Testing of large-sized specimens is becoming increasingly important in deep underground rock mechanics and engineering.In traditional mechanical loading,stresses on large-sized specimens are achieved by large host fra...Testing of large-sized specimens is becoming increasingly important in deep underground rock mechanics and engineering.In traditional mechanical loading,stresses on large-sized specimens are achieved by large host frames and hydraulic pumps,which could lead to great investment.Low-cost testing machines clearly always have great appeal.In this study,a new approach is proposed using thermal expansion stress to load rock specimens,which may be particularly suitable for tests of deep hot dry rock with high temperatures.This is a different technical route from traditional mechanical loading through hydraulic pressure.For the rock mechanics test system of hot dry rock that already has an investment in heating systems,this technology may reduce the cost of the loading subsystem by fully utilizing the temperature changes.This paper presents the basic principle and a typical design of this technical solution.Preliminary feasibility analysis is then conducted based on numerical simulations.Although some technical details still need to be resolved,the feasibility of this loading approach has been preliminarily confirmed.展开更多
Based on the analysis of the basic characteristics of medium-and large-sized marine gas fields in Sichuan Basin, combined with the division of major reservoir forming geological units in the marine craton stage and th...Based on the analysis of the basic characteristics of medium-and large-sized marine gas fields in Sichuan Basin, combined with the division of major reservoir forming geological units in the marine craton stage and their control on key hydrocarbon accumulation factors, the distribution law of medium-and large-sized marine carbonate gas fields in the basin was examined and the exploration direction was pointed out. Through the analysis of the periodic stretching-uplifting background, it is concluded that five large scale paleo-rifts, three large scale paleo-uplifts, five large scale paleo erosion surfaces were formed in the marine craton stage of Sichuan Basin, and these geological units control the key reservoir forming factors of medium and large sized gas fields:(1) Large-scale paleo-rifts control the distribution of high-quality hydrocarbon generation centers.(2) The margin of large-scale paleo-rifts, high position of paleo-uplifts and paleo erosion surfaces control the distribution of high-quality reservoirs.(3) Large-scale paleo-rifts, paleo-uplifts, paleo erosion surfaces and present tectonic setting jointly control the formation of many types of large and medium-sized traps.(4) Natural gas accumulation is controlled by the inheritance evolution of traps in large geological units. Based on the comparative analysis of the distribution characteristics of medium-and large-sized gas fields and large geological units, it is proposed that the superimposition relationship between single or multiple geological units and the present structure controls the distribution of medium-and large-sized gas fields, and the "three paleo" superimposed area is the most advantageous. According to the above rules, the main exploration fields and directions of medium-and large-sized marine carbonate gas fields in Sichuan Basin include periphery of Deyang-Anyue paleo-rift, eastern margin of Longmenshan paleo-rift, margins of Kaijiang-Liangping oceanic trough and Chengkou-western Hubei oceanic trough, the high part of the subaqueous paleo-uplifts around Central Sichuan, paleo erosion surfaces of the top boundary of Maokou Formation in eastern and southern Sichuan Basin, paleo erosion surfaces of the top boundary of the Leikoupo Formation in central and western Sichuan Basin.展开更多
When heavy machines and large scaled receiver system of communication equipment are manufactured, it always needs to produce large-sized steel castings, aluminum castings and etc. Some defects of hot cracking by therm...When heavy machines and large scaled receiver system of communication equipment are manufactured, it always needs to produce large-sized steel castings, aluminum castings and etc. Some defects of hot cracking by thermal stress often appear during solidification process as these castings are produced, which results in failure of castings. Therefore predicting the effects of technological parameters for production of castings on the thermal stress during solidification process becomes an important means. In this paper, the mathematical models have been established and numerical calculation of temperature fields by using finite difference method (FDM) and then thermal stress fields by using finite element method (FEM) during solidification process of castings have been carried out. The technological parameters of production have been optimized by the results of calculation and the defects of hot cracking have been eliminated. Modeling and simulation of 3D thermal stress during solidification processes of large-sized castings provided a scientific basis, which promoted further development of advanced manufacturing technique.展开更多
Recently, research strives to apply Ultra High Performance Concrete (UHPC) to large-sized structures owing to its remarkable mechanical performance and durability compared to normal concrete. The Korea Institute of Co...Recently, research strives to apply Ultra High Performance Concrete (UHPC) to large-sized structures owing to its remarkable mechanical performance and durability compared to normal concrete. The Korea Institute of Construction Technology proposed SuperBridge800, an edge girder type UHPC cable stayed bridge with central span of 800 m, through its detailed design. The bridge is designed to be erected through the connection of precast UHPC segments. The precast UHPC segment is monolithically composed of one ribbed deck slab and edge girders at each side. The connection between the precast segments is achieved by steel bars at the edge girders and by UHPC cast-in-place wet joint at the slab. Despite of the outstanding mechanical performance of UHPC, the fabrication of large-sized members is a difficult task since UHPC hardens faster than normal concrete and requires a special curing process. Therefore, the constructability of large-sized UHPC segment should be secured to achieve SuperBridge800. Besides, the performance of the connection between segments should also be guaranteed, especially in terms of the fatigue performance of the UHPC cast-in-place joint, which constitutes a weak point. To that goal, two half-scaled UHPC segments are manufactured and the constructability is examined by fabricating a large-sized UHPC member connected with respect to the design conditions. This study conducts rolling fatigue test on the so-fabricated large-sized UHPC member. Rolling fatigue test is carried out up to 2 million cycles considering actual vehicle load at each center and quarter points of the member. The test results confirm that the service limit state is satisfied.展开更多
Large-sized aluminum tube has big section effect, aspect ratio and thin thickness, so that the extrusion technology is complex and the large specific pressure is generated in extrusion cavity. The temperature variatio...Large-sized aluminum tube has big section effect, aspect ratio and thin thickness, so that the extrusion technology is complex and the large specific pressure is generated in extrusion cavity. The temperature variation and velocity effect is difficult to control. The extrusion forming of large-sized aluminum tube was researched and simulated. Three-dimensional thermo-mechanical coupled finite element model was constructed and appropriate boundary conditions were given out. The results show that large-sized aluminum tube can be formed by isothermal extrusion through controlling the extrusion velocity and founding the relationship between extrusion velocity and extrusion temperature.展开更多
Simulation technique is an efficient approach to realize the planning and scheduling of manufacturing process of products. An appropriate and efficient manufacturing process model is the basis and key of manufacturing...Simulation technique is an efficient approach to realize the planning and scheduling of manufacturing process of products. An appropriate and efficient manufacturing process model is the basis and key of manufacturing process simulation. By analyzing the features of large-sized and complex products, a method of manufacturing process modeling based on activity network is presented and a mapping algorithm of translating BOM/BOP into the manufacturing process model is designed in detail.展开更多
Counter-roller spinning (CRS), where the mandrel is replaced by rollers, is an effective means of manufacturing large-sized, thin-walled, cylindrical parts with more than 2500 mm diameter. CRS is very complex because ...Counter-roller spinning (CRS), where the mandrel is replaced by rollers, is an effective means of manufacturing large-sized, thin-walled, cylindrical parts with more than 2500 mm diameter. CRS is very complex because of multi-axis rotation, multi-local loading along the circumference, and radial-axial compound deformation. Analytical or experimental methods cannot fully understand CRS. Meanwhile, numerical simulation is an adequate approach to investigate CRS with comprehensive understanding and a low cost. Thus, a finite element (FE) model of CRS was developed with the FORGE code via meshing technology, material modeling, determining the friction condition, and so on. The local fine mesh moving with the roller is one of highlights of the model. The developed 3D-FE model was validated through a CRS experiment by using a tubular blank with a 720 mm outer diameter. The developed 3D-FE model of CRS can provide a basis for parameter optimization, process control, die design, and so on. The data on force and energy predicted by the 3D-FE model can offer reasonable suggestions for determining the main mechanical parameters of CRS machines and selecting the motors. With the predicted data, an all-electric servo-drive system/machine with distributed power was designed in this work for CRS with four pairs of rollers to manufacture a large-sized, thinwalled, cylindrical part with 6000 mm diameter.展开更多
Physiological repair of large-sized bone defects is great challenging in clinic due to a lack of ideal grafts suitable for bone regeneration.Decalcified bone matrix(DBM)is considered as an ideal bone regeneration scaf...Physiological repair of large-sized bone defects is great challenging in clinic due to a lack of ideal grafts suitable for bone regeneration.Decalcified bone matrix(DBM)is considered as an ideal bone regeneration scaffold,but low cell seeding efficiency and a poor osteoinductive microenvironment greatly restrict its application in large-sized bone regeneration.To address these problems,we proposed a novel strategy of bone regeneration units(BRUs)based on microgels produced by photo-crosslinkable and microfluidic techniques,containing both the osteogenic ingredient DBM and vascular endothelial growth factor(VEGF)for accurate biomimic of an osteoinductive microenvironment.The physicochemical properties of microgels could be precisely controlled and the microgels effectively promoted adhesion,proliferation,and osteogenic differentiation of bone marrow mesenchymal stem cells(BMSCs)in vitro.BRUs were successfully constructed by seeding BMSCs onto microgels,which achieved reliable bone regeneration in vivo.Finally,by integrating the advantages of BRUs in bone regeneration and the advantages of DBM scaffolds in 3D morphology and mechanical strength,a BRU-loaded DBM framework successfully regenerated bone tissue with the desired 3D morphology and effectively repaired a large-sized bone defect of rabbit tibia.The current study developed an ideal bone biomimetic microcarrier and provided a novel strategy for bone regeneration and large-sized bone defect repair.展开更多
Birds in nature exhibit excellent long-distance flight capabilities through formation flight,which could reduce energy consumption and improve flight efficiency.Inspired by the biological habits of birds,this paper pr...Birds in nature exhibit excellent long-distance flight capabilities through formation flight,which could reduce energy consumption and improve flight efficiency.Inspired by the biological habits of birds,this paper proposes an autonomous formation flight control method for Large-sized Flapping-Wing Flying Robots(LFWFRs),which can enhance their search range and flight efficiency.First,the kinematics model for LFWFRs is established.Then,an autonomous flight controller based on this model is designed,which has multiple flight control modes,including attitude stabilization,course keeping,hovering,and so on.Second,a formation flight control method is proposed based on the leader–follower strategy and periodic characteristics of flapping-wing flight.The up and down fluctuation of the fuselage of each LFWFR during wing flapping is considered in the control algorithm to keep the relative distance,which overcomes the trajectory divergence caused by sensor delay and fuselage fluctuation.Third,typical formation flight modes are realized,including straight formation,circular formation,and switching formation.Finally,the outdoor formation flight experiment is carried out,and the proposed autonomous formation flight control method is verified in real environment.展开更多
Based on the mechanism of local scour around vertical large-sized cylinder due to combined action of wave and current,the sour morphology,scour process and the maximum scour depth around the cylinders are studied expe...Based on the mechanism of local scour around vertical large-sized cylinder due to combined action of wave and current,the sour morphology,scour process and the maximum scour depth around the cylinders are studied experimentally.The influence of various ocean environmental parameters on local scour around the cylinder is considered in physical model test.The experimental results indicate that the principal effect factors on the scour in fine-sand seabed are wave height,wavelength,current velocity,ratio of diameter to wavelength and ratio of depth to wavelength when the ratio of cylinder diameter to wavelength is from 0.2 to 0.8.In this paper,dimensional analysis theory is utilized to establish a theoretical equation for forecasting maximum scour depth around large-sized round cylinder base due to the combined action of wave and current.The results computed with the theoretical equation are compared with the experimental results,and found to be in good consistency.The results in this studies can be used to estimate the maximum sour depth around analogous structures.展开更多
Heat energy change during the extrusion of 7075 aluminium alloy large-size tube with piece-wing in a container was analyzed. Extrusion load vs ram displacement diagrams and exit temperature vs ram displacement diagram...Heat energy change during the extrusion of 7075 aluminium alloy large-size tube with piece-wing in a container was analyzed. Extrusion load vs ram displacement diagrams and exit temperature vs ram displacement diagrams at various speeds were obtained by 3D FEM simulation. Results show that the exit temperature becomes higher as the ram speed and displacement increase. For large-size tube with piece-wing, there is certainly a curve of ram speed decreasing with increasing ram displacement, which enables isothermal extrusion to be achieved. Therefore,an attempt was made to divide the working stroke into five different zones. Each of them has a preset speed that decreases from the ram displacement beginning to the ending. And then, new exit temperature vs ram displacement diagram was obtained by 3D FEM simulation for the five different speeds. It is shown that the variation of exit temperature is very small. Through the above research, a basic method for realizing isothermal extrusion of 7075 large-size tube with piece-wing was obtained, that is, the working stroke was divided into several different zones with a decreasing speed during extrusion, each zonest speed was real-time adjusted on the feedback signal of exit temperature by proportional hydraulic valve through closed-loop control. The engineering experiment verification was carried out on 100 MN aluminium extrusion press with oil-driven double action. The experimental results of the exit temperature agrees with the simulation ones. The achievements of this study may serve as a significant guide to the practice of the relevant processes, particularly for isothermal extrusion. The verified method has been used in the design and manufacture of 125 MN aluminium extrusion press with oil-driven double action.展开更多
For an ultra-high-pressure hydraulic transmission system of a large-size hydraulic forging press(LHFP),a 70 MPa two-way proportional cartridge valve has been developed to improve the power weight ratio of the hydrauli...For an ultra-high-pressure hydraulic transmission system of a large-size hydraulic forging press(LHFP),a 70 MPa two-way proportional cartridge valve has been developed to improve the power weight ratio of the hydraulic forging press.In this study,a nominal diameter 25 mm(DN25)cartridge valve is taken as the research object.A longer concentric cylindrical annular gap is set to effectively prevent the ultra-high-pressure oil from flowing to the pilot stage and a seated valve structure is set to form the linear sealing zone in the closing state of the main valve port.Electric-displacement feedback is adopted to realize precise control of the main valve port flow and the features of this valve are investigated.In order to verify the strength and static and dynamic characteristics,the finite element model and a simulation model of the valve proposed above are built.There is a little deformation which does not affect the main valve spool movement,and the main valve port flow meets the design demands.Then,the prototype of DN2570 TPCV is manufactured and a ultra-high-pressure experimental platform is developed.The experimental results show that the DN2570 TPCV designed in this study has the advantage of fast response,high control precision,and low leakage,which can meet the requirements of LHFPs.展开更多
To model the concrete with complex internal structure of concrete with large sized aggregates the effect of internal structure on uniaxial compression behavior are studied.Large-sized recycled aggregates behave differ...To model the concrete with complex internal structure of concrete with large sized aggregates the effect of internal structure on uniaxial compression behavior are studied.Large-sized recycled aggregates behave differently in the concrete matrix.To understand the influence on concrete matrix,a finite element model was developed to model recycled aggregate concrete composed of multiple randomly distributed irregular aggregates and cement mortar.The model was used to calculate the effect of large-size recycled coarse aggregate(LRCA)on the strength of recycled aggregate concrete and simulate the compressive strength of cubes and prisms.The factors such as the strength of new concrete,the strength of old concrete,the defective element content,the shape of LRCA,the incorporation ratio of LRCA and the size of LRCA that can affect the strength of concrete are analyzed in this paper.Results showed that the influence of various factors on concrete strength are in the following desend-ing order:(i)strength of newly poured concrete;(ii)original strength of recycled aggregates;and(iii)defects.It can be seen that the cracking of the phase material elements starts along the bonding zones between gravel and mortar or the new and old mortar,then spreads to mortar and finally to LRCA.The cracking tendency is most significant in LRCA,which means that the fracturing is related to the fracture of the LRCA.After evaluating the variations in strength and quality of the recycled concrete,the influences on concrete strength and quality were studied.The results showed that the proposed concrete model with LRCA was successfully applied to studying the uniaxial compressive behavior of concrete with large-size recycled coarse aggregate.展开更多
To explore the size-dependent responses of zooplankton to submerged macrophyte restoration, we collected macrophyte, zooplankton and water quality samples seasonally from a subtropical shallow lake from 2010 to 2012. ...To explore the size-dependent responses of zooplankton to submerged macrophyte restoration, we collected macrophyte, zooplankton and water quality samples seasonally from a subtropical shallow lake from 2010 to 2012. Special attention was given to changes in rotifers and crustaceans (cladocerans and copepods). The rotifers were grouped into three size classes (〈200 μm, 200μm-400μm, 〉400 μm) to explore their size-related responses to macrophyte restoration. The results showed that during the restoration, the annual mean biomass and macrophyte coverage increased significantly from 0 to 637 g/m2 and 0 to 27%, respectively. In response, the density and biomass of crustaceans and the crustacean-to-rotifer ratio increased significantly, while the rotifer density decreased significantly. Moreover, rotifers showed significant size- dependent responses to macrophyte restoration. Specially, rotifers 〈400 ~tm were significantly suppressed, while those≥400 μm were significantly encouraged. Overall, the population of large-sized zooplankton tended to boom, while that of small rotifers was inhibited during macrophyte restoration. Redundancy analysis (RDA) revealed positive correlations between macrophytes and crustaceans, rotifers and COD or Chl-a, but negative correlations between macrophytes and COD or Chl-a, and between crustaceans and Chl-a. Moreover, the results indicate that increased predation on phytoplankton by large-sized zooplankton might be an important mechanism for macrophyte restoration during development of aquatic ecosystems, and that this mechanism played a very important role in promoting the formation of a clear-water state in subtropical shallow lakes.展开更多
In the context of carbon neutrality,conversion of CO_(2)into CO is an effective way for negative carbon emission.Electrochemical reduction is a novel developed pathway,among which,solid oxide co-electrolysis technolog...In the context of carbon neutrality,conversion of CO_(2)into CO is an effective way for negative carbon emission.Electrochemical reduction is a novel developed pathway,among which,solid oxide co-electrolysis technology is promising for its high efficiency and low electricity demand.Researches concerning the large-size cell and stack of application level are important.This review,targeting at the not yet fully understood reaction mechanism and the most concerning issue of durability,details the reported factors playing important roles in the reaction mechanism and durability of co-electrolysis.It is found that the operating conditions such as inlet mixtures and applied current significantly affect the reaction mechanism of co-electrolysis and the experiments on button cells can not reflect the real reaction mechanism on industrial-size cells.Besides,the durability test of large-size single cells and stacks at high current with high conversion rate and the potential of solid oxide co-electrolysis combing with intermittent renewable energy are also reviewed and demonstrated.Finally,an outlook for future exploration is also offered.展开更多
Due to the fact that the vibration signal of the rotating machine is one-dimensional and the large-scale convolution kernel can obtain a better perception field, on the basis of the classical convolution neural networ...Due to the fact that the vibration signal of the rotating machine is one-dimensional and the large-scale convolution kernel can obtain a better perception field, on the basis of the classical convolution neural network model(LetNet-5), one-dimensional large-kernel convolution neural network(1 DLCNN) is designed. Since the hyper-parameters of 1 DLCNN have a greater impact on network performance, the genetic algorithm(GA) is used to optimize the hyper-parameters, and the method of optimizing the parameters of 1 DLCNN by the genetic algorithm is named GA-1 DLCNN. The experimental results show that the optimal network model based on the GA-1 DLCNN method can achieve 99.9% fault diagnosis accuracy, which is much higher than those of other traditional fault diagnosis methods. In addition, the 1 DLCNN is compared with one-dimencional small-kernel convolution neural network(1 DSCNN) and the classical two-dimensional convolution neural network model. The input sample lengths are set to be 128, 256, 512, 1 024, and 2 048, respectively, and the final diagnostic accuracy results and the visual scatter plot show that the effect of 1 DLCNN is optimal.展开更多
In this work, some important factors such as ceramic shell strength, heat preservation temperature, standing time and withdrawal rate, which influence the formability of directionally solidified large-size blades of h...In this work, some important factors such as ceramic shell strength, heat preservation temperature, standing time and withdrawal rate, which influence the formability of directionally solidified large-size blades of heavy-duty gas turbine with the liquid metal cooling(LMC) process, were studied through the method of microstructure analysis combining. The results show that the ceramic shell with medium strength(the high temperature flexural strength is 8 MPa, the flexural strength after thermal shock resistance is 12 MPa and the residual flexural strength is 20 MPa) can prevent the rupture and runout of the blade. The appropriate temperature(1,520 ℃ for upper region and 1,500 ℃ for lower region) of the heating furnace can eliminate the wide-angle grain boundary, the deviation of grain and the run-out caused by the shell crack. The holding time after pouring(3-5 min) can promote the growth of competitive grains and avoid a great deviation of columnar grains along the crystal orientation <001>, resulting in a straight and uniform grain structure. In addition, to avoid the formation of wrinkles and to ensure a smooth blade surface, the withdrawal rate should be no greater than the growth rate of grain. It is also found that the dendritic space of the blade decreases with the rise of solidification rate, and increases with the enlarging distance between the solidification position and the chill plate.展开更多
In past decades,Ni-based catalytic materials and electrodes have been intensively explored as low-cost hydrogen evolution reaction(HER)and oxygen evolution reaction(OER)catalysts for water splitting.With increasing de...In past decades,Ni-based catalytic materials and electrodes have been intensively explored as low-cost hydrogen evolution reaction(HER)and oxygen evolution reaction(OER)catalysts for water splitting.With increasing demands for Ni worldwide,simplifying the fabrication process,increasing Ni recycling,and reducing waste are tangible sustainability goals.Here,binder-free,heteroatom-free,and recyclable Ni-based bifunctional catalytic electrodes were fabricated via a one-step quick electrodeposition method.Typically,active Ni nanodot(NiND)clusters are electrodeposited on Ni foam(NF)in Ni(NO3)2 acetonitrile solution.After drying in air,NiO/NiND composites are obtained,leading to a binder-free and heteroatom-free NiO/NiNDs@NF catalytic electrode.The electrode shows high efficiency and long-term stability for catalyzing hydrogen and oxygen evolution reactions at low overpotentials(10ηHER= 119 mV and 50ηOER=360 mV)and can promote water catalysis at 1.70 V@ 10mA cm-2.More importantly,the recovery of raw materials(NF and Ni(NO3)2)is quite easy because of the solubility of NiO/NiNDs composites in acid solution for recycling the electrodes.Additionally,a large-sized(S^70 cm2)NiO/NiNDs@NF catalytic electrode with high durability has also been constructed.This method provides a simple and fast technology to construct high-performance,low-cost,and environmentally friendly Ni-based bifunctional electrocatalytic electrodes for water splitting.展开更多
基金National Natural Science Foundation of ChinaGrant/Award Number:41972316+3 种基金Sichuan Science&Technology FoundationGrant/Award Number:2022YFSY0007Joint Funds of the National Natural Science Foundation of ChinaGrant/Award Number:U2344226。
文摘Testing of large-sized specimens is becoming increasingly important in deep underground rock mechanics and engineering.In traditional mechanical loading,stresses on large-sized specimens are achieved by large host frames and hydraulic pumps,which could lead to great investment.Low-cost testing machines clearly always have great appeal.In this study,a new approach is proposed using thermal expansion stress to load rock specimens,which may be particularly suitable for tests of deep hot dry rock with high temperatures.This is a different technical route from traditional mechanical loading through hydraulic pressure.For the rock mechanics test system of hot dry rock that already has an investment in heating systems,this technology may reduce the cost of the loading subsystem by fully utilizing the temperature changes.This paper presents the basic principle and a typical design of this technical solution.Preliminary feasibility analysis is then conducted based on numerical simulations.Although some technical details still need to be resolved,the feasibility of this loading approach has been preliminarily confirmed.
基金Supported by the China National Science and Technology Major Project(2016ZX05007004,2016ZX05004005)
文摘Based on the analysis of the basic characteristics of medium-and large-sized marine gas fields in Sichuan Basin, combined with the division of major reservoir forming geological units in the marine craton stage and their control on key hydrocarbon accumulation factors, the distribution law of medium-and large-sized marine carbonate gas fields in the basin was examined and the exploration direction was pointed out. Through the analysis of the periodic stretching-uplifting background, it is concluded that five large scale paleo-rifts, three large scale paleo-uplifts, five large scale paleo erosion surfaces were formed in the marine craton stage of Sichuan Basin, and these geological units control the key reservoir forming factors of medium and large sized gas fields:(1) Large-scale paleo-rifts control the distribution of high-quality hydrocarbon generation centers.(2) The margin of large-scale paleo-rifts, high position of paleo-uplifts and paleo erosion surfaces control the distribution of high-quality reservoirs.(3) Large-scale paleo-rifts, paleo-uplifts, paleo erosion surfaces and present tectonic setting jointly control the formation of many types of large and medium-sized traps.(4) Natural gas accumulation is controlled by the inheritance evolution of traps in large geological units. Based on the comparative analysis of the distribution characteristics of medium-and large-sized gas fields and large geological units, it is proposed that the superimposition relationship between single or multiple geological units and the present structure controls the distribution of medium-and large-sized gas fields, and the "three paleo" superimposed area is the most advantageous. According to the above rules, the main exploration fields and directions of medium-and large-sized marine carbonate gas fields in Sichuan Basin include periphery of Deyang-Anyue paleo-rift, eastern margin of Longmenshan paleo-rift, margins of Kaijiang-Liangping oceanic trough and Chengkou-western Hubei oceanic trough, the high part of the subaqueous paleo-uplifts around Central Sichuan, paleo erosion surfaces of the top boundary of Maokou Formation in eastern and southern Sichuan Basin, paleo erosion surfaces of the top boundary of the Leikoupo Formation in central and western Sichuan Basin.
文摘When heavy machines and large scaled receiver system of communication equipment are manufactured, it always needs to produce large-sized steel castings, aluminum castings and etc. Some defects of hot cracking by thermal stress often appear during solidification process as these castings are produced, which results in failure of castings. Therefore predicting the effects of technological parameters for production of castings on the thermal stress during solidification process becomes an important means. In this paper, the mathematical models have been established and numerical calculation of temperature fields by using finite difference method (FDM) and then thermal stress fields by using finite element method (FEM) during solidification process of castings have been carried out. The technological parameters of production have been optimized by the results of calculation and the defects of hot cracking have been eliminated. Modeling and simulation of 3D thermal stress during solidification processes of large-sized castings provided a scientific basis, which promoted further development of advanced manufacturing technique.
文摘Recently, research strives to apply Ultra High Performance Concrete (UHPC) to large-sized structures owing to its remarkable mechanical performance and durability compared to normal concrete. The Korea Institute of Construction Technology proposed SuperBridge800, an edge girder type UHPC cable stayed bridge with central span of 800 m, through its detailed design. The bridge is designed to be erected through the connection of precast UHPC segments. The precast UHPC segment is monolithically composed of one ribbed deck slab and edge girders at each side. The connection between the precast segments is achieved by steel bars at the edge girders and by UHPC cast-in-place wet joint at the slab. Despite of the outstanding mechanical performance of UHPC, the fabrication of large-sized members is a difficult task since UHPC hardens faster than normal concrete and requires a special curing process. Therefore, the constructability of large-sized UHPC segment should be secured to achieve SuperBridge800. Besides, the performance of the connection between segments should also be guaranteed, especially in terms of the fatigue performance of the UHPC cast-in-place joint, which constitutes a weak point. To that goal, two half-scaled UHPC segments are manufactured and the constructability is examined by fabricating a large-sized UHPC member connected with respect to the design conditions. This study conducts rolling fatigue test on the so-fabricated large-sized UHPC member. Rolling fatigue test is carried out up to 2 million cycles considering actual vehicle load at each center and quarter points of the member. The test results confirm that the service limit state is satisfied.
文摘Large-sized aluminum tube has big section effect, aspect ratio and thin thickness, so that the extrusion technology is complex and the large specific pressure is generated in extrusion cavity. The temperature variation and velocity effect is difficult to control. The extrusion forming of large-sized aluminum tube was researched and simulated. Three-dimensional thermo-mechanical coupled finite element model was constructed and appropriate boundary conditions were given out. The results show that large-sized aluminum tube can be formed by isothermal extrusion through controlling the extrusion velocity and founding the relationship between extrusion velocity and extrusion temperature.
文摘Simulation technique is an efficient approach to realize the planning and scheduling of manufacturing process of products. An appropriate and efficient manufacturing process model is the basis and key of manufacturing process simulation. By analyzing the features of large-sized and complex products, a method of manufacturing process modeling based on activity network is presented and a mapping algorithm of translating BOM/BOP into the manufacturing process model is designed in detail.
基金National Natural Science Foundation of China (Grant Nos. 51675415 and 51335009).
文摘Counter-roller spinning (CRS), where the mandrel is replaced by rollers, is an effective means of manufacturing large-sized, thin-walled, cylindrical parts with more than 2500 mm diameter. CRS is very complex because of multi-axis rotation, multi-local loading along the circumference, and radial-axial compound deformation. Analytical or experimental methods cannot fully understand CRS. Meanwhile, numerical simulation is an adequate approach to investigate CRS with comprehensive understanding and a low cost. Thus, a finite element (FE) model of CRS was developed with the FORGE code via meshing technology, material modeling, determining the friction condition, and so on. The local fine mesh moving with the roller is one of highlights of the model. The developed 3D-FE model was validated through a CRS experiment by using a tubular blank with a 720 mm outer diameter. The developed 3D-FE model of CRS can provide a basis for parameter optimization, process control, die design, and so on. The data on force and energy predicted by the 3D-FE model can offer reasonable suggestions for determining the main mechanical parameters of CRS machines and selecting the motors. With the predicted data, an all-electric servo-drive system/machine with distributed power was designed in this work for CRS with four pairs of rollers to manufacture a large-sized, thinwalled, cylindrical part with 6000 mm diameter.
基金financially supported by the National Key Research and Development Program of China(2017YFC1103900)the National Natural Science Foundation of China(81871502,81701843,and 81671837)+3 种基金the Shanghai Excellent Technical Leader(18XD1421500)the Program of Shanghai Academic/Technology Research Leader(19XD1431100)the Shanghai Collaborative Innovation Program on Regenerative Medicine and Stem Cell Research(2019CXJQ01)the Clinical Research Plan of SHDC(No.SHDC2020CR2045B).
文摘Physiological repair of large-sized bone defects is great challenging in clinic due to a lack of ideal grafts suitable for bone regeneration.Decalcified bone matrix(DBM)is considered as an ideal bone regeneration scaffold,but low cell seeding efficiency and a poor osteoinductive microenvironment greatly restrict its application in large-sized bone regeneration.To address these problems,we proposed a novel strategy of bone regeneration units(BRUs)based on microgels produced by photo-crosslinkable and microfluidic techniques,containing both the osteogenic ingredient DBM and vascular endothelial growth factor(VEGF)for accurate biomimic of an osteoinductive microenvironment.The physicochemical properties of microgels could be precisely controlled and the microgels effectively promoted adhesion,proliferation,and osteogenic differentiation of bone marrow mesenchymal stem cells(BMSCs)in vitro.BRUs were successfully constructed by seeding BMSCs onto microgels,which achieved reliable bone regeneration in vivo.Finally,by integrating the advantages of BRUs in bone regeneration and the advantages of DBM scaffolds in 3D morphology and mechanical strength,a BRU-loaded DBM framework successfully regenerated bone tissue with the desired 3D morphology and effectively repaired a large-sized bone defect of rabbit tibia.The current study developed an ideal bone biomimetic microcarrier and provided a novel strategy for bone regeneration and large-sized bone defect repair.
基金This work was supported in part by the National Natural Science Foundation of China(Grant No.62233001)Shenzhen excellent scientific and technological innovation talent training project(Grant No.RCJC20200714114436040)the Basic Research Program of Shenzhen(Grant No.JCYJ20190806142816524).
文摘Birds in nature exhibit excellent long-distance flight capabilities through formation flight,which could reduce energy consumption and improve flight efficiency.Inspired by the biological habits of birds,this paper proposes an autonomous formation flight control method for Large-sized Flapping-Wing Flying Robots(LFWFRs),which can enhance their search range and flight efficiency.First,the kinematics model for LFWFRs is established.Then,an autonomous flight controller based on this model is designed,which has multiple flight control modes,including attitude stabilization,course keeping,hovering,and so on.Second,a formation flight control method is proposed based on the leader–follower strategy and periodic characteristics of flapping-wing flight.The up and down fluctuation of the fuselage of each LFWFR during wing flapping is considered in the control algorithm to keep the relative distance,which overcomes the trajectory divergence caused by sensor delay and fuselage fluctuation.Third,typical formation flight modes are realized,including straight formation,circular formation,and switching formation.Finally,the outdoor formation flight experiment is carried out,and the proposed autonomous formation flight control method is verified in real environment.
基金Sponsored by the National Natural Science Foundation of China(Grant No.50409015)
文摘Based on the mechanism of local scour around vertical large-sized cylinder due to combined action of wave and current,the sour morphology,scour process and the maximum scour depth around the cylinders are studied experimentally.The influence of various ocean environmental parameters on local scour around the cylinder is considered in physical model test.The experimental results indicate that the principal effect factors on the scour in fine-sand seabed are wave height,wavelength,current velocity,ratio of diameter to wavelength and ratio of depth to wavelength when the ratio of cylinder diameter to wavelength is from 0.2 to 0.8.In this paper,dimensional analysis theory is utilized to establish a theoretical equation for forecasting maximum scour depth around large-sized round cylinder base due to the combined action of wave and current.The results computed with the theoretical equation are compared with the experimental results,and found to be in good consistency.The results in this studies can be used to estimate the maximum sour depth around analogous structures.
基金The authors thank the National Natural Science Foun-dation of China for Distinguished Young Scholars(No.50225518)Doctoral Foundation of Northwestern Poly-technical Uriversity(200209)for the support to this research.
文摘Heat energy change during the extrusion of 7075 aluminium alloy large-size tube with piece-wing in a container was analyzed. Extrusion load vs ram displacement diagrams and exit temperature vs ram displacement diagrams at various speeds were obtained by 3D FEM simulation. Results show that the exit temperature becomes higher as the ram speed and displacement increase. For large-size tube with piece-wing, there is certainly a curve of ram speed decreasing with increasing ram displacement, which enables isothermal extrusion to be achieved. Therefore,an attempt was made to divide the working stroke into five different zones. Each of them has a preset speed that decreases from the ram displacement beginning to the ending. And then, new exit temperature vs ram displacement diagram was obtained by 3D FEM simulation for the five different speeds. It is shown that the variation of exit temperature is very small. Through the above research, a basic method for realizing isothermal extrusion of 7075 large-size tube with piece-wing was obtained, that is, the working stroke was divided into several different zones with a decreasing speed during extrusion, each zonest speed was real-time adjusted on the feedback signal of exit temperature by proportional hydraulic valve through closed-loop control. The engineering experiment verification was carried out on 100 MN aluminium extrusion press with oil-driven double action. The experimental results of the exit temperature agrees with the simulation ones. The achievements of this study may serve as a significant guide to the practice of the relevant processes, particularly for isothermal extrusion. The verified method has been used in the design and manufacture of 125 MN aluminium extrusion press with oil-driven double action.
基金Supported by the Natural Science Foundation of Hebei Province(E2018203028)。
文摘For an ultra-high-pressure hydraulic transmission system of a large-size hydraulic forging press(LHFP),a 70 MPa two-way proportional cartridge valve has been developed to improve the power weight ratio of the hydraulic forging press.In this study,a nominal diameter 25 mm(DN25)cartridge valve is taken as the research object.A longer concentric cylindrical annular gap is set to effectively prevent the ultra-high-pressure oil from flowing to the pilot stage and a seated valve structure is set to form the linear sealing zone in the closing state of the main valve port.Electric-displacement feedback is adopted to realize precise control of the main valve port flow and the features of this valve are investigated.In order to verify the strength and static and dynamic characteristics,the finite element model and a simulation model of the valve proposed above are built.There is a little deformation which does not affect the main valve spool movement,and the main valve port flow meets the design demands.Then,the prototype of DN2570 TPCV is manufactured and a ultra-high-pressure experimental platform is developed.The experimental results show that the DN2570 TPCV designed in this study has the advantage of fast response,high control precision,and low leakage,which can meet the requirements of LHFPs.
基金This work was funded by the National Natural Science Foundation(NSFC)of PR China(Nos.51778463,51438007,52078370).
文摘To model the concrete with complex internal structure of concrete with large sized aggregates the effect of internal structure on uniaxial compression behavior are studied.Large-sized recycled aggregates behave differently in the concrete matrix.To understand the influence on concrete matrix,a finite element model was developed to model recycled aggregate concrete composed of multiple randomly distributed irregular aggregates and cement mortar.The model was used to calculate the effect of large-size recycled coarse aggregate(LRCA)on the strength of recycled aggregate concrete and simulate the compressive strength of cubes and prisms.The factors such as the strength of new concrete,the strength of old concrete,the defective element content,the shape of LRCA,the incorporation ratio of LRCA and the size of LRCA that can affect the strength of concrete are analyzed in this paper.Results showed that the influence of various factors on concrete strength are in the following desend-ing order:(i)strength of newly poured concrete;(ii)original strength of recycled aggregates;and(iii)defects.It can be seen that the cracking of the phase material elements starts along the bonding zones between gravel and mortar or the new and old mortar,then spreads to mortar and finally to LRCA.The cracking tendency is most significant in LRCA,which means that the fracturing is related to the fracture of the LRCA.After evaluating the variations in strength and quality of the recycled concrete,the influences on concrete strength and quality were studied.The results showed that the proposed concrete model with LRCA was successfully applied to studying the uniaxial compressive behavior of concrete with large-size recycled coarse aggregate.
基金Supported by the Major Science and Technology Program for Water Pollution Control and Treatment of China 12th Five-Year Plan(No.2012ZX07101007-005)the National Natural Science Foundation of China(Nos.51178452,51208498,51308530)
文摘To explore the size-dependent responses of zooplankton to submerged macrophyte restoration, we collected macrophyte, zooplankton and water quality samples seasonally from a subtropical shallow lake from 2010 to 2012. Special attention was given to changes in rotifers and crustaceans (cladocerans and copepods). The rotifers were grouped into three size classes (〈200 μm, 200μm-400μm, 〉400 μm) to explore their size-related responses to macrophyte restoration. The results showed that during the restoration, the annual mean biomass and macrophyte coverage increased significantly from 0 to 637 g/m2 and 0 to 27%, respectively. In response, the density and biomass of crustaceans and the crustacean-to-rotifer ratio increased significantly, while the rotifer density decreased significantly. Moreover, rotifers showed significant size- dependent responses to macrophyte restoration. Specially, rotifers 〈400 ~tm were significantly suppressed, while those≥400 μm were significantly encouraged. Overall, the population of large-sized zooplankton tended to boom, while that of small rotifers was inhibited during macrophyte restoration. Redundancy analysis (RDA) revealed positive correlations between macrophytes and crustaceans, rotifers and COD or Chl-a, but negative correlations between macrophytes and COD or Chl-a, and between crustaceans and Chl-a. Moreover, the results indicate that increased predation on phytoplankton by large-sized zooplankton might be an important mechanism for macrophyte restoration during development of aquatic ecosystems, and that this mechanism played a very important role in promoting the formation of a clear-water state in subtropical shallow lakes.
基金supported by the National Natural Science Foundation of China(No.5201101243)Project of State Key Laboratory of Power System and Generation Equipment(No.SKLD22M06)the Institute for Guo Qiang(No.2020GQG1003).
文摘In the context of carbon neutrality,conversion of CO_(2)into CO is an effective way for negative carbon emission.Electrochemical reduction is a novel developed pathway,among which,solid oxide co-electrolysis technology is promising for its high efficiency and low electricity demand.Researches concerning the large-size cell and stack of application level are important.This review,targeting at the not yet fully understood reaction mechanism and the most concerning issue of durability,details the reported factors playing important roles in the reaction mechanism and durability of co-electrolysis.It is found that the operating conditions such as inlet mixtures and applied current significantly affect the reaction mechanism of co-electrolysis and the experiments on button cells can not reflect the real reaction mechanism on industrial-size cells.Besides,the durability test of large-size single cells and stacks at high current with high conversion rate and the potential of solid oxide co-electrolysis combing with intermittent renewable energy are also reviewed and demonstrated.Finally,an outlook for future exploration is also offered.
基金The National Natural Science Foundation of China(No.51675098)
文摘Due to the fact that the vibration signal of the rotating machine is one-dimensional and the large-scale convolution kernel can obtain a better perception field, on the basis of the classical convolution neural network model(LetNet-5), one-dimensional large-kernel convolution neural network(1 DLCNN) is designed. Since the hyper-parameters of 1 DLCNN have a greater impact on network performance, the genetic algorithm(GA) is used to optimize the hyper-parameters, and the method of optimizing the parameters of 1 DLCNN by the genetic algorithm is named GA-1 DLCNN. The experimental results show that the optimal network model based on the GA-1 DLCNN method can achieve 99.9% fault diagnosis accuracy, which is much higher than those of other traditional fault diagnosis methods. In addition, the 1 DLCNN is compared with one-dimencional small-kernel convolution neural network(1 DSCNN) and the classical two-dimensional convolution neural network model. The input sample lengths are set to be 128, 256, 512, 1 024, and 2 048, respectively, and the final diagnostic accuracy results and the visual scatter plot show that the effect of 1 DLCNN is optimal.
基金financially supported by the National Science and Technology Major Project of High-end CNC Machine Tools and Basic Manufacturing Equipment(No.2017ZX04014001)
文摘In this work, some important factors such as ceramic shell strength, heat preservation temperature, standing time and withdrawal rate, which influence the formability of directionally solidified large-size blades of heavy-duty gas turbine with the liquid metal cooling(LMC) process, were studied through the method of microstructure analysis combining. The results show that the ceramic shell with medium strength(the high temperature flexural strength is 8 MPa, the flexural strength after thermal shock resistance is 12 MPa and the residual flexural strength is 20 MPa) can prevent the rupture and runout of the blade. The appropriate temperature(1,520 ℃ for upper region and 1,500 ℃ for lower region) of the heating furnace can eliminate the wide-angle grain boundary, the deviation of grain and the run-out caused by the shell crack. The holding time after pouring(3-5 min) can promote the growth of competitive grains and avoid a great deviation of columnar grains along the crystal orientation <001>, resulting in a straight and uniform grain structure. In addition, to avoid the formation of wrinkles and to ensure a smooth blade surface, the withdrawal rate should be no greater than the growth rate of grain. It is also found that the dendritic space of the blade decreases with the rise of solidification rate, and increases with the enlarging distance between the solidification position and the chill plate.
基金the China and Germany Postdoctoral Exchange Program for this research in Helmholtz-Zentrum Berlin für Materialien und Energiethe Postdoctoral Science Foundation of China (2017M610324)NSFC (21704040)
文摘In past decades,Ni-based catalytic materials and electrodes have been intensively explored as low-cost hydrogen evolution reaction(HER)and oxygen evolution reaction(OER)catalysts for water splitting.With increasing demands for Ni worldwide,simplifying the fabrication process,increasing Ni recycling,and reducing waste are tangible sustainability goals.Here,binder-free,heteroatom-free,and recyclable Ni-based bifunctional catalytic electrodes were fabricated via a one-step quick electrodeposition method.Typically,active Ni nanodot(NiND)clusters are electrodeposited on Ni foam(NF)in Ni(NO3)2 acetonitrile solution.After drying in air,NiO/NiND composites are obtained,leading to a binder-free and heteroatom-free NiO/NiNDs@NF catalytic electrode.The electrode shows high efficiency and long-term stability for catalyzing hydrogen and oxygen evolution reactions at low overpotentials(10ηHER= 119 mV and 50ηOER=360 mV)and can promote water catalysis at 1.70 V@ 10mA cm-2.More importantly,the recovery of raw materials(NF and Ni(NO3)2)is quite easy because of the solubility of NiO/NiNDs composites in acid solution for recycling the electrodes.Additionally,a large-sized(S^70 cm2)NiO/NiNDs@NF catalytic electrode with high durability has also been constructed.This method provides a simple and fast technology to construct high-performance,low-cost,and environmentally friendly Ni-based bifunctional electrocatalytic electrodes for water splitting.