The organic phase separated from the interfacial crud provided by Dexing copper mine in Jiangxi, China, was analyzed by combined gas chromatography-mass spectroscopy. The results show that many kinds of emphiphiles co...The organic phase separated from the interfacial crud provided by Dexing copper mine in Jiangxi, China, was analyzed by combined gas chromatography-mass spectroscopy. The results show that many kinds of emphiphiles containing such hydrophilic groups as carbonyl, carboxyl, sulphonyl or acylamine exist in organic phase. Conclusively, Lix984N would degrade gradually during a long-term contact with the acidic aqueous feed and strip reagents. Lix84 and nonylphenol as effective components of Lix984N degraded almost completely after long-term recycling. Lix984N degraded through such reactions as Beck.mann rearrange, hydrolysis and sulphofication. The degradation of Lix984N would deteriorate solvent extraction and disengagement performance, and result in a more stable interracial emulsion.展开更多
Lix984N is intimately related to the dynamic characteristics of phase disengagement in copper solvent extraction because of its interfacial activity. With increasing Lix984N content, the phase disengagement time is pr...Lix984N is intimately related to the dynamic characteristics of phase disengagement in copper solvent extraction because of its interfacial activity. With increasing Lix984N content, the phase disengagement time is prolonged and the mechanism dominating phase disengagement process transfers from sedimentation to coalescence. The rate of droplet coalescence is faster than that of droplet sedimentation in the dense dispersion band when the volume fraction of Lix984N is less than 3.0%. The former almost equaled to the latter at Lix984N content of 3.0% and finally becomes lower than the latter when the volume fraction of Lix984N is more than 3.0%. The relationship between the adhesion force of two equal droplets and physical properties of fluids is deduced, which explains that the change of physical properties of organic phase with Lix984N content can make droplet coalescence more difficult and phase disengagement slower.展开更多
The extraction ability of organophosphorus extractant D2EHPA(di-2-ethylhexyl phosphoric acid) and hydroximic extractant Lix984N are investigated by the extraction equilibrium experiments.Effects of carrier concen-trat...The extraction ability of organophosphorus extractant D2EHPA(di-2-ethylhexyl phosphoric acid) and hydroximic extractant Lix984N are investigated by the extraction equilibrium experiments.Effects of carrier concen-tration and organic/aqueous volume ratio on the mass transfer of hollow fiber renewal liquid membrane(HFRLM) are studied.Results show that,in the extracting process,kerosene and n-heptane are more suitable than methyl-isobutyl ketone,butylacetate and benzene as the diluents of D2EHPA or Lix984N.The favorable feed pH is 4.4 for D2EHPA and 2.6 for Lix984N.The mass transfer flux of HFRLM increases with carrier concentration and finally reaches a plateau.The mass transfer flux and the overall transfer coefficient increase with the organic/aqueous volume ratio,reach the maximum and then decrease.展开更多
The solvent extraction technology, was applied to recover Cu^2+ and Ni^2+ from plating wastewater.Lix984N was chosen as the extractant due to-its gooff extraction performance. The influence parame-ters were examlned...The solvent extraction technology, was applied to recover Cu^2+ and Ni^2+ from plating wastewater.Lix984N was chosen as the extractant due to-its gooff extraction performance. The influence parame-ters were examlned. The results show that the separation of Cu^2+ and Ni" from sulphate medium can be realized by adjusting pH value with the help of Lix984N. For extracting Cu^2+ and Ni^2+, the optimal pH values are 4 and 10.5, and the maximal extraction percentages are 92.9% and 93.0%, respectively .With recovered Cu^2+ and Ni^2+ stripped in 170g.L^ -1 and 200 g.L^-1 H2SO4 medium, the stripping percentages of Cu^2+ and Ni^2+ are 92.9% and 93.0%, respectively. This method is simple and can be used to recover Cu^2+ and Ni^2+ from plating wastewater. And a flow sheet for separation of Cu^2+ and Ni^2+ is presented.展开更多
Copper and cadmium ions were selectively separated from zinc sulphate aqueous solution or zinc ammonia/ammonium sulphate aqueous solution by low current density electrolysis.It was shown that the concentration of cadm...Copper and cadmium ions were selectively separated from zinc sulphate aqueous solution or zinc ammonia/ammonium sulphate aqueous solution by low current density electrolysis.It was shown that the concentration of cadmium ion in zinc sulphate solution decreased from 4.56 g/L to 0.18 g/L in an electrolysis time of 8.5 h,whilst it decreased from 5.16 g/L to lower than 0.005 g/L in zinc ammonia/ammonium sulphate aqueous solution.On the other hand,the deposition rate of copper was so low that it was difficult to separate copper and cadmium ions from the zinc ammonia/ammonium sulphate aqueous solution during electrolysis.But copper ion could be decreased to 0.002 g/L in this solution through solvent extraction by using kerosene diluted LIX984N as extractant.Therefore,it is favorable to recover cadmium ion from the zinc ammonia/ammonium sulphate solution by electrolysis after solvent extraction of copper.展开更多
Recovery of copper ions from wastewater using a hollow fiber supported emulsion liquid membrane (HFSELM) was studied with LIX984N as carrier, kerosene as diluents, and sulfuric acid solution as stripping phase. Effect...Recovery of copper ions from wastewater using a hollow fiber supported emulsion liquid membrane (HFSELM) was studied with LIX984N as carrier, kerosene as diluents, and sulfuric acid solution as stripping phase. Effects of compositions of feed and emulsion liquid phase, flow rates on both sides of membrane, and hollow fiber module parameters were investigated. The stability of the emulsion liquid phase without surfactant and the effect of buffer in the feed phase on the extraction rate were also evaluated. It is found that the stability of the emulsion phase without surfactant is poor. Higher flow velocity gives shorter residence time for the emulsion liquid phase on the tube side, reducing the effect of particle coalescence on the separation process. The extraction rate increases with the increase of feed phase pH, carrier concentration, hydrogen ion concentration in the stripping phase, and ef- fective hollow fiber area. The phase ratio in the emulsion liquid phase has a negative effect on extraction rate. The flow rates on both sides have little influence on the extraction performance of the HFSELM, while buffer addition in the feed solution improves the extraction efficiency.展开更多
基金Project (P1502) supported by Shanghai Leading Academic Discipline
文摘The organic phase separated from the interfacial crud provided by Dexing copper mine in Jiangxi, China, was analyzed by combined gas chromatography-mass spectroscopy. The results show that many kinds of emphiphiles containing such hydrophilic groups as carbonyl, carboxyl, sulphonyl or acylamine exist in organic phase. Conclusively, Lix984N would degrade gradually during a long-term contact with the acidic aqueous feed and strip reagents. Lix84 and nonylphenol as effective components of Lix984N degraded almost completely after long-term recycling. Lix984N degraded through such reactions as Beck.mann rearrange, hydrolysis and sulphofication. The degradation of Lix984N would deteriorate solvent extraction and disengagement performance, and result in a more stable interracial emulsion.
文摘Lix984N is intimately related to the dynamic characteristics of phase disengagement in copper solvent extraction because of its interfacial activity. With increasing Lix984N content, the phase disengagement time is prolonged and the mechanism dominating phase disengagement process transfers from sedimentation to coalescence. The rate of droplet coalescence is faster than that of droplet sedimentation in the dense dispersion band when the volume fraction of Lix984N is less than 3.0%. The former almost equaled to the latter at Lix984N content of 3.0% and finally becomes lower than the latter when the volume fraction of Lix984N is more than 3.0%. The relationship between the adhesion force of two equal droplets and physical properties of fluids is deduced, which explains that the change of physical properties of organic phase with Lix984N content can make droplet coalescence more difficult and phase disengagement slower.
基金Supported by the Program for New Century Excellent Talents in University(NCET-05-0122) the National Natural Science Foundation of China(20576008 20706003)
文摘The extraction ability of organophosphorus extractant D2EHPA(di-2-ethylhexyl phosphoric acid) and hydroximic extractant Lix984N are investigated by the extraction equilibrium experiments.Effects of carrier concen-tration and organic/aqueous volume ratio on the mass transfer of hollow fiber renewal liquid membrane(HFRLM) are studied.Results show that,in the extracting process,kerosene and n-heptane are more suitable than methyl-isobutyl ketone,butylacetate and benzene as the diluents of D2EHPA or Lix984N.The favorable feed pH is 4.4 for D2EHPA and 2.6 for Lix984N.The mass transfer flux of HFRLM increases with carrier concentration and finally reaches a plateau.The mass transfer flux and the overall transfer coefficient increase with the organic/aqueous volume ratio,reach the maximum and then decrease.
基金Supported by the National Key Technologies Research and Development Program of China during the 1 lth Five-Year Plan Period (2007BAB22B01) and the Young Science Foundation of Jiangxi Province Education Office (GJJ11124).
文摘The solvent extraction technology, was applied to recover Cu^2+ and Ni^2+ from plating wastewater.Lix984N was chosen as the extractant due to-its gooff extraction performance. The influence parame-ters were examlned. The results show that the separation of Cu^2+ and Ni" from sulphate medium can be realized by adjusting pH value with the help of Lix984N. For extracting Cu^2+ and Ni^2+, the optimal pH values are 4 and 10.5, and the maximal extraction percentages are 92.9% and 93.0%, respectively .With recovered Cu^2+ and Ni^2+ stripped in 170g.L^ -1 and 200 g.L^-1 H2SO4 medium, the stripping percentages of Cu^2+ and Ni^2+ are 92.9% and 93.0%, respectively. This method is simple and can be used to recover Cu^2+ and Ni^2+ from plating wastewater. And a flow sheet for separation of Cu^2+ and Ni^2+ is presented.
基金Projects(50774014,50734005) supported by the National Natural Science Foundation of ChinaProject(2008AA03Z514) supported by the National High-tech Research and Development Program of China
文摘Copper and cadmium ions were selectively separated from zinc sulphate aqueous solution or zinc ammonia/ammonium sulphate aqueous solution by low current density electrolysis.It was shown that the concentration of cadmium ion in zinc sulphate solution decreased from 4.56 g/L to 0.18 g/L in an electrolysis time of 8.5 h,whilst it decreased from 5.16 g/L to lower than 0.005 g/L in zinc ammonia/ammonium sulphate aqueous solution.On the other hand,the deposition rate of copper was so low that it was difficult to separate copper and cadmium ions from the zinc ammonia/ammonium sulphate aqueous solution during electrolysis.But copper ion could be decreased to 0.002 g/L in this solution through solvent extraction by using kerosene diluted LIX984N as extractant.Therefore,it is favorable to recover cadmium ion from the zinc ammonia/ammonium sulphate solution by electrolysis after solvent extraction of copper.
基金Supported by the National Natural Science Foundation of China (20676023)
文摘Recovery of copper ions from wastewater using a hollow fiber supported emulsion liquid membrane (HFSELM) was studied with LIX984N as carrier, kerosene as diluents, and sulfuric acid solution as stripping phase. Effects of compositions of feed and emulsion liquid phase, flow rates on both sides of membrane, and hollow fiber module parameters were investigated. The stability of the emulsion liquid phase without surfactant and the effect of buffer in the feed phase on the extraction rate were also evaluated. It is found that the stability of the emulsion phase without surfactant is poor. Higher flow velocity gives shorter residence time for the emulsion liquid phase on the tube side, reducing the effect of particle coalescence on the separation process. The extraction rate increases with the increase of feed phase pH, carrier concentration, hydrogen ion concentration in the stripping phase, and ef- fective hollow fiber area. The phase ratio in the emulsion liquid phase has a negative effect on extraction rate. The flow rates on both sides have little influence on the extraction performance of the HFSELM, while buffer addition in the feed solution improves the extraction efficiency.