless,the underlying mechanism related...Omega-3 polyunsaturated fatty acids(n-3 PUFAs),particularly docosahexaenoic acid(22:6n-3,DHA),play crucial roles in the reproductive health of vertebrates,including humans.Nevertheless,the underlying mechanism related to this phenomenon remains largely unknown.In this study,we employed two zebrafish genetic models,i.e.,elovl2^(-/-)mutant as an endogenous DHAdeficient model and fat1(omega-3 desaturase encoding gene)transgenic zebrafish as an endogenous DHA-rich model,to investigate the effects of DHA on oocyte maturation and quality.Results show that the elovl2^(-/-)mutants had much lower fecundity and poorer oocyte quality than the wild-type controls,while the fat1 zebrafish had higher fecundity and better oocyte quality than wildtype controls.DHA deficiency in elovl2^(-/-)embryos led to defects in egg activation,poor microtubule stability,and reduced pregnenolone levels.Further study revealed that DHA promoted pregnenolone synthesis by enhancing transcription of cyp11a1,which encodes the cholesterol side-chain cleavage enzyme,thereby stabilizing microtubule assembly during oogenesis.In turn,the hypothalamic-pituitary-gonadal axis was enhanced by DHA.In conclusion,using two unique genetic models,our findings demonstrate that endogenously synthesized DHA promotes oocyte maturation and quality by promoting pregnenolone production via transcriptional regulation of cyp11a1.展开更多
基金This study was funded by the Key Laboratory of Feed and Livestock and Poultry Products Quality&Safety Control,Ministry of Agriculture(2021202201)Reform and Development Project of BAAFS(XMS202322).
文摘Background A deterioration in the meat quality of broilers has attracted much more attention in recent years.L-malic acid(MA)is evidenced to decrease meat drip loss in broilers,but the underlying molecular mechanisms are still unclear.It’s also not sure whether the outputs obtained under experimental conditions can be obtained in a com-mercial condition.Here,we investigated the effects and mechanisms of dietary MA supplementation on chicken meat drip loss at large-scale rearing.Results Results showed that the growth performance and drip loss were improved by MA supplementation.Meat metabolome revealed that L-2-aminoadipic acid,β-aminoisobutyric acid,eicosapentaenoic acid,and nicotinamide,as well as amino acid metabolism pathways connected to the improvements of meat quality by MA addition.The transcriptome analysis further indicated that the effect of MA on drip loss was also related to the proper immune response,evidenced by the enhanced B cell receptor signaling pathway,NF-κB signaling pathway,TNF signaling pathway,and IL-17 signaling pathway.Conclusions We provided evidence that MA decreased chicken meat drip loss under commercial conditions.Metabolome and transcriptome revealed a comprehensive understanding of the underlying mechanisms.Together,MA could be used as a promising dietary supplement for enhancing the water-holding capacity of chicken meat.
基金the financial support of the Tianjin Municipal Science and Technology Commission(17PTGCCX00190,17PTSYJC00080,17YFCZZC00310,and 16YFXTSF00460)the Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control(ZXKF20180301).
文摘β-Poly(L-malic acid)(PMLA)is a water-soluble biopolymer used in food,medicine and other industries.To date,the biosynthesis pathway of PMLA has not been fully elucidated.In this study,we sequenced the transcriptom e of strain Aureobasidium melanogenum under 20 g/L CaCO_(3) addition.The resulting sequencing reads were assembled and annotated for the differentially expressed genes(DEGs)analysis and novel transcripts identification.The result indicated that with the CaCO_(3) addition,the tricarboxylic cycle(TCA)cycle and glyoxylate pathway were up-regulated,and it also found that a non-ribosomal peptide synthetase(NRPS)like protein was highly expressed.The DEGs analysis showed a high expression level of malate dehydrogenase(MDHC)and phosphoenolpyruvate carboxykinase(PCKA)in the CaCO_(3) group,which indicated a cytosolic malate activity.We speculated that the malate should be transported to or synthesized in the cytoplasm,which was then polymerized to PMLA by the NRPS-like protein,accompanied by the up-regulated TCA cycle providing ATP for the polymerization.Depending on the analysis,we assumed that an NRPS-like protein,the TCA cycle,and the cytosolic malate together are contributing to the PMLA biosynthesis.
文摘Terpolymer of 1, 8-octanediol, adipic acid, and L-malic acid was synthesized via a lipase-catalyzed direct polycondensation. The products were characterized by GPC and 1H NMR. The results indicated that the molecular weight of the prepared polymers decreased with increasing L-malic acid content in the monomer feed ratio, and that change in the L-malic acid content from 0 to 20 mol % did not remarkably influenced on the molecular weight distribution Mw /Ma of the prepared samples. The 1H NMR spectra of the obtained copolymer samples showed that hydroxyl groups of L-malic acid did not take part in the polymerization reaction.
基金ACKNOWLEDGMENTS This work was supported by the Program for New Century Excellent Talents in University, the Science and Technology Foundation for Young Scholars in Sichuan Province, and the National Natural Science Foundation of China (No.10774104).
文摘Urea L-malic acid, a new second order nonlinear optical crystal, was studied using density functional theory (DFT). PBEPBE/6-31+G(d,p) method, the optimal method for comparing the results from the several DFT methods, was chosen to study the molecular structure. Infrared and ultraviolet-visible spectra were obtained and compared with experiments. The ultraviolet-visible spectrum was also analyzed by the molecular orbital population. The geometries, and the infrared and ultraviolet-visible spectra in water were studied using DFT methods in combination with the polarized continuum model to predict the perturbations by the solvent effect.
基金the framework of budget project No.0303-2016-0006 for Boreskov Institute of Catalysis
文摘The catalyst preparation strategy was based on a strict introduction sequence of rhenium and platinum precursors and their strong interaction with carbon support resulted in the formation of 0.5 nm Pt-Re Ox species of atomic dispersion, where platinum is metallic, while monolayer rhenium is partially oxidized(Re2+). The reaction kinetics was studied taking into account the process of L-malic acid association leading to the formation of inactive cyclic oligomeric species. High TOFs(ca. 50 h-1), selectivities(ca. 99%)and stability of Pt-Re Ox/C catalysts in aqueous-phase hydrogenation of L-malic acid, which are close to those of the homogeneous pincer type complexes, were revealed at mild conditions(T = 90–130 ℃). Taking into account that(i) hydrogenation reaction occurred 2–3 orders of magnitude faster than its racemization and(ii) association of L-malic acid dominates at low temperatures and in a concentrated solution,special reaction conditions that allow obtaining chemically and optically(ee 〉 99%) pure(S)-3-hydroxy-γ-butyrolactone and(S)-1,2,4-butanetriol were found. Basing on HAADF-STEM, EDX, XPS, and kinetic studies, the structure of active species and basic reaction pathways are proposed.
文摘The effect of some phenolic compounds recurrent in wines on technological features of Oenococcus oeni was studied in order to individuate those strains to be utilized as starter in the deacidification of aged red wines. For this purpose, the growth and the L-malic acid metabolism of 100O. oeni strains, previously isolated from different wines, was assayed in a synthetic medium added with ethanol, malic acid and phenol carboxylic (gallic, caffeic, p-coumaric and ferulic) acids or flavonoids (catechin and quercetin) at different concentrations. Results evidenced a different sensitivity of strains to each assayed compound. All the compounds restrained or stimulated the growth of 57 and 11 strains respectively, while no effect was detected on 6 strains. The remaining 26 strains showed a different behaviour: all were restrained by ferulic acid and stimulated by gallic acid and catechin. As for caffeic acid, 17 out of 26 strains were restrained, while 9 strains were stimulated. The main result obtained in this study was the establishment of a relationship between the effect of phenolic compounds on the O. oeni growth and the behaviour of the malolactic fermentation. This study may enrich the selection criteria of strains for the deacidification of aged red wines.
基金supported by a grant from the French Society of Sleep Research and Medicine(to LS)The China Scholarship Council(to HL)The CNRS,INSERM,Claude Bernard University Lyon1(to LS)。
文摘The sleep-wake cycle stands as an integrative process essential for sustaining optimal brain function and,either directly or indirectly,overall body health,encompassing metabolic and cardiovascular well-being.Given the heightened metabolic activity of the brain,there exists a considerable demand for nutrients in comparison to other organs.Among these,the branched-chain amino acids,comprising leucine,isoleucine,and valine,display distinctive significance,from their contribution to protein structure to their involvement in overall metabolism,especially in cerebral processes.Among the first amino acids that are released into circulation post-food intake,branched-chain amino acids assume a pivotal role in the regulation of protein synthesis,modulating insulin secretion and the amino acid sensing pathway of target of rapamycin.Branched-chain amino acids are key players in influencing the brain's uptake of monoamine precursors,competing for a shared transporter.Beyond their involvement in protein synthesis,these amino acids contribute to the metabolic cycles ofγ-aminobutyric acid and glutamate,as well as energy metabolism.Notably,they impact GABAergic neurons and the excitation/inhibition balance.The rhythmicity of branchedchain amino acids in plasma concentrations,observed over a 24-hour cycle and conserved in rodent models,is under circadian clock control.The mechanisms underlying those rhythms and the physiological consequences of their disruption are not fully understood.Disturbed sleep,obesity,diabetes,and cardiovascular diseases can elevate branched-chain amino acid concentrations or modify their oscillatory dynamics.The mechanisms driving these effects are currently the focal point of ongoing research efforts,since normalizing branched-chain amino acid levels has the ability to alleviate the severity of these pathologies.In this context,the Drosophila model,though underutilized,holds promise in shedding new light on these mechanisms.Initial findings indicate its potential to introduce novel concepts,particularly in elucidating the intricate connections between the circadian clock,sleep/wake,and metabolism.Consequently,the use and transport of branched-chain amino acids emerge as critical components and orchestrators in the web of interactions across multiple organs throughout the sleep/wake cycle.They could represent one of the so far elusive mechanisms connecting sleep patterns to metabolic and cardiovascular health,paving the way for potential therapeutic interventions.
基金supported by the National Natural Science Foundation of China,Nos.32371070 (to JT),31761163005 (to JT),32100824 (to QX)the Shenzhen Science and Technology Program,Nos.RCBS20210609104606024 (to QX),JCY20210324101813035 (to DL)+4 种基金the Guangdong Provincial Key S&T Program,No.2018B030336001 (to JT)the Key Basic Research Program of Shenzhen Science and Technology Innovation Commission,Nos.JCYJ20200109115405930 (to JT),JCYJ20220818101615033 (to DL),JCYJ20210324115811031 (to QX),JCYJ20200109150717745 (to QX)Shenzhen Key Laboratory of Neuroimmunomodulation for Neurological Diseases,No.ZDSYS20220304163558001 (to JT)Guangdong Provincial Key Laboratory of Brain Connectome and Behavior,No.2023B1212060055 (to JT)the China Postdoctoral Science Foundation,No.2021M693298 (to QX)。
文摘The conventional perception of astrocytes as mere supportive cells within the brain has recently been called into question by empirical evidence, which has revealed their active involvement in regulating brain function and encoding behaviors associated with emotions.Specifically, astrocytes in the basolateral amygdala have been found to play a role in the modulation of anxiety-like behaviors triggered by chronic stress. Nevertheless, the precise molecular mechanisms by which basolateral amygdala astrocytes regulate chronic stress–induced anxiety-like behaviors remain to be fully elucidated. In this study, we found that in a mouse model of anxiety triggered by unpredictable chronic mild stress, the expression of excitatory amino acid transporter 2 was upregulated in the basolateral amygdala. Interestingly, our findings indicate that the targeted knockdown of excitatory amino acid transporter 2 specifically within the basolateral amygdala astrocytes was able to rescue the anxiety-like behavior in mice subjected to stress. Furthermore, we found that the overexpression of excitatory amino acid transporter 2 in the basolateral amygdala, whether achieved through intracranial administration of excitatory amino acid transporter 2agonists or through injection of excitatory amino acid transporter 2-overexpressing viruses with GfaABC1D promoters, evoked anxiety-like behavior in mice. Our single-nucleus RNA sequencing analysis further confirmed that chronic stress induced an upregulation of excitatory amino acid transporter 2 specifically in astrocytes in the basolateral amygdala. Moreover, through in vivo calcium signal recordings, we found that the frequency of calcium activity in the basolateral amygdala of mice subjected to chronic stress was higher compared with normal mice.After knocking down the expression of excitatory amino acid transporter 2 in the basolateral amygdala, the frequency of calcium activity was not significantly increased, and anxiety-like behavior was obviously mitigated. Additionally, administration of an excitatory amino acid transporter 2 inhibitor in the basolateral amygdala yielded a notable reduction in anxiety level among mice subjected to stress. These results suggest that basolateral amygdala astrocytic excitatory amino acid transporter 2 plays a role in in the regulation of unpredictable chronic mild stress-induced anxiety-like behavior by impacting the activity of local glutamatergic neurons, and targeting excitatory amino acid transporter 2 in the basolateral amygdala holds therapeutic promise for addressing anxiety disorders.
基金supported by MICIU(grant number PID2021-128133NB-100/AEI/FEDER10.13039/501100011033 to JMHG)by the National Institutes of Health(grant number R01 NS083858 to SAK)+1 种基金the Intramural Grants Program IGPP00057(to SAK)VIC enjoys a FPU contract from the Comunidad de Madrid(PIPF-2022/SAL-GL-25948)。
文摘The involvement of the excitatory amino acids glutamate and aspartate in ce rebral ischemia and excitotoxicity is well-documented.Nevertheless,the role of non-excitatory amino acids in brain damage following a stroke or brain trauma remains largely understudied.The release of amino acids by necrotic cells in the ischemic core may contribute to the expansion of the penumbra.Our findings indicated that the reversible loss of field excitato ry postsynaptic potentials caused by transient hypoxia became irreversible when exposed to a mixture of just four non-excitatory amino acids(L-alanine,glycine,L-glutamine,and L-serine)at their plasma concentrations.These amino acids induce swelling in the somas of neurons and astrocytes during hypoxia,along with permanent dendritic damage mediated by N-methyl-D-aspartate receptors.Blocking N-methyl-D-aspartate receptors prevented neuronal damage in the presence of these amino acids during hypoxia.It is likely that astroglial swelling caused by the accumulation of these amino acids via the alanine-serine-cysteine transporter 2 exchanger and system N transporters activates volume-regulated anion channels,leading to the release of excitotoxins and subsequent neuronal damage through N-methyl-D-aspartate receptor activation.Thus,previously unrecognized mechanisms involving non-excitatory amino acids may contribute to the progression and expansion of brain injury in neurological emergencies such as stroke and traumatic brain injury.Understanding these pathways co uld highlight new therapeutic targets to mitigate brain injury.
基金supported by funding from Parkinson Canadafunded by a scholarship from Parkinson Canadaa scholarship from Fonds d’Enseignement et de Recherche (FER) (Faculty of Pharmacy, Université Laval)
文摘There is a need to develop interventions to slow or reverse the degeneration of dopamine neurons in Parkinson’s disease after diagnosis.Given that preclinical and clinical studies suggest benefits of dietary n-3 polyunsaturated fatty acids,such as docosahexaenoic acid,and exercise in Parkinson’s disease,we investigated whether both could synergistically interact to induce recovery of the dopaminergic pathway.First,mice received a unilateral stereotactic injection of 6-hydroxydopamine into the striatum to establish an animal model of nigrostriatal denervation.Four weeks after lesion,animals were fed a docosahexaenoic acid-enriched or a control diet for the next 8 weeks.During this period,the animals had access to a running wheel,which they could use or not.Docosahexaenoic acid treatment,voluntary exercise,or the combination of both had no effect on(i)distance traveled in the open field test,(ii)the percentage of contraversive rotations in the apomorphine-induction test or(iii)the number of tyrosine-hydroxylase-positive cells in the substantia nigra pars compacta.However,the docosahexaenoic acid diet increased the number of tyrosine-hydroxylase-positive terminals and induced a rise in dopamine concentrations in the lesioned striatum.Compared to docosahexaenoic acid treatment or exercise alone,the combination of docosahexaenoic acid and exercise(i)improved forelimb balance in the stepping test,(ii)decreased the striatal DOPAC/dopamine ratio and(iii)led to increased dopamine transporter levels in the lesioned striatum.The present results suggest that the combination of exercise and docosahexaenoic acid may act synergistically in the striatum of mice with a unilateral lesion of the dopaminergic system and provide support for clinical trials combining nutrition and physical exercise in the treatment of Parkinson’s disease.
基金supported by the Natural Science Foundation of Jiangsu Province of China,No.BK20211348(to SHQ)Xuzhou Basic Research Program,No.KC21030(to LYH)+1 种基金Leadership Program of Xuzhou Medical University,No.JBGS202203(to SHQ)Research Grant Council GRF of Hong Kong Special Administrative Region of China,No.17105220(to JGS)。
文摘It has been shown clinically that continuous removal of ischemia/reperfusion-induced reactive oxygen species is not conducive to the recovery of late stroke.Indeed,previous studies have shown that excessive increases in hypochlorous acid after stroke can cause severe damage to brain tissue.Our previous studies have found that a small amount of hypochlorous acid still exists in the later stage of stroke,but its specific role and mechanism are currently unclear.To simulate stroke in vivo,a middle cerebral artery occlusion rat model was established,with an oxygen-glucose deprivation/reoxygenation model established in vitro to mimic stroke.We found that in the early stage(within 24 hours)of ischemic stroke,neutrophils produced a large amount of hypochlorous acid,while in the recovery phase(10 days after stroke),microglia were activated and produced a small amount of hypochlorous acid.Further,in acute stroke in rats,hypochlorous acid production was prevented using a hypochlorous acid scavenger,taurine,or myeloperoxidase inhibitor,4-aminobenzoic acid hydrazide.Our results showed that high levels of hypochlorous acid(200μM)induced neuronal apoptosis after oxygen/glucose deprivation/reoxygenation.However,in the recovery phase of the middle cerebral artery occlusion model,a moderate level of hypochlorous acid promoted the proliferation and differentiation of neural stem cells into neurons and astrocytes.This suggests that hypochlorous acid plays different roles at different phases of cerebral ischemia/reperfusion injury.Lower levels of hypochlorous acid(5 and 100μM)promoted nuclear translocation ofβ-catenin.By transfection of single-site mutation plasmids,we found that hypochlorous acid induced chlorination of theβ-catenin tyrosine 30 residue,which promoted nuclear translocation.Altogether,our study indicates that maintaining low levels of hypochlorous acid plays a key role in the recovery of neurological function.
基金supported by the National Natural Science Foundation of China,No.82201582(to QT)Scientific and Technological Research Program of Chongqing Municipal Education Commission,No.KJQN202200457(to QT)+3 种基金General Project of Changqing Natural Science Foundation,No.cstc2021jcyjmsxmX0442(to ZL)CQMU Program for Youth Innovation in Future Medicine,No.W0044(to ZD and GH)Direct Research Project for PhD of Chongqing,No.CSTB2022BSXM-JCX0051(to ZL)the Project of the Top-Notch Talent Cultivation Program For the Graduate Students of Chongqing Medical University,No.BJRC202310(to CG)。
文摘Recent studies have suggested that abnormal acidification of lysosomes induces autophagic accumulation of amyloid-βin neurons,which is a key step in senile plaque formation.Therefore,resto ring normal lysosomal function and rebalancing lysosomal acidification in neurons in the brain may be a new treatment strategy for Alzheimer's disease.Microtubule acetylation/deacetylation plays a central role in lysosomal acidification.Here,we show that inhibiting the classic microtubule deacetylase histone deacetylase 6 with an histone deacetylase 6 shRNA or thehistone deacetylase 6 inhibitor valproic acid promoted lysosomal reacidification by modulating V-ATPase assembly in Alzheimer's disease.Fu rthermore,we found that treatment with valproic acid markedly enhanced autophagy.promoted clearance of amyloid-βaggregates,and ameliorated cognitive deficits in a mouse model of Alzheimer's disease.Our findings demonstrate a previously unknown neuroprotective mechanism in Alzheimer's disease,in which histone deacetylase 6 inhibition by valproic acid increases V-ATPase assembly and lysosomal acidification.
基金supported by the National Natural Science Foundation of China,Nos.82272171(to ZY),82271403(to XL),81941011(to XL),31971279(to ZY),31730030(to XL)the Natural Science Foundation of Beijing,No.7222004(to HD).
文摘The presence of endogenous neural stem/progenitor cells in the adult mammalian brain suggests that the central nervous system can be repaired and regenerated after injury.However,whether it is possible to stimulate neurogenesis and reconstruct cortical layers II to VI in non-neurogenic regions,such as the cortex,remains unknown.In this study,we implanted a hyaluronic acid collagen gel loaded with basic fibroblast growth factor into the motor cortex immediately following traumatic injury.Our findings reveal that this gel effectively stimulated the proliferation and migration of endogenous neural stem/progenitor cells,as well as their differentiation into mature and functionally integrated neurons.Importantly,these new neurons reconstructed the architecture of cortical layers II to VI,integrated into the existing neural circuitry,and ultimately led to improved brain function.These findings offer novel insight into potential clinical treatments for traumatic cerebral cortex injuries.
基金financially supported by the National Key R&D Program of China(2019YFA0904900)the National Science Fund for Distinguished Young Scholars(No.32225031)the General Program of National Nature Science Foundation of China(No.32271482).
文摘L-malic acid(L-MA)is an important intermediate in the tricarboxylic acid cycle and a crucial bulk chemical with various applications in the food,pharmaceutical,and chemical industries.With the rapid advancements in metabolic engineering technology and the global commitment toward fostering a green economy and sustainable development,the large-scale production of L-MA is gradually transitioning from conventional petroleum-based approaches to microbial fermentation.This comprehensive review aims to provide a thorough overview of the historical background and recent advancements in the microbial fermentation production of L-MA,encompassing an in-depth introduction to diverse biosynthetic pathways and host strains.Moreover,this review elucidates the challenges encountered in the industrialization of microbial fermentation production of L-MA,offering a summary of potential solutions and prospects for future research directions.The anticipated outcome of this review is to contribute valuable theoretical guidance toward promoting technological innovation in L-MA production.
基金supported by Key R&D Program of Zhejiang Province,China (No.2022C03061)the National Natural Science Foundation of China (No.52074204)the Fundamental Research Funds for the Central Universities (No.2023-vb-032).
文摘The proper recycling of spent lithium-ion batteries(LIBs)can promote the recovery and utilization of valuable resources,while also negative environmental effects resulting from the presence of toxic and hazardous substances.In this study,a new environmentally friendly hydro-metallurgical process was proposed for leaching lithium(Li),nickel(Ni),cobalt(Co),and manganese(Mn)from spent LIBs using sulfuric acid with citric acid as a reductant.The effects of the concentration of sulfuric acid,the leaching temperature,the leaching time,the solid-liquid ratio,and the reducing agent dosage on the leaching behavior of the above elements were investigated.Key parameters were optimized using response surface methodology(RSM)to maximize the recovery of metals from spent LIBs.The maxim-um recovery efficiencies of Li,Ni,Co,and Mn can reach 99.08%,98.76%,98.33%,and 97.63%.under the optimized conditions(the sulfuric acid concentration was 1.16 mol/L,the citric acid dosage was 15wt%,the solid-liquid ratio was 40 g/L,and the temperature was 83℃ for 120 min),respectively.It was found that in the collaborative leaching process of sulfuric acid and citric acid,the citric acid initially provided strong reducing CO_(2)^(-),and the transition metal ions in the high state underwent a reduction reaction to produce transition metal ions in the low state.Additionally,citric acid can also act as a proton donor and chelate with lower-priced transition metal ions,thus speeding up the dissolution process.
文摘The stability constants of ML binary system and MLL′(M=La^3+~Yb^3+, Y^3+ and Ca^2+; L=DLmalic aicd, L′=Lhydroxyproline) ternary system were determined by pHpotentiometric method under the simulating physiological condition(37 ℃, I=015 mol/L NaCl). The complex species MpLqL′rHs(abbr as pqrs) in the sytems were ascertained by program COMPLEX. The results show that there are three species(1101, 1100 and 1200) in ML binary system and one species(1010) in ML′ binary system. In addition to the above four species, a new species, 1112 was found in the MLL′-ternary system, which is the only species of mixed ligands. Rare earth ions form more stable complexes than calcium ion does and the stability differences between their complexes in the ternary system are less than that in the binary system. The distributions of all the species in LaLL′-ternary system vs pH are discussed.
基金financially supported by the Young Scientists Fund of the National Natural Science Foundation of China(Nos.52104395 and 52304365)the Science and Technology Planning Project of Guangzhou,China(Nos.202102021080 and 2024A04J10006)+1 种基金the National Key R&D Program of China(No.2021YFC2902605)the Natural Science Foundation of Guangdong Province,China(Nos.2023A1515030145 and 2023A1515011847)。
文摘Traditional hydrometallurgical methods for recovering spent lithium-ion batteries(LIBs)involve acid leaching to simultaneously extract all valuable metals into the leachate.These methods usually are followed by a series of separation steps such as precipitation,extraction,and stripping to separate the individual valuable metals.In this study,we present a process for selectively leaching lithium through the synergistic effect of sulfuric and oxalic acids.Under optimal leaching conditions(leaching time of 1.5 h,leaching temperature of 70°C,liquid-solid ratio of 4 mL/g,oxalic acid ratio of 1.3,and sulfuric acid ratio of 1.3),the lithium leaching efficiency reached89.6%,and the leaching efficiencies of Ni,Co,and Mn were 12.8%,6.5%,and 21.7%.X-ray diffraction(XRD)and inductively coupled plasma optical emission spectrometer(ICP-OES)analyses showed that most of the Ni,Co,and Mn in the raw material remained as solid residue oxides and oxalates.This study offers a new approach to enriching the relevant theory for selectively recovering lithium from spent LIBs.
基金Supported by the Major Basic Research Project of Natural Science Foundation of Shandong Province,No.ZR2020ZD15.
文摘BACKGROUND Gastric cancer(GC)is associated with high mortality rates.Bile acids(BAs)reflux is a well-known risk factor for GC,but the specific mechanism remains unclear.During GC development in both humans and animals,BAs serve as signaling molecules that induce metabolic reprogramming.This confers additional cancer phenotypes,including ferroptosis sensitivity.Ferroptosis is a novel mode of cell death characterized by lipid peroxidation that contributes universally to malignant progression.However,it is not fully defined if BAs can influence GC progression by modulating ferroptosis.AIM To reveal the mechanism of BAs regulation in ferroptosis of GC cells.METHODS In this study,we treated GC cells with various stimuli and evaluated the effect of BAs on the sensitivity to ferroptosis.We used gain and loss of function assays to examine the impacts of farnesoid X receptor(FXR)and BTB and CNC homology 1(BACH1)overexpression and knockdown to obtain further insights into the molecular mechanism involved.RESULTS Our data suggested that BAs could reverse erastin-induced ferroptosis in GC cells.This effect correlated with increased glutathione(GSH)concentrations,a reduced GSH to oxidized GSH ratio,and higher GSH peroxidase 4(GPX4)expression levels.Subsequently,we confirmed that BAs exerted these effects by activating FXR,which markedly increased the expression of GSH synthetase and GPX4.Notably,BACH1 was detected as an essential intermediate molecule in the promotion of GSH synthesis by BAs and FXR.Finally,our results suggested that FXR could significantly promote GC cell proliferation,which may be closely related to its anti-ferroptosis effect.CONCLUSION This study revealed for the first time that BAs could inhibit ferroptosis sensitivity through the FXR-BACH1-GSHGPX4 axis in GC cells.This work provided new insights into the mechanism associated with BA-mediated promotion of GC and may help identify potential therapeutic targets for GC patients with BAs reflux.
基金financial support from the King Abdullah University of Science and Technology(KAUST).
文摘The increase in anthropogenic carbon dioxide(CO_(2))emissions has exacerbated the deterioration of the global environment,which should be controlled to achieve carbon neutrality.Central to the core goal of achieving carbon neutrality is the utilization of CO_(2) under economic and sustainable conditions.Recently,the strong need for carbon neutrality has led to a proliferation of studies on the direct conversion of CO_(2) into carboxylic acids,which can effectively alleviate CO_(2) emissions and create high-value chemicals.The purpose of this review is to present the application prospects of carboxylic acids and the basic principles of CO_(2) conversion into carboxylic acids through photo-,electric-,and thermal catalysis.Special attention is focused on the regulation strategy of the activity of abundant catalysts at the molecular level,inspiring the preparation of high-performance catalysts.In addition,theoretical calculations,advanced technologies,and numerous typical examples are introduced to elaborate on the corresponding process and influencing factors of catalytic activity.Finally,challenges and prospects are provided for the future development of this field.It is hoped that this review will contribute to a deeper understanding of the conversion of CO_(2) into carboxylic acids and inspire more innovative breakthroughs.
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences(Precision Seed Design and Breeding,XDA24010108)National Natural Science Foundation of China(31972780&31721005)+1 种基金National Key R&D Program of China(2018YFA0801000)State Key Laboratory of Freshwater Ecology and Biotechnology(2019FBZ05)。
文摘Omega-3 polyunsaturated fatty acids(n-3 PUFAs),particularly docosahexaenoic acid(22:6n-3,DHA),play crucial roles in the reproductive health of vertebrates,including humans.Nevertheless,the underlying mechanism related to this phenomenon remains largely unknown.In this study,we employed two zebrafish genetic models,i.e.,elovl2^(-/-)mutant as an endogenous DHAdeficient model and fat1(omega-3 desaturase encoding gene)transgenic zebrafish as an endogenous DHA-rich model,to investigate the effects of DHA on oocyte maturation and quality.Results show that the elovl2^(-/-)mutants had much lower fecundity and poorer oocyte quality than the wild-type controls,while the fat1 zebrafish had higher fecundity and better oocyte quality than wildtype controls.DHA deficiency in elovl2^(-/-)embryos led to defects in egg activation,poor microtubule stability,and reduced pregnenolone levels.Further study revealed that DHA promoted pregnenolone synthesis by enhancing transcription of cyp11a1,which encodes the cholesterol side-chain cleavage enzyme,thereby stabilizing microtubule assembly during oogenesis.In turn,the hypothalamic-pituitary-gonadal axis was enhanced by DHA.In conclusion,using two unique genetic models,our findings demonstrate that endogenously synthesized DHA promotes oocyte maturation and quality by promoting pregnenolone production via transcriptional regulation of cyp11a1.