期刊文献+
共找到337篇文章
< 1 2 17 >
每页显示 20 50 100
Astrocytic endothelin-1 overexpression impairs learning and memory ability in ischemic stroke via altered hippocampal neurogenesis and lipid metabolism 被引量:5
1
作者 Jie Li Wen Jiang +9 位作者 Yuefang Cai Zhenqiu Ning Yingying Zhou Chengyi Wang Sookja Ki Chung Yan Huang Jingbo Sun Minzhen Deng Lihua Zhou Xiao Cheng 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第3期650-656,共7页
Vascular etiology is the second most prevalent cause of cognitive impairment globally.Endothelin-1,which is produced and secreted by endothelial cells and astrocytes,is implicated in the pathogenesis of stroke.However... Vascular etiology is the second most prevalent cause of cognitive impairment globally.Endothelin-1,which is produced and secreted by endothelial cells and astrocytes,is implicated in the pathogenesis of stroke.However,the way in which changes in astrocytic endothelin-1 lead to poststroke cognitive deficits following transient middle cerebral artery occlusion is not well understood.Here,using mice in which astrocytic endothelin-1 was overexpressed,we found that the selective overexpression of endothelin-1 by astrocytic cells led to ischemic stroke-related dementia(1 hour of ischemia;7 days,28 days,or 3 months of reperfusion).We also revealed that astrocytic endothelin-1 overexpression contributed to the role of neural stem cell proliferation but impaired neurogenesis in the dentate gyrus of the hippocampus after middle cerebral artery occlusion.Comprehensive proteome profiles and western blot analysis confirmed that levels of glial fibrillary acidic protein and peroxiredoxin 6,which were differentially expressed in the brain,were significantly increased in mice with astrocytic endothelin-1 overexpression in comparison with wild-type mice 28 days after ischemic stroke.Moreover,the levels of the enriched differentially expressed proteins were closely related to lipid metabolism,as indicated by Kyoto Encyclopedia of Genes and Genomes pathway analysis.Liquid chromatography-mass spectrometry nontargeted metabolite profiling of brain tissues showed that astrocytic endothelin-1 overexpression altered lipid metabolism products such as glycerol phosphatidylcholine,sphingomyelin,and phosphatidic acid.Overall,this study demonstrates that astrocytic endothelin-1 overexpression can impair hippocampal neurogenesis and that it is correlated with lipid metabolism in poststroke cognitive dysfunction. 展开更多
关键词 astrocytic endothelin-1 dentate gyrus differentially expressed proteins HIPPOCAMPUS ischemic stroke learning and memory deficits lipid metabolism neural stem cells NEUROGENESIS proliferation
下载PDF
Lipid metabolism analysis in esophageal cancer and associated drug discovery 被引量:1
2
作者 Ruidi Jiao Wei Jiang +3 位作者 Kunpeng Xu Qian Luo Luhua Wang Chao Zhao 《Journal of Pharmaceutical Analysis》 SCIE CAS CSCD 2024年第1期1-15,共15页
Esophageal cancer is an upper gastrointestinal malignancy with a bleak prognosis.It is still being explored in depth due to its complex molecular mechanisms of occurrence and development.Lipids play a crucial role in ... Esophageal cancer is an upper gastrointestinal malignancy with a bleak prognosis.It is still being explored in depth due to its complex molecular mechanisms of occurrence and development.Lipids play a crucial role in cells by participating in energy supply,biofilm formation,and signal transduction processes,and lipid metabolic reprogramming also constitutes a significant characteristic of malignant tumors.More and more studies have found esophageal cancer has obvious lipid metabolism abnormalities throughout its beginning,progress,and treatment resistance.The inhibition of tumor growth and the enhancement of antitumor therapy efficacy can be achieved through the regulation of lipid metabolism.Therefore,we reviewed and analyzed the research results and latest findings for lipid metabolism and associated analysis techniques in esophageal cancer,and comprehensively proved the value of lipid metabolic reprogramming in the evolution and treatment resistance of esophageal cancer,as well as its significance in exploring potential therapeutic targets and biomarkers. 展开更多
关键词 lipid metabolism Esophageal cancer PROGRESSION Treatment resistance New therapeutic targets
下载PDF
Lipid metabolism-related long noncoding RNA RP11-817I4.1 promotes fatty acid synthesis and tumor progression in hepatocellular carcinoma 被引量:1
3
作者 Ren-Yong Wang Jia-Ling Yang +5 位作者 Ning Xu Jia Xu Shao-Hua Yang Dao-Ming Liang Jin-Ze Li Hong Zhu 《World Journal of Gastroenterology》 SCIE CAS 2024年第8期919-942,共24页
BACKGROUND Hepatocellular carcinoma(HCC)is one of the most common types of tumors.The influence of lipid metabolism disruption on the development of HCC has been demonstrated in published studies.AIM To establish an H... BACKGROUND Hepatocellular carcinoma(HCC)is one of the most common types of tumors.The influence of lipid metabolism disruption on the development of HCC has been demonstrated in published studies.AIM To establish an HCC prognostic model for lipid metabolism-related long non-coding RNAs(LMR-lncRNAs)and conduct in-depth research on the specific role of novel LMR-lncRNAs in HCC.METHODS Correlation and differential expression analyses of The Cancer Genome Atlas data were used to identify differentially expressed LMR-lncRNAs.Quantitative real-time polymerase chain reaction analysis was used to evaluate the expression of LMR-lncRNAs.Nile red staining was employed to observe intracellular lipid levels.The interaction between RP11-817I4.1,miR-3120-3p,and ATP citrate lyase(ACLY)was validated through the performance of dual-luciferase reporter gene and RIP assays.RESULTS Three LMR-lncRNAs(negative regulator of antiviral response,RNA transmembrane and coiled-coil domain family 1 antisense RNA 1,and RP11-817I4.1)were identified as predictive markers for HCC patients and were utilized in the construction of risk models.Additionally,proliferation,migration,and invasion were reduced by RP11-817I4.1 knockdown.An increase in lipid levels in HCC cells was significantly induced by RP11-817I4.1 through the miR-3120-3p/ACLY axis.CONCLUSION LMR-lncRNAs have the capacity to predict the clinical characteristics and prognoses of HCC patients,and the discovery of a novel LMR-lncRNAs,RP11-817I4.1,revealed its role in promoting lipid accumulation,thereby accelerating the onset and progression of HCC. 展开更多
关键词 Hepatocellular carcinoma lipid metabolism Immune microenvironment Prognostic markers Metabolic reprogramming
下载PDF
ACSL3 regulates breast cancer progression via lipid metabolism reprogramming and the YES1/YAP axis
4
作者 Shirong Tan Xiangyu Sun +5 位作者 Haoran Dong Mozhi Wang Litong Yao Mengshen Wang Ling Xu Yingying Xu 《Cancer Biology & Medicine》 SCIE CAS CSCD 2024年第7期606-635,共30页
Objective:Mitochondrial fatty acid oxidation is a metabolic pathway whose dysregulation is recognized as a critical factor in various cancers,because it sustains cancer cell survival,proliferation,and metastasis.The a... Objective:Mitochondrial fatty acid oxidation is a metabolic pathway whose dysregulation is recognized as a critical factor in various cancers,because it sustains cancer cell survival,proliferation,and metastasis.The acyl-Co A synthetase long-chain(ACSL)family is known to activate long-chain fatty acids,yet the specific role of ACSL3 in breast cancer has not been determined.Methods:We assessed the prognostic value of ACSL3 in breast cancer by using data from tumor samples.Gain-of-function and lossof-function assays were also conducted to determine the roles and downstream regulatory mechanisms of ACSL3 in vitro and in vivo.Results:ACSL3 expression was notably downregulated in breast cancer tissues compared with normal tissues,and this phenotype correlated with improved survival outcomes.Functional experiments revealed that ACSL3 knockdown in breast cancer cells promoted cell proliferation,migration,and epithelial±mesenchymal transition.Mechanistically,ACSL3 was found to inhibitβ-oxidation and the formation of associated byproducts,thereby suppressing malignant behavior in breast cancer.Importantly,ACSL3 was found to interact with YES proto-oncogene 1,a member of the Src family of tyrosine kinases,and to suppress its activation through phosphorylation at Tyr419.The decrease in activated YES1 consequently inhibited YAP1 nuclear colocalization and transcriptional complex formation,and the expression of its downstream genes in breast cancer cell nuclei.Conclusions:ACSL3 suppresses breast cancer progression by impeding lipid metabolism reprogramming,and inhibiting malignant behaviors through phospho-YES1 mediated inhibition of YAP1 and its downstream pathways.These findings suggest that ACSL3 may serve as a potential biomarker and target for comprehensive therapeutic strategies for breast cancer. 展开更多
关键词 Breast cancer lipid metabolism ACSL3 YAP METASTASIS
下载PDF
Effects of Poria cocos polysaccharide on growth performance,physiological parameters,and lipid metabolism of spotted sea bass Lateolabrax maculatus
5
作者 Jing LU Zhangfan HUANG +2 位作者 Youling YE Anle XU Zhongbao LI 《Journal of Oceanology and Limnology》 SCIE CAS CSCD 2024年第1期316-331,共16页
The aquaculture industry has developed significantly over the past few decades and has had a substantial impact on the global food supply and marine fisheries resources.However,some problems arise behind the scenes du... The aquaculture industry has developed significantly over the past few decades and has had a substantial impact on the global food supply and marine fisheries resources.However,some problems arise behind the scenes due to excessive intensive farming,such as slow animal growth,frequent disease,and lipid metabolism disorders.These problems have limited the sustainable development of the aquaculture industry,and a continuable solution is required.The use of fungal polysaccharide appears to provide a solution to these problems.Therefore,different supplemented levels of Poria cocos polysaccharide(PCP)(0,0.4,0.8,1.2,1.6,and 2.0 g/kg,respectively)were fed to spotted sea bass(Lateolabrax maculatus)in similar size(30.28±0.18 g)in current study.The effects of PCP on growth,physiological parameters,and lipid metabolism of spotted sea bass were investigated after a 4-week rearing period.Results showed,fish with PCP intake presented a significantly higher weight gain,specific growth rate,and a significantly lower feed conversion ratio.Significantly higher trypsin activity in liver and intestine were observed in fish with PCP intake.The superoxide dismutase activity in serum and liver of fish with PCP intake were significantly improved,while significantly higher serum total antioxidant capacity and hepatic catalase activity were also observed.However,no significant differences in lysozyme and alkaline phosphatase activity were evident among groups.Fish with PCP intake showed a significantly lower total cholesterol,but no noteworthy change in triglyceride and lipid-metabolismrelated genes expression were observed among groups.Results indicated that intake of PCP has a positive effect on growth and antioxidant capacity of spotted sea bass,but seems to have a limited effect on the non-specific immunity and lipid metabolism of spotted sea bass.Based on the regression analysis results,1.4 g/kg of PCP is the optimal dose for spotted sea bass in size(30.28±0.18 g). 展开更多
关键词 spotted sea bass Poria cocos POLYSACCHARIDE GROWTH lipid metabolism
下载PDF
Insights into the interplay between gut microbiota and lipid metabolism in the obesity management of canines and felines
6
作者 Kaiqi Li Xiangyu Xiao +8 位作者 Yuling Li Sichen Lu Jianghang Zi Xiaoqiang Sun Jia Xu Hao‑Yu Liu Xiaoqiong Li Tongxing Song Demin Cai 《Journal of Animal Science and Biotechnology》 SCIE CAS CSCD 2024年第5期1761-1777,共17页
Obesity is a prevalent chronic disease that has significant negative impacts on humans and our companion animals,including dogs and cats.Obesity occurs with multiple comorbidities,such as diabetes,hypertension,heart d... Obesity is a prevalent chronic disease that has significant negative impacts on humans and our companion animals,including dogs and cats.Obesity occurs with multiple comorbidities,such as diabetes,hypertension,heart disease and osteoarthritis in dogs and cats.A direct link between lipid metabolism dysregulation and obesity-associated diseases has been implicated.However,the understanding of such pathophysiology in companion animals is lim-ited.This review aims to address the role of lipid metabolism in various metabolic disorders associated with obesity,emphasizing the involvement of the gut microbiota.Furthermore,we also discuss the management of obesity,including approaches like nutritional interventions,thus providing novel insights into obesity prevention and treatment for canines and felines. 展开更多
关键词 CAT DOG Gut microbiota lipid metabolism Obesity Management
下载PDF
Effects of different energy levels in low-protein diet on liver lipid metabolism in the late-phase laying hens through the gut-liver axis
7
作者 Hong Hu Ying Huang +7 位作者 Anjian Li Qianhui Mi Kunping Wang Liang Chen Zelong Zhao Qiang Zhang Xi Bai Hongbin Pan 《Journal of Animal Science and Biotechnology》 SCIE CAS CSCD 2024年第5期2122-2136,共15页
Background The energy/protein imbalance in a low-protein diet induces lipid metabolism disorders in late-phase laying hens.Reducing energy levels in the low-protein diet to adjust the energy-to-protein ratio may impro... Background The energy/protein imbalance in a low-protein diet induces lipid metabolism disorders in late-phase laying hens.Reducing energy levels in the low-protein diet to adjust the energy-to-protein ratio may improve fat deposition,but this also decreases the laying performance of hens.This study investigated the mechanism by which different energy levels in the low-protein diet influences liver lipid metabolism in late-phase laying hens through the enterohepatic axis to guide feed optimization and nutrition strategies.A total of 288 laying hens were randomly allocated to the normal-energy and normal-protein diet group(positive control:CK)or 1 of 3 groups:lowenergy and low-protein diet(LL),normal-energy and low-protein diet(NL),and high-energy and low-protein diet(HL)groups.The energy-to-protein ratios of the CK,LL,NL,and HL diets were 0.67,0.74,0.77,and 0.80,respectively.Results Compared with the CK group,egg quality deteriorated with increasing energy intake in late-phase laying hens fed low-protein diet.Hens fed LL,NL,and HL diets had significantly higher triglyceride,total cholesterol,acetylCo A carboxylase,and fatty acid synthase levels,but significantly lower hepatic lipase levels compared with the CK group.Liver transcriptome sequencing revealed that genes involved in fatty acid beta-oxidation(ACOX1,HADHA,EHHADH,and ACAA1)were downregulated,whereas genes related to fatty acid synthesis(SCD,FASN,and ACACA)were upregulated in LL group compared with the CK group.Comparison of the cecal microbiome showed that in hens fed an LL diet,Lactobacillus and Desulfovibrio were enriched,whereas riboflavin metabolism was suppressed.Cecal metabolites that were most significantly affected by the LL diet included several vitamins,such as riboflavin(vitamin B2),pantethine(vitamin B5 derivative),pyridoxine(vitamin B6),and 4-pyridoxic acid.Conclusion A lipid metabolism disorder due to deficiencies of vitamin B2 and pantethine originating from the metabolism of the cecal microbiome may be the underlying reason for fat accumulation in the liver of late-phase laying hens fed an LL diet.Based on the present study,we propose that targeting vitamin B2 and pantethine(vitamin B5 derivative)might be an effective strategy for improving lipid metabolism in late-phase laying hens fed a low-protein diet. 展开更多
关键词 Cecal microbiome Energy/protein imbalance Late-phase laying hens laying hens Liver lipid metabolism Low-protein diet Multi-omics
下载PDF
RARRES2's impact on lipid metabolism in triplenegative breast cancer:a pathway to brain metastasis
8
作者 Quazi T.H.Shubhra 《Military Medical Research》 SCIE CAS CSCD 2024年第2期311-312,共2页
Breast cancer brain metastasis(BCBrM)is a crucial and hard area of research which guarantees an urgent need to understand the underlying molecular mechanisms.A recent study by Li et al.[1]published in Military Medical... Breast cancer brain metastasis(BCBrM)is a crucial and hard area of research which guarantees an urgent need to understand the underlying molecular mechanisms.A recent study by Li et al.[1]published in Military Medical Research investigated the role of retinoic acid receptor responder 2(RARRES2)in regulating lipid metabolism in BCBrM,highlighting the clinical relevance of alterations in lipid metabolites,such as phosphatidylcholine(PC)and triacylglycerols(TAGs),by RARRES2 through the modulation of phosphatase and tensin homologue(PTEN)-mammalian target of rapamycin(mTOR)-sterol regulatory element-binding protein 1(SREBP1)signaling pathway.This commentary aims to elaborate on the key findings and their relevance to the field. 展开更多
关键词 Retinoic acid receptor responder 2(RARRES2) lipid metabolism Cancer PTEN-mTOR-SREBP1 signaling Metabolic reprogramming Brain metastasis
下载PDF
Effects of altering the ratio of C16:0 and cis-9 C18:1 in rumen bypass fat on growth performance, lipid metabolism, intestinal barrier, cecal microbiota, and inflammation in fattening bulls
9
作者 Haixin Bai Haosheng Zhang +3 位作者 Congwen Wang Modinat Tolani Lambo Yang Li Yonggen Zhang 《Journal of Animal Science and Biotechnology》 SCIE CAS CSCD 2024年第5期2156-2174,共19页
Background C16:0 and cis-9 C18:1 may have different effects on animal growth and health due to unique metabolism in vivo.This study was investigated to explore the different effects of altering the ratio of C16:0 and ... Background C16:0 and cis-9 C18:1 may have different effects on animal growth and health due to unique metabolism in vivo.This study was investigated to explore the different effects of altering the ratio of C16:0 and cis-9 C18:1 in fat supplements on growth performance,lipid metabolism,intestinal barrier,cecal microbiota,and inflammation in fattening bulls.Thirty finishing Angus bulls(626±69 kg,21±0.5 months)were divided into 3 treatments according to the randomized block design:(1)control diet without additional fat(CON),(2)CON+2.5%palmitic acid calcium salt(PA,90%C16:0),and(3)CON+2.5%mixed fatty acid calcium salt(MA,60%C16:0+30%cis-9 C18:1).The experiment lasted for 104 d,after which all the bulls were slaughtered and sampled for analysis.Results MA tended to reduce 0–52 d dry matter intake compared to PA(DMI,P=0.052).Compared with CON and MA,PA significantly increased 0–52 d average daily gain(ADG,P=0.027).PA tended to improve the 0–52 d feed conversion rate compared with CON(FCR,P=0.088).Both PA and MA had no significant effect on 52–104 days of DMI,ADG and FCR(P>0.05).PA tended to improve plasma triglycerides compared with MA(P=0.077),significantly increased plasma cholesterol(P=0.002)and tended to improve subcutaneous adipose weight(P=0.066)when compared with CON and MA.Both PA and MA increased visceral adipose weight compared with CON(P=0.021).Only PA increased the colonization of Rikenellaceae,Ruminococcus and Proteobacteria in the cecum,and MA increased Akkermansia abundance(P<0.05).Compared with CON,both PA and MA down-regulated the m RNA expression of Claudin-1 in the jejunum(P<0.001),increased plasma diamine oxidase(DAO,P<0.001)and lipopolysaccharide(LPS,P=0.045).Compared with CON and MA,PA down-regulated the ZO-1 in the jejunum(P<0.001)and increased plasma LPS-binding protein(LBP,P<0.001).Compared with CON,only PA down-regulated the Occludin in the jejunum(P=0.013).Compared with CON,PA and MA significantly up-regulated the expression of TLR-4 and NF-κB in the visceral adipose(P<0.001)and increased plasma IL-6(P<0.001).Compared with CON,only PA up-regulated the TNF-αin the visceral adipose(P=0.01).Compared with CON and MA,PA up-regulated IL-6 in the visceral adipose(P<0.001),increased plasma TNF-α(P<0.001),and reduced the Ig G content in plasma(P=0.035).Compared with CON,PA and MA increased C16:0 in subcutaneous fat and longissimus dorsi muscle(P<0.05),while more C16:0 was also deposited by extension and desaturation into C18:0 and cis-9 C18:1.However,neither PA nor MA affected the content of cis-9 C18:1 in longissimus dorsi muscle compared with CON(P>0.05).Conclusions MA containing 30%cis-9 C18:1 reduced the risk of high C16:0 dietary fat induced subcutaneous fat obesity,adipose tissue and systemic low-grade inflammation by accelerating fatty acid oxidative utilization,improving colonization of Akkermansia,reducing intestinal barrier damage,and down-regulating NF-κB activation. 展开更多
关键词 C16:0 cis-9 C18:1 Finishing bulls Intestinal homeostasis lipid metabolism Low-grade inflammation
下载PDF
Plant-based meat analogues aggravated lipid accumulation by regulating lipid metabolism homeostasis in mice
10
作者 Yunting Xie Linlin Cai +4 位作者 Zhiji Huang Kai Shan Xinglian Xu Guanghong Zhou Chunbao Li 《Food Science and Human Wellness》 SCIE CSCD 2024年第2期946-960,共15页
To determine the effects of plant-based meat analogues on the metabolic health and the possible mechanisms,mice were fed with a real pork diet(AP),a real beef diet(AB),a plant-based pork analogue diet(PP)and plant-bas... To determine the effects of plant-based meat analogues on the metabolic health and the possible mechanisms,mice were fed with a real pork diet(AP),a real beef diet(AB),a plant-based pork analogue diet(PP)and plant-based beef analogue diet(PB)for 68 days.Compared with real meat,the plant-based meat analogues increased food and energy intake,body weight,white fat and liver weight and caused adipocyte hypertrophy,hepatic lipid droplet accumulation,and inflammatory responses in mice.Metabolomics revealed that plantbased meat analogues altered the composition of serum metabolites,which regulated lipid metabolism homeostasis.The PB diet upregulated gene expression related to lipid synthesis,lipolysis and adipocyte differentiation while the PP diet upregulated expression of lipolysis-related genes but downregulated expression of adipocyte differentiation-related genes in white adipose tissue.Meanwhile,both PP and PB diets upregulated lipid influx-and synthesis-related genes but downregulated lipid oxidation-related genes in liver.The specific metabolite biomarkers may affect fat accumulation mainly by direct lipid metabolism pathways or indirect amino acid metabolism,protein digestion and absorption,bile secretion,aminoacyl-tRNA biosynthesis,neuroactive ligand-receptor interaction and ABC transporters pathways.These findings provide a new insight into understanding the differences in nutritional functions of meat and plant-based meat analogues. 展开更多
关键词 Meat analogues Metabolomics lipid metabolism Adipose tissue dysfunction Ectopic fat deposition
下载PDF
Lipid metabolism-related long noncoding RNAs:A potential prognostic biomarker for hepatocellular carcinoma
11
作者 Rui-Nan Zhang Jian-Gao Fan 《World Journal of Gastroenterology》 SCIE CAS 2024年第33期3799-3802,共4页
The incidence rates of hepatocellular carcinoma(HCC)have increased in recent decades.Despite advancements in therapy and early diagnosis improving shortterm prognosis,long-term outcomes remain poor.Long noncoding RNAs... The incidence rates of hepatocellular carcinoma(HCC)have increased in recent decades.Despite advancements in therapy and early diagnosis improving shortterm prognosis,long-term outcomes remain poor.Long noncoding RNAs(lncRNAs)and lipid metabolism play crucial roles in the development and progression of HCC.Enhanced lipid synthesis promotes HCC progression,and lncRNAs can reprogram the expression of lipogenic enzymes.Consequently,lipid metabolism-related(LMR)-lncRNAs regulate lipid anabolism,accelerating the onset and progression of HCC.This suggests that LMR-lncRNAs could serve as novel prognostic biomarkers and therapeutic targets. 展开更多
关键词 Long noncoding RNAs lipid metabolism Hepatocellular carcinoma PROGNOSIS BIOMARKER
下载PDF
Secreted Frizzled-Related Protein 5 Mediates Wnt5a Expression in Microcystin-Leucine-Arginine-Induced Liver Lipid Metabolism Disorder in Mice
12
作者 Meiyan Yang Furong Yu +3 位作者 Qianqian Ji Huiying Zhang Jiaxiang Zhang Daojun Chen 《Biomedical and Environmental Sciences》 SCIE CAS CSCD 2024年第8期850-864,共15页
Objective Microcystin-leucine-arginine(MC-LR)exposure induces lipid metabolism disorders in the liver.Secreted frizzled-related protein 5(SFRP5)is a natural antagonist of winglesstype MMTV integration site family,memb... Objective Microcystin-leucine-arginine(MC-LR)exposure induces lipid metabolism disorders in the liver.Secreted frizzled-related protein 5(SFRP5)is a natural antagonist of winglesstype MMTV integration site family,member 5A(Wnt5a)and an anti-inflammatory adipocytokine.In this study,we aimed to investigate whether MC-LR can induce lipid metabolism disorders in hepatocytes and whether SFRP5,which has anti-inflammatory effects,can alleviate the effects of hepatic lipid metabolism by inhibiting the Wnt5a/Jun N-terminal kinase(JNK)pathway.Methods We exposed mice to MC-LR in vivo to induce liver lipid metabolism disorders.Subsequently,mouse hepatocytes that overexpressed SFRP5 or did not express SFRP5 were exposed to MC-LR,and the effects of SFRP5 overexpression on inflammation and Wnt5a/JNK activation by MC-LR were observed.Results MC-LR exposure induced liver lipid metabolism disorders in mice and significantly decreased SFRP5 mRNA and protein levels in a concentration-dependent manner.SFRP5 overexpression in AML12cells suppressed MC-LR-induced inflammation.Overexpression of SFRP5 also inhibited Wnt5a and phosphorylation of JNK.Conclusion MC-LR can induce lipid metabolism disorders in mice,and SFRP5 can attenuate lipid metabolism disorders in the mouse liver by inhibiting Wnt5a/JNK signaling. 展开更多
关键词 Jun N-terminal kinase Secreted frizzled-related protein 5 WNT5A Hepatic lipid metabolism disorder
下载PDF
Limosilactobacillus mucosae FZJTZ26M3 prevents NAFLD in mice through modulation of lipid metabolism and gut microbiota dysbiosis
13
作者 Danting Dang Bowen Li +5 位作者 Mengfan Ding RPaul Ross Catherine Stanton Jianxin Zhao Bo Yang Wei Chen 《Food Science and Human Wellness》 SCIE CSCD 2024年第3期1589-1601,共13页
Lactobacillus are considered promising therapeutic methods for nonalcoholic fatty liver disease(NAFLD).The effects of two strains of Ltmosilactobacillus mucosae on NAFLD were investigated in this study.Fourweek-old ma... Lactobacillus are considered promising therapeutic methods for nonalcoholic fatty liver disease(NAFLD).The effects of two strains of Ltmosilactobacillus mucosae on NAFLD were investigated in this study.Fourweek-old male C57BL/6J mice were divided into 4 groups(n=8 per group,Control,Model,FZJTZ26M3,FGSYC17L3).L.mucosae FZJTZ26M3 reduced the mice 's body weight,liver weight,and adipose tissue weight after 12 weeks of therapy.According to serum analysis,total cholesterol,triacylglycerol,and low-density lipoprotein cholesterol significantly decreased after L.mucosae FZJTZ26M3 intervention.Liver pathology showed that L.mucosae FZJTZ26M3 was effective to ameliorate lipid deposition in NAFLD mice.Additionally,the expression of the gene related to lipid metabolism in the liver and adipose tissue was analyzed,and the results indicated that L.mucosae FZJTZ26M3 could alleviate NAFLD by regulating lipid metabolism.Furthermore,the results of 16S rRNA gene sequencing revealed a drop in the relative abundance of Ruminococcaceae,which is linked to inflammation,but the relative abundance of a potential probiotic Akkermansia significantly increased after L.mucosae FZJTZ26M3 intervention.Generally,L.mucosae FZJTZ26M3 could be a candidate to prevent NAFLD. 展开更多
关键词 Limosilactobacillus mucosae Nonalcoholic fatty liver disease(NAFLD) Probiotic lipid metabolism Gut microbiota
下载PDF
Mechanistic study of lipid metabolism disorders in diabetic kidney disease treated with GLQMP based on network pharmacology,molecular docking and in vitro experiments
14
作者 Shu-Man Liu Zi-Jie Yan +1 位作者 Man Xiao Yi-Qiang Xie 《Traditional Medicine Research》 2024年第2期42-51,共10页
Background:In this study,we used network pharmacology and molecular docking combined with vitro experiments to explore the potential mechanism of action of Gualou Qumai pill(GLQMP)against DKD.Methods:We screened effec... Background:In this study,we used network pharmacology and molecular docking combined with vitro experiments to explore the potential mechanism of action of Gualou Qumai pill(GLQMP)against DKD.Methods:We screened effective compounds and drug targets using Chinese medicine systemic pharmacology database and analysis platform and Chinese medicine molecular mechanism bioinformatics analysis tools;and searched for DKD targets using human online Mendelian genetics and gene cards.The potential targets of GLQMP for DKD were obtained through the intersection of drug targets and disease targets.Cytoscape software was applied to build herbal medicine-active compound-target-disease networks and analyze them;protein-protein interaction networks were analyzed using the STRING database platform;gene ontology and Kyoto Encyclopedia of Genes and Genomes were used for gene ontology and gene and genome encyclopedia to enrich potential targets using the DAVID database;and the AutoDock Vina 1.1.2 software for molecular docking of key targets with corresponding key components.In vitro experiments were validated by CCK8,oil red O staining,TC,TG,RT-qPCR,and Western blot.Results:Through network pharmacology analysis,a total of 99 potential therapeutic targets of GLQMP for DKD and the corresponding 38 active compounds were obtained,and 5 core compounds were identified.By constructing the protein-protein interaction network and performing network topology analysis,we found that PPARA and PPARG were the key targets,and then we molecularly docked these two key targets with the 38 active compounds,especially the 5 core compounds,and found that PPARA and PPARG had good binding ability with a variety of compounds.In vitro experiments showed that GLQMP was able to ameliorate HK-2 cell injury under high glucose stress,improve cell viability,reduce TC and TG levels as well as decrease the accumulation of lipid droplets,and RT-qPCR and Western blot confirmed that GLQMP was able to promote the expression levels of PPARA and PPARG.Conclusion:Overall,this study revealed the active compounds,important targets and possible mechanisms of GLQMP treatment for DKD,and conducted preliminary verification experiments on its correctness,provided novel insights into the treatment of DKD by GLQMP. 展开更多
关键词 Gualou Qumai pill diabetic kidney disease disorder of lipid metabolism network pharmacology molecular docking
下载PDF
Supplemental Clostridium butyricum modulates lipid metabolism by reshaping the gut microbiota composition and bile acid profile in IUGR suckling piglets 被引量:5
15
作者 Xin Zhang Yang Yun +7 位作者 Zheng Lai Shuli Ji Ge Yu Zechen Xie Hao Zhang Xiang Zhong Tian Wang Lili Zhang 《Journal of Animal Science and Biotechnology》 SCIE CAS CSCD 2023年第3期1150-1166,共17页
Background Intrauterine growth restriction(IUGR)can cause lipid disorders in infants and have long-term adverse effects on their growth and development.Clostridium butyricum(C.butyricum),a kind of emerging probiotics,... Background Intrauterine growth restriction(IUGR)can cause lipid disorders in infants and have long-term adverse effects on their growth and development.Clostridium butyricum(C.butyricum),a kind of emerging probiotics,has been reported to effectively attenuate lipid metabolism dysfunctions.Therefore,the objective of this study was to investigate the effects of C.butyricum supplementation on hepatic lipid disorders in IUGR suckling piglets.Methods Sixteen IUGR and eight normal birth weight(NBW)neonatal male piglets were used in this study.From d 3to d 24,in addition to drinking milk,the eight NBW piglets(NBW-CON group,n=8)and eight IUGR piglets(IUGR-CON group,n=8)were given 10 mL sterile saline once a day,while the remaining IUGR piglets(IUGR-CB group,n=8)were orally administered C.butyricum at a dose of 2×108colony-forming units(CFU)/kg body weight(suspended in 10 mL sterile saline)at the same frequency.Results The IUGR-CON piglets exhibited restricted growth,impaired hepatic morphology,disordered lipid metabolism,increased abundance of opportunistic pathogens and altered ileum and liver bile acid(BA)profiles.However,C.butyricum supplementation reshaped the gut microbiota of the IUGR-CB piglets,characterized by a decreased abundance of opportunistic pathogens in the ileum,including Streptococcus and Enterococcus.The decrease in these bile salt hydrolase(BSH)-producing microbes increased the content of conjugated BAs,which could be transported to the liver and function as signaling molecules to activate liver X receptorα(LXRα)and farnesoid X receptor(FXR).This activation effectively accelerated the synthesis and oxidation of fatty acids and down-regulated the total cholesterol level by decreasing the synthesis and promoting the efflux of cholesterol.As a result,the growth performance and morphological structure of the liver improved in the IUGR piglets.Conclusion These results indicate that C.butyricum supplementation in IUGR suckling piglets could decrease the abundance of BSH-producing microbes(Streptococcus and Enterococcus).This decrease altered the ileum and liver BA profiles and consequently activated the expression of hepatic LXRαand FXR.The activation of these two signaling molecules could effectively normalize the lipid metabolism and improve the growth performance of IUGR suckling piglets. 展开更多
关键词 Bile acid Clostridium butyricum Gut microbiota Intrauterine growth restriction lipid metabolism Suckling piglet
下载PDF
Characteristics of glucose and lipid metabolism and the interaction between gut microbiota and colonic mucosal immunity in pigs during cold exposure 被引量:2
16
作者 Teng Teng Guodong Sun +4 位作者 Hongwei Ding Xin Song Guangdong Bai Baoming Shi Tingting Shang 《Journal of Animal Science and Biotechnology》 SCIE CAS CSCD 2023年第5期2158-2179,共22页
Background Cold regions have long autumn and winter seasons and low ambient temperatures.When pigs are unable to adjust to the cold,oxidative damage and inflammation may develop.However,the differences between cold an... Background Cold regions have long autumn and winter seasons and low ambient temperatures.When pigs are unable to adjust to the cold,oxidative damage and inflammation may develop.However,the differences between cold and non-cold adaptation regarding glucose and lipid metabolism,gut microbiota and colonic mucosal immunological features in pigs are unknown.This study revealed the glucose and lipid metabolic responses and the dual role of gut microbiota in pigs during cold and non-cold adaptation.Moreover,the regulatory effects of dietary glucose supplements on glucose and lipid metabolism and the colonic mucosal barrier were evaluated in cold-exposed pigs.Results Cold and non-cold-adapted models were established by Min and Yorkshire pigs.Our results exhibited that cold exposure induced glucose overconsumption in non-cold-adapted pig models(Yorkshire pigs),decreasing plasma glucose concentrations.In this case,cold exposure enhanced the ATGL and CPT-1αexpression to promote liver lipolysis and fatty acid oxidation.Meanwhile,the two probiotics(Collinsella and Bifidobacterium)depletion and the enrichment of two pathogens(Sutterella and Escherichia-Shigella)in colonic microbiota are not conducive to colonic mucosal immunity.However,glucagon-mediated hepatic glycogenolysis in cold-adapted pig models(Min pigs)maintained the stability of glucose homeostasis during cold exposure.It contributed to the gut microbiota(including the enrichment of the Rikenellaceae RC9 gut group,[Eubacterium]coprostanoligenes group and WCHB1-41)that favored cold-adapted metabolism.Conclusions The results of both models indicate that the gut microbiota during cold adaptation contributes to the protection of the colonic mucosa.During non-cold adaptation,cold-induced glucose overconsumption promotes thermogenesis through lipolysis,but interferes with the gut microbiome and colonic mucosal immunity.Furthermore,glucagon-mediated hepatic glycogenolysis contributes to glucose homeostasis during cold exposure. 展开更多
关键词 Cold exposure Colonic mucosal immunity Fatty acid oxidation Glucose and lipid metabolism Gut microbiota Pig model
下载PDF
Role of intestinal probiotics in the modulation of lipid metabolism:implications for therapeutic treatments 被引量:2
17
作者 Xiaoran Song Yanan Liu +3 位作者 Xin Zhang Peifang Weng Ruilin Zhang Zufang Wu 《Food Science and Human Wellness》 SCIE CSCD 2023年第5期1439-1449,共11页
Currently, accumulating pieces of evidence indicate that probiotics, living in the gastrointestinal tract, play an important role in regulating host metabolism. As a tool, probiotics have great potential for treating ... Currently, accumulating pieces of evidence indicate that probiotics, living in the gastrointestinal tract, play an important role in regulating host metabolism. As a tool, probiotics have great potential for treating lipid metabolism diseases. However, the relationship between probiotics and abnormal lipid metabolism is still unclear, and the mechanism of action has been become a focus of microbiome research. Therefore, taking intestinal probiotics as the starting point, this article combs the relationship between probiotics and lipid metabolism. Moreover, we discuss the underlying mechanisms of intestinal probiotics regulating lipid metabolism and summarize the therapeutic strategies for abnormal lipids metabolism. This article provides a reference for the further utilization of probiotics in the field of functional foods(food industry). Meanwhile, it will benefit the clinical diagnosis and treatment of lipid metabolism diseases. 展开更多
关键词 PROBIOTICS lipid metabolism Intestinal flora
下载PDF
Dietary copper supplementation modulates performance and lipid metabolism in meat goat kids 被引量:1
18
作者 ZHANG Yan-mei AO De +5 位作者 LEI Kai-wen Lin XI Jerry W.SPEARS SHI Hai-tao HUANG Yan-ling YANG Fa-long 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2023年第1期214-221,共8页
Forty-eight male Lezhi black goat kids with similar body weight((12.09±1.70)kg)and age((60±5)d)were used to determine the effect of dietary copper(Cu),in the form of reagent grade Cu sulfate(CuSO4∙5H2O),on p... Forty-eight male Lezhi black goat kids with similar body weight((12.09±1.70)kg)and age((60±5)d)were used to determine the effect of dietary copper(Cu),in the form of reagent grade Cu sulfate(CuSO4∙5H2O),on performance,serum lipid profile,and the relative mRNA abundance of genes involved in lipid metabolism.Goat kids were stratified by body weight and randomly assigned to one of 4 treatment groups.Each treatment consisted of 12 replicate pens with each pen containing one goat kid.Treatment groups received the basal diet with no supplemental Cu(control),basal diet plus 10 mg of Cu kg^(-1)of dry matter(DM),basal diet plus 20 mg of Cu kg^(-1)of DM,or basal diet plus 30 mg of Cu kg^(-1)of DM.Goats were housed individually in pens and fed a high-concentrate pelleted diet for 60 d.Average daily gain,average daily feed intake and feed:gain of goats were not affected by dietary Cu supplementation(P>0.10).No differences were detected in serum total cholesterol,triglyceride,and high density lipoprotein cholesterol concentrations of goat kids fed with different Cu concentrations(P>0.05).However,serum low density lipoprotein cholesterol concentrations decreased linearly(P=0.01)as the concentration of dietary Cu increased.Intramuscular fat content of longissimus muscle increased(P=0.002)quadratically and liver Cu concentrations increased(P<0.001)linearly as dietary Cu concentration increased.Compared with the control,dietary supplementation of 20 mg Cu kg^(-1)DM decreased the relative mRNA abundance of fatty acid-binding protein 4(P=0.01)and lipoprotein lipase(P=0.05),and tended to decrease the relative mRNA abundance of carnitine palmitoyltransferase I(P=0.06)in longissimus muscle of goats.The relative mRNA abundance of peroxisome proliferator-activated receptor alpha(P<0.001),carnitine acetyltransferase(P=0.001),and carnitine palmitoyltransferase Ⅰ(P=0.001)were also decreased in liver by Cu supplementation.These results indicate that dietary supplementation of Cu modified lipid metabolism by increasing muscular fat and decreasing serum low density lipoprotein cholesterol,and the modification might be associated with the reduction of relative mRNA abundance of genes for oxidation of long-chain fatty acid in muscle and liver of Lezhi black goat kids. 展开更多
关键词 COPPER gene expression goats lipid metabolism growth performance
下载PDF
The protective effects of Levilactobacillus brevis FZU0713 on lipid metabolism and intestinal microbiota in hyperlipidemic rats 被引量:1
19
作者 Xiaoyun Fan Qing Zhang +8 位作者 Weiling Guo Qi Wu Jinpeng Hu Wenjian Cheng Xucong Lü Pingfan Rao Li Ni Youting Chen Lijiao Chen 《Food Science and Human Wellness》 SCIE CSCD 2023年第5期1646-1659,共14页
Levilactobacillus brevis FZU0713, a potential probiotic previously isolated from the traditional brewing process of Hongqu rice wine, may have the beneficial effects on improving lipid metabolism. This study aimed to ... Levilactobacillus brevis FZU0713, a potential probiotic previously isolated from the traditional brewing process of Hongqu rice wine, may have the beneficial effects on improving lipid metabolism. This study aimed to evaluate the in vivo protective effects and possible mechanism of L. brevis FZU0713 on the disturbance of lipid metabolism in hyperlipidemic rats fed a high-fat diet(HFD). Results showed that oral administration of L. brevis FZU0713 could significantly inhibit obesity, ameliorate the lipid metabolism disorder, including serum/liver biochemical parameters and hepatic oxidative stress in HFD-fed rats. Histopathological result also indicated that dietary intervention of L. brevis FZU0713 could reduce the accumulation of lipid droplets in liver induced by 8 weeks HFD feeding. Furthermore, L. brevis FZU0713 intervention significantly increased the fecal levels of short-chain fatty acids(SCFAs, including acetate, propionate, butyrate, isobutyrate, valerate and isovalerate)in HFD-fed rats, which may be closely related to the changes of intestinal microbial composition and metabolic function. Intestinal microbiota profiling by 16S rRNA gene sequencing revealed that L. brevis FZU0713 intervention significantly altered the relative abundance of Coprococcus, Butyricicoccus, Intestinimonas, Lachnospiraceae FCS020 group, Ruminococcaceae_NK4A214 group, Ruminococcaceae_UCG-005 and UCG-014 at genus levels. Based on Spearman's rank correlation coefficient, serum and liver lipid metabolism related biochemical parameters were positively correlated with genera Ruminococcus, Pediococcus and Lachnospiraceae, but negatively correlated with genera Pseudoflavonifractor, Butyricicoccus and Intestinimonas. Furthermore, liver metabolomics analysis demonstrated that L. brevis FZU0713 had a significant regulatory effect on the composition of liver metabolites in hyperlipidemic rats, especially the levels of some important biomarkers involved in the metabolic pathways of arachidonic acid metabolism, primary bile acid biosynthesis, amino sugar and nucleotide sugar metabolism, taurine and hypotaurine metabolism, biosynthesis of unsaturated fatty acid, fructose and mannose metabolism, tyrosine metabolism, etc. Additionally, oral administration of L. brevis FZU0713 significantly regulated the mR NA levels of liver genes(including Acat2, Acox1, Hmgcr, Cd36, Srebp-1c and Cyp7a1)involved in lipid metabolism and bile acid homeostasis. In conclusion, our findings provide the evidence that L. brevis FZU0713 has the potential to improve disturbance of lipid metabolism by regulating intestinal microflora and liver metabonomic profile. Therefore, L. brevis FZU0713 may be used as a potential probiotic strain to produce functional food to prevent hyperlipidemia. 展开更多
关键词 Levilactobacillus brevis FZU0713 lipid metabolism HYPERlipidEMIA Intestinal microbiota Liver metabolomics mRNA expression
下载PDF
Huangqin decoction alleviates lipid metabolism disorders and insulin resistance in nonalcoholic fatty liver disease by triggering Sirt1/NF-κB pathway 被引量:1
20
作者 Bao-Fei Yan Lan-Fen Pan +10 位作者 Yi-Fang Quan Qian Sha Jing-Zheng Zhang Yi-Feng Zhang Li-Bing Zhou Xi-Long Qian Xiao-Mei Gu Feng-Tao Li Ting Wang Jia Liu Xian Zheng 《World Journal of Gastroenterology》 SCIE CAS 2023年第31期4744-4762,共19页
BACKGROUND Nonalcoholic fatty liver disease(NAFLD)is a clinicopathological entity characterized by intrahepatic ectopic steatosis.As a consequence of increased consumption of high-calorie diet and adoption of a sedent... BACKGROUND Nonalcoholic fatty liver disease(NAFLD)is a clinicopathological entity characterized by intrahepatic ectopic steatosis.As a consequence of increased consumption of high-calorie diet and adoption of a sedentary lifestyle,the incidence of NAFLD has surpassed that of viral hepatitis,making it the most common cause of chronic liver disease globally.Huangqin decoction(HQD),a Chinese medicinal formulation that has been used clinically for thousands of years,has beneficial outcomes in patients with liver diseases,including NAFLD.However,the role and mechanism of action of HQD in lipid metabolism disorders and insulin resistance in NAFLD remain poorly understood.AIM To evaluate the ameliorative effects of HQD in NAFLD,with a focus on lipid metabolism and insulin resistance,and to elucidate the underlying mechanism of action.METHODS High-fat diet-induced NAFLD rats and palmitic acid(PA)-stimulated HepG2 cells were used to investigate the effects of HQD and identify its potential mechanism of action.Phytochemicals in HQD were analyzed by highperformance liquid chromatography(HPLC)to identify the key components.RESULTS Ten primary chemical components of HQD were identified by HPLC analysis.In vivo,HQD effectively prevented rats from gaining body and liver weight,improved the liver index,ameliorated hepatic histological aberrations,decreased transaminase and lipid profile disorders,and reduced the levels of pro-inflammatory factors and insulin resistance.In vitro studies revealed that HQD effectively alleviated PA-induced lipid accumulation,inflammation,and insulin resistance in HepG2 cells.In-depth investigation revealed that HQD triggers Sirt1/NF-κB pathwaymodulated lipogenesis and inflammation,contributing to its beneficial actions,which was further corroborated by the addition of the Sirt1 antagonist EX-527 that compromised the favorable effects of HQD.CONCLUSION In summary,our study confirmed that HQD mitigates lipid metabolism disorders and insulin resistance in NAFLD by triggering the Sirt1/NF-κB pathway. 展开更多
关键词 Nonalcoholic fatty liver disease Huangqin decoction lipid metabolism disorders Insulin resistance Sirt1/NF-κB pathway
下载PDF
上一页 1 2 17 下一页 到第
使用帮助 返回顶部